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Abstract

MATLAB® software allows to analyze many approximation techniques that are fundamental for research
and teaching in Numerical Computation, Applied Math and Engineering applications. In this paper, we
illustrate MATLAB programming environment to proficiently tackle a broad spectrum of approximation
topics, such as function approximation, multiresolution wavelet analysis, radial basis functions, mul-
tivariate scattered interpolation, surrogate optimization, kernelized support vector machines, and neural
networks to build universal approximators and state estimators.

1 Introduction

MATLAB® (MATrix LABoratory) is a powerful environment to probe and delve into computational mathematics techniques. In
this paper, we illustrate both numerical and symbolic features of MATLAB language to cover key topics in approximation area.
The paper is structured as follows. In Section 1.1 we provide a brief description of MATLAB software. In Section 2, we get
started with 1D function approximation using classical polynomials, i.e. Bernstein, Jacobi and Fourier. The symbolic engine
integrated in MATLAB plays a key role to check orthogonality and compute expansion coefficients. In Section 3, we discuss
time-frequency analysis using wavelet transforms and multiresolution analysis. MATLAB has both functions and interactive apps
to help decomposition of signals into approximation and detail components. In Section 4, we focus on Radial Basis Functions
(RBF) to implement multivariate scattered interpolation. MATLAB integrates RBFs also in other algorithms, such as in surrogate
global optimization, where an RBF interpolator is used to build a surrogate of the objective function, and support vector machines
with RBF kernels, for both classification and regression. In Section 5, we design Neural Networks (NN) models from scratch, i.e.
to build universal approximators and estimate the state of a nonlinear dynamic system, such as an Extended Kalman Filter. We
first see how a NN model can be trained in MATLAB to learn its optimal weights, and then exported into Simulink environment
for more complex system simulation. In the last Section 6, we provide a list of resources to use MATLAB for teaching, research
and in the Cloud. All MATLAB code in this paper has been tested in MATLAB® R2022a and is downloadable from GitHub.

1.1 MATLAB environment and ecosystem

MATLAB® is a comprehensive computational platform, suitable for scientists and engineers to analyze large dataset, develop
complex models and design innovative systems. MATLAB has a rich and continuously updated documentation with plenty of
working examples that help get started easily. The MATLAB environment includes:

« the MATLAB® programming language, matrix-based and natively designed to "speak Math", allowing state-of-art numerical
linear algebra, symbolic math and the most natural expressions of computational mathematics, as well as supporting
different computational paradigms (Parallel/GPU/Cloud Computing, etc.) and algorithm deployment options;

« the Simulink® environment suitable for modeling and simulate dynamic systems, represented by either block diagrams
or other paradigms, such as physical multi-domain (Simscape™) or finite-state machines (Stateflow®), and supporting
Model-Based Design methodology, System Engineering tools, automatic code generation, real-time simulation, and testing;

* avariety of add-on libraries, called Toolboxes™, specialized in a broad spectrum of scientific disciplines (Optimization,
Statistics, Econometrics, Machine Learning, Deep Learning, Signal Processing, Wavelet, Image Processing, System Identific-
ation, Fuzzy Logic, etc.), key applications (Artificial Intelligence, Computer Vision, Robotics and Autonomous Systems,
Robust Control Systems, Embedded Systems, Power Electronics, Predictive Maintenance, Wireless Communications, etc),
and top industries (Automotive, Aerospace, Finance, Energy, Chemical, Biomedical,etc).

Moreover, the wide MATLAB ecosystem includes also:

* interoperability and coexecution with open source frameworks, such as C/C++, Python, PyTorch, TensorFlow, Keras, etc.
and automatic code generation tools for C/C++, CUDA, HDL, etc.

 multiple cloud-based solutions to access MATLAB anywhere, anytime: MATLAB Online™, MATLAB Drive™, MathWorks
Cloud Center, MATLAB Parallel Server clusters. We can also use containerized image of MATLAB on Docker® using MATLAB
Dockerfile on Docker Hub and mpm Package Manager to install toolboxes of choice in our container.

* file sharing with MATLAB File Exchange fed by an active MATLAB community, many support packages with Add-on Explorer,
and tools for Open Science, like MATLAB Live Scripts and Jupiter Notebooks with MATLAB kernel;

*The preface of this special issue to which the article belongs is given in [6].
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* integration with Science Gateways portals, like European Grid Infrastructure (EGI), making scientific methodologies and
output (such as publications, data, and software) transparent and broadly accessible. MATLAB code can be uploaded on
several reproducibility platforms hosting web-based MATLAB, such as Code Ocean or nanoHUB where users can interact
with the code, irrespective of whether they are licensed or not.

In Table 2, at the end of this paper, there is a list of useful resources to continue a proficient and deeper usage of MATLAB.

2 Function Approximation

In this section we use MATLAB to compute approximation of 1-D functions through classic polynomials, such as Bernstein, Jacobi,
and Fourier series. We leverage here on some of the symbolic capabilities integrated into the numerical MATLAB environment.

2.1 Bernstein Polynomials

For every positive integer N, Bernstein basis polynomials are N + 1 polynomials of degree N defined on the real interval [0, 1]:

N\ . »
by: (x)= ( ) )xl 1-x', xe[0,1], i=0,1,2,....,N (2.1.1)
’ i
For any N > 1 bernsteinMatrix (N, x) command will compute all N + 1 Bernstein basis polynomials: it returns a symbolic
(row) array, whose (i+1)-th component is the i-th Bernstein polynomial. For example, for N = 10, B=bernsteinMatrix(10,x)

is an array with 11 polynomials, all of degree 10, where B(1) is (x —1)'° and B(11) is x°:

Listing 1: bernsteinMatrix command

N = 10; syms x real % N is double, while x is a symbolic object

B = bernsteinMatrix(N,x) % B is an array of symbolic objects of size 1x(N+1)
B(1), B(11) % B(i+1) = i-th Bernstein polynomial, i =0,1,2,..., N
Bex = expand(B)’ % expand symbolic polynomials

Bernstein polynomials for N = 10

0
09 —
2
08 — 1) }
o 2 X0 1027+ 4525 - 120X +2102° - 252 ° + 210 2% - 120 ° +45° - 10x + 1
6 —10x""+ 90 2" — 360 x° + 840 7 — 1260 2° + 1260 x° — 840 x* + 360 x° — 90 2° + 10 x
B . .
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210x"% — 1260 x° + 3150 x° — 4200 x” + 3150 2° — 1260 x° +210 x*
—252 x'% 4+ 1260 2% — 2520 * + 2520 X7 — 1260 x° + 252 ¥
210 x'% — 840 2° + 1260 x* — 840 1" + 210 x°
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Figure 1: Bernstein basis polynomials for N = 10. On the left: the graphs of N +1 polynomials. On the right: the expanded algebraic expressions.

Any real-valued continuous function f can be uniformly approximated by a weighted combination of Bernstein basis
polynomials. Putting f; := f (#), the Bernstein polynomial approximation of f is

N
By (f)(x) := Zfi by, (x) plniy f(x), uniformlyon [0,1] (2.1.2)
i=0

The larger N, the better the approximation. bernstein command efficiently evaluates the Bernstein polynomial at any fixed
x by means of the numerically stable de Casteljau’s recursive algorithm: Vx € [0,1]

0) ._
fi(j) ._fi G-1) G0 , (2.1.3)
fi7=Q-x) f; " +x-f;, i=0,1,...,,N, j=12,...,N
Listing 2: bernstein command
N = 10; syms x real
f = cos(4xpix*x).*exp(-x); % f is continuous on [0 1] (another symbolic object)
Bf = bernstein(f, N, x) % using de Casteljau’s algorithm

fplot (Bf, [0,1])
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Bemstein Approximation

0.8 MY

0.6

04

Figure 2: Bernstein polynomial approximation of a given function f with increasing number of terms N = 10, 20, 50, 90. Convergence is generally
slow, so we need to take large N to get closer to the function.

Application of Bernstein polynomials to Computer Graphics. Bernstein basis polynomials are useful to build Bézier curves, after
the French engineer Pierre Bézier who used them in the 1960s for designing curves for the bodywork of Renault cars. Given
N + 1 control points in R?, with d = 2 or d = 3, we can compute Bézier curves by simply multiplying the Bernstein matrix B,
which is a 1x(N + 1) row, by the control points coordinates CP, which is (N + 1)xd.

Listing 3: Bézier curves with d =2

CP = [0 1; 2 4; 6 3; 5 1; 0 11; %(N+1)xd double matrix of control points (CP)
N = size(CP,1)-1; % N = (number of CP) - 1

syms t real, B = bernsteinMatrix(N,t); % B is 1x(N+1) symbolic row

phi = simplify (B*CP)’; % B*CP is 1xd Bezier curve in R~d

fplot (phi (1), phi(2), [0, 1]1)

Interestingly, the algebraic multiplication B x CP of symbolic array B by numerical matrix CP returns the parametric
representation of the Bézier curve ¢(t) = (¢,(t), ..., p4(t)). For example, with d = 2, the Bézier curve for 5 control points, having
the last point equal to the first, is a closed loop with parametric equations of degree 4 as follows. See Fig. 3 (left)

3_ .2
4¢(2¢3—76243t+2) ) 2.1.4)

‘P(t)z( 1263-24¢2+12¢+1

2.2 Orthogonal Polynomials

MATLAB Symbolic Math Toolbox allows to compute the most widely used families of orthogonal polynomials. Any two distinct
polynomials e, and e,, are orthogonal with respect to a particular weight function w(x) defined on a real interval Q C R:

e,Lle, & J e (xX)e,(X)w(x)dx =0, VYn#m (2.2.1)
Q
[ Orthogonal Polynomial | Interval Q | Weight w(x) |
jacobiP(n,a,b,x) [—1,1] (1—x)*(1 +x)?
gegenbauerC(n,a,x) [—1,1] (1—x?)e 2
chebyshevT(n,x) [—1,1] (1—x2)"12
chebyshevU(n,x) [—1,1] (1—x%)2
legendreP(n,x) [—1,1] 1
laguerreL(n,x) [0, 00) e ™
hermiteH(n,x) (—o0, 00) e

Jacobi polynomials (known also as hypergeometric polynomials) form a complete set of orthogonal functions on the interval
[—1, 1] with respect to the weight function w(x) = (1 —x)*(1 + x)?, with a, b > —1. So, Jacobi polynomials are described by two
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Figure 3: Bézier curve for a given set of control points in R2. On the left: 5 control points. By choosing the last point equal to the first, Bezier
curve will be a closed loop. On the right: 11 control points. The more points we add, the more Bézier curve gets closer to the convex hull.

parameters a, b and can be represented as:

1< b
Jr(la,b) (x) = _Z n+a\(n+ (x_l)n—k (x+1)k’ n=0,1,2,..,N
2n = n—

X K (2.2.2)

Chebyshev and Legendre polynomials are just a special case, with a = b ==+1/2 and a = b = 0, respectively. See Fig. 4 and
note that the weight function w(x) is symmetric when a = b, while it is skewed to the left when a > b. jacobiP is a vectorized
command: it means that it can compute all Jacobi polynomials with increasing degree from 0 to N with a single line:

Listing 4: Jacobi Polynomials with respect to a weight function

% Jacobi polynomials of degree 0,1,2,...,N

a = 6; b 6; syms x

w = (1-x)~a*x(1+x)"b; fplot(w, [-1 1]) % weight
N = 5; J = jacobiP(0:N, a, b, x)

figure, fplot(J,[-0.6,0.6]), legend(string(0:N))

wlx) = (1%7(1#x)° Jacobi Poly for N=0,1,2,..5
‘,-‘ N a=6; b=6 10 olf
251 a=6; b=2| | "
=2, b=5 8 2
3
6 3
3 5
2 4 =
o /
f 2 N 5 /
E { 7 < 7
15 / o 7 s P
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Figure 4: Jacobi polynomials. On the left: the weight function w(x)=(1—x)**(1+ x)?, with different a and b. On the right: the first N +1
Jacobi polynomials with N =5 and a = b = 6, zoomed in on the interval [—0.6,0.6].

Orthogonality can be checked out by using the int command to compute the definite integral on [—1,1]: Va,b and Yn# m

Listing 5: Jacobi: check orthogonality with symbolic integration

a =6; b=6; n=3; m=
w = (1-x)~a*x(1+x)"b;
orth = int(jacobiP(n,a,b,x)*jacobiP(m,a,b,x)*w, x,-1,1)

4; syms x real,
% returns O

The squared norm of Jr(l“’b), or simply J, (dropping a and b, for short) is given by

28 T (n+a+1DT (n+b+1)
2n+k n'T (n+k)

2 __ 2 __
Ci= .l = (2.2.3)
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where I'(x) is the Gamma function and k = a + b + 1. As a consequence of completeness of the orthogonal basis {J,,},cz, every
function f can be approximated by a weighted sum of normalized Jacobi polynomials, the weights ¢, being inner products:

1
b= (o= o5 | FO)I,00 @) dx 2.2.4)

N
FEImY b Ja(0),
n=0

Jacobi approximation of a given function can be implemented in few steps: choose the number N of approximating terms;
compute all symbolic Jacobi polynomials from O to N; evaluate them on a numerical array discretizing [—1, 1]; iterate on each
Jacobi polynomial to compute squared norm and inner product by using vpaintegral; finally, perform weighted sum by matrix
multiplication:

Listing 6: Jacobi approximation of a function

sin (2xpi*x)*xexp(-x);
(1-x)~a*(1+x)"b; % weight function
x); % J is sym with N+1 Jacobi polyn

syms x real, fun =
a =6; b=6; w =
N = 5; J = jacobiP(0:N, a, b,
k = a+tb+1;
phi = zeros(1,N+1);
for n = 0:N
Cn_2 = 2~k/(2*n+k)*gamma (n+a+1)*gamma (n+b+1)/(factorial (n)*gamma(n+k)); % squared norm
phi(n+1) = vpaintegral(fun * J(n+1)*w,x,-1,1)/Cn_2; 7 numerical integration
end
JacobiMatrix = subs(J, x,
fun_approx = phi*JacobiMatrix;

% preallocation of (N+1) double coeff

-1:0.01:1); % evaluate J on a numerical array
% phi is 1x(N+1),JacobiMatrix is (N+1)=x201

Fig. 5 illustrates how Jacobi sums approximate the function better and better as we increase the number of terms.

Using 1 Jacobi pol Using 2 Jacobi pol Using 3 Jacobi pol

2F N\ 21 7
1 i 0\
1 ‘;“ \ - 1 \ =
| \ LN \‘\. / \
0 . 0 \ / X
v/ = \ A —
\ \
1 / it
2 2
1 0 1 A 0 1

Using 6 Jacobi pol

Figure 5: Jacobi approximation of a given function f for increasing number of terms.

Application of Jacobi polynomials in Robotics. Jacobi polynomials have been used in [2] (with a = b = 6) to parametrize the
trajectory coordinates of a multi-joint robot arm and simulate discrete movements, such as reaching, grasping, throwing or kicking.
On the contrary, rhythmic movements, such as walking, chewing or scratching, have been simulated by trigonometric polynomials
(Fourier series, described in next section). Using Jacobi and Fourier approximation has the great advantage of leading to a low
dimensional representation of the arm movements in terms of expansion coefficients.

2.3 Fourier Series

On the interval [0, L], for some L > 0, we define the set of orthogonal functions

e, (x) :=sin(A,x), A,:= ”L—“ Vn=1,2,.. 2.3.1)
Orthogonality is given by integral inner product:
L
e,le, & (e,en) :=f e, (x) e, (x)dx=0 if m#n (2.3.2)
0

To check orthogonality, we can use assume command to specify assumptions on L,m,n and int to compute the integral on
[0, L]. Moreover, the simplify command will perform algebraic simplification of the returned symbolic integral:

Dolomites Research Notes on Approximation ISSN 2035-6803
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Listing 7: Fourier: check orthogonality and squared norm

syms x m n L

assume (L, "positive")

assume ([m n], ["integer" "positive"]), assumeAlso(m~™=n) 7 assume m~=n

lambda(n) = n*pi/L;

e(n) = sin(lambda(n)=*x)

I = simplify(int(e(m)*e(n), 0, L)) % inner product <e(n),e(m)> returns O
squared_norm = simplify(int(e(n)*e(n), 0, L)) % squared norm <e(n),e(n)> returns L/2

L
||en||2 = (en’en> = E Vn= 1,2,.. (2.3.3)

Now, let us consider a piecewise-continuous function f : [0,L] — R, possibly with some jump discontinuity. So, f can be
projected on the orthogonal set {e,},_, , _y and approximated by the finite weighted sum:

FEORAGI=] bue0) b= (fred =7 f f () ey (x) dx (2.3.4)
n=1 0

In MATLAB we can compute Fourier coefficients b, with the symbolic integration command int and implement the symbolic
sum with symsum command. As an example, consider a sawtooth function with a jump:

X, ifxe[0,L/2)
flx)= . (2.3.5)
x—L/2, ifxe[L/2,L]
Listing 8: Fourier approximation of a sawtooth function

syms x n, L = 1; % x,n are symbolic objects
assume(n, ["integer" "positive"])
f(x) = piecewise(x<L/2, x, x>=L/2, x-L/2); % define sawtooth function
b(n) = simplify(2/L* int(f(x) * sin(n*pi/L * x), 0, L)) % Fourier coefficients
b(1:10) % display the first 10 coeff

fplot(f, [0 L], "r"), axis equal, hold on

for N = [10 30]
f_approx = symsum(b(n) * sin(n*pi/L*x), n, 1, N) % symbolic sum of N terms
fplot (f_approx, [0 L1);

end

legend (’f(x)’, ’N=10’, °’N=30’, ’Location’, ’NW’), title(’Fourier approximation?’)

Note that, since n is a symbolic object, b(n) becomes automatically a symbolic function. More importantly, n must be
restricted to be positive integer in order to get good expressions of Fourier coefficients. For instance, for the sawtooth function
(2.3.5), MATLAB returns the following:

-1 n/2 -1 n/2 1 2
b(n) = —( ) (( )T ) n=1,2,...N (2.3.6)
2nm

With N = 10 we can observe the first ten Fourier coefficients b(1:10):

1 1 1 1 1 1 1
( T 0 3n T 2n 51 0 - 9 0 )

and Fourier approximation of (2.3.5), truncated at the first N = 10 terms, is:

sin(rrx)+sin(3nx)_sin(4nx) sin (5 7 x) sin(77rx)_sin(87tx) sin (9 7 x)

2.3.
3m 27 51 7T 4 on ( 7

fio(x)=

Of course, with a larger number N of terms, we can get better approximation. Compare with N = 30 in Fig. 6.

3 Wavelets and Multiresolution Approximation

Fourier Transform is localized only in frequency, not in time. This is a drawback when we need to describe non-stationary and
spiky signals, typically occurring in medical sciences (ECG, EEG), earth sciences (seismography, climatology, etc), or finance
(stock prices, trading signals, etc). Wavelets instead are well localized both in time and frequency, so they can track frequencies
changing over time. Just like a "mathematical microscope", they allow to zoom in/out singularities at different resolution.

There are two types of Wavelet Transforms: Continuous and Discrete. The Discrete Transform requires a discrete sampling
grid and an orthonormal basis, that can be created by the key framework of multiresolution analysis (MRA).

After the initial ideas due to Haar in 1909, wavelets and MRA were developed by the fruitful collaboration in the 80’s and
90’s among mathematicians, physicists, engineers: Grossman, Morlet, Mallat [15], Meyer [18], Daubechies [8] (see also [22]
and [17]). Since then many different kind of wavelets have been developed suitably for specific applications, i.e. audio/image
compression, denoising, edge detection. Wavelet techniques can be efficiently implemented in MATLAB.
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Figure 6: Fourier approximation of the sawtooth function f with jump at x = 0.5, comparing N = 10 and N = 30

3.1 From Fourier Transform to Continuous Wavelet Transform
We compare different transforms by discussing their localization properties. From signal theory, recall that:

» any v (t) € L2(R) is a signal (t € R for time), with finite energy E = ||3||? = fj:: [ (t)|2dt and Fourier Transform given
by: {/J\(E) = f_+:: P(t)e tdt € L2(R) (£ € R for frequency);

 given v with ||y|| = 1, and its Fourier Transform 1?, we consider their means y,, and ug; (see *) and variances:

+0oo +00

(t =y Y lp(e)Pdt, (Af)fp=var(|$|2)=f (& —up)* P ()PdE. 3.1.1)

—0Q

(A1) =var(pP?) =f

We call (At),, and (Af),, the efficient duration and efficient band, respectively (i.e. where most energy is concentrated).

* the Heisenberg’s Inequality states that (At),,(Af), = C must hold for some constant C > 0, i.e. as the frequency content
of a signal is resolved more finely, we lose information about when in time these events occur, and viceversa.
If AeR? d=1,2, and v, is a function parametrized by A (typically obtained from 4 by translation, modulation or dilation),

we can build a "transform" from the t-domain to the A-domain by: ¢(t) — (T¢)(A) = fj:: ¢ (tNp,(t)dt. The transform is said
"localized in time" if the corresponding (At), is small, or "localized in frequency" if (Af), is small.

| Transform | A | P, | (At), | (Af), |
Time series A=T Y. (t)=06(t—1) 0 oo
FFT (Fast Fourier Transform) A=w P, (t)=e" [o%) 0
Short-Time FFT (Gabor Transform) A=(w,7) | Y, ()=glt—1)e7" | (Al),.=(Al) (Af),.=(Af),
CWT (Continuous Wavelet Transform) | A=(a,b) | ¢ ,(t) = a‘l/ZUJ(t;—b) (At),, =a(At)y | (Af)., =a ' (Af),

Comparing different transforms, we can see that FFT is perfectly localized in frequency (Af = 0), but totally blind to when
the frequency occurred in time (At = 00). Short-time FFT and CWT are both localized in time and frequency. Short-time FFT,
based on a given window g, has constant At and Af (see Fig. 7 on the left). On the contrary, CWT has resolution windows
changing with scale parameter a (see Fig. 7 on the right).

Let us discuss now CWT in detail. A function 1 (t) € L'(R) N L2(R) (real or complex valued), with |[3||,> = 1, is called a
wavelet or mother wavelet if its Fourier transform 1? satisfies the following admissibility condition:

0<C,y =J Mdg < oo (3.1.2)
o 1]

As € LY(R), 1/[7(5 ) is continuous. So, from (3.1.2), it follows that 1/17(0) =0, i.e every mother wavelet has zero mean:

+00
f Y(t)dt =0. (3.1.3)

g =B = [13 thp(0)Pde and pg = B(91) = 5% [ Elp(E)Pde
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Figure 7: Coverage of Time-Frequency domain: (on the left) by Short-Time FFT, with fixed resolution windows; (on the right) by wavelets: it
provides higher frequency-resolution at low frequencies f = f’; it provides higher time-resolution at high frequencies to capture a peak at t = t”.

Given a mother wavelet 1, we define a 2-parameter family of scaled and translated functions (called child wavelet):

1 t—b>
t)=— — ], a>0,beR 3.14
Yos®= =) (314
where a > 0 is the scale or dilation parameter, and b € R is the shift or translation parameter.

The Continuous Wavelet Transform (CWT) of a function f € L*(R) is given by the inner product with v,

CWT,(f)a,b)=(f,pa,) = f F(O Y0 det, (a,b) €R,\{0}xR (3.1.5)

where Ea’b denotes the complex conjugate of v, , in case of a complex wavelet. Remarkably, if (3.1.2) holds, CWT is invertible
(Calderén-Grossman-Morlet theorem):
+0oo +00
1 1 t—b) 1
fl)= —J J CWT#,(f)(a,b)—’L/)(—) —dadb (3.1.6)
ClP —00 0 \/a a a
Examples of wavelets used in CWT. "Mexican Hat" wavelets and Morlet wavelets are real, symmetric and can be defined by an
explicit formula. Morse wavelets are analytic, i.e. complex-valued and described through their Fourier transforms, which must be
supported only on the positive real axis. Here are some examples of frequently used wavelets:

2
PY(t) = ﬂ(l —2)e )2 Mexican Hat or Ricker

m
(1) = cos(5t) e~/ Morlet 3.1.7)
P(&) = C,p gPlr e, £20 Morse

where in the Morse wavelet, y > 1 controls the symmetry, P? € [y, 40y] is the time-bandwidth product, and C, p is a normalizing
constant. When y = 3, Morse wavelet is symmetric, closely approximates Morlet wavelet, and has the minimum Heisenberg area.

In MATLAB waveinfo command returns some information on the wavelets. The wavefun command allows to visualize
numerical approximations of wavelets: inputs are the wavelet name, and number of iterations; outputs are the values of 1, and a
grid of points where 1 is evaluated:

Listing 9: Wavelets used for CWT: Mexican Hat and Morlet

waveinfo(’mexh’), waveinfo(’morl?’) % wavelets information
[psil,xvall] = wavefun(’mexh’,10); % Mexican Hat wavelet
[psi2,xval2] = wavefun(’morl’ ,10); % Morlet wavelet

figure, subplot(1,2,1), plot(xvall, psil)
subplot (1,2,2), plot(xval2, psi2)

Example of CWT and comparison with FFT. In the following example, we show that wavelets have better localization properties
than FFT and short-time FFT. We define two sampled signals s,,s,, starting from the same frequency values 10, 30,50, 100Hz, but
with different frequency distribution over time: s; contains all the 4 frequencies at any time; s, is defined with a single frequency
in each of 4 distinct intervals. Moreover, both signals last 1 second and have a peak at t = 0.5.

In MATLAB we can use fft, spectrogram and cwt commands to compute Fast Fourier transform, short-time FFT and
Continuous Wavelet Transform, respectively. Note that in the code:

Dolomites Research Notes on Approximation ISSN 2035-6803



/OVQ\.\ Panarese 117

Mexican Hat wavelet Morlet wavelet

Figure 8: Wavelets v (t) used for CWT: Mexican Hat (on the left) and Morlet wavelet (on the right).

* we can apply ££t just once to compute the FFT of all signals if stored in the columns of a matrix (we say £ft is "vectorized"
and can operate down along each column), while we have to loop over each signal to apply spectrogram and cwt.

* spectrogram with no output arguments plot time-frequency diagram, with frequency along x-axis by default. We can
specify sample rate as the 5th input and the frequency location (y-axis) as 6-th input for better comparison.

» cwt command uses the analytic Morse wavelet (with parameters y = 3 and P2 = 60) by default. Morlet wavelet can also
be optionally used. cwt with no output arguments plot a scalogram with log of frequency along y-axis by default. To avoid
the log of frequency we have to run cwt with 2 output arguments and then create a surface.

In Fig. 9, we clearly see that FFT is unable to capture the difference of the two signals (column 2) and totally blind to the
peak. On the contrary, short-time FFT and CWT (Column 3 and 4) are able to show the change of frequency across the time.
CWT can capture the instant of the peak more accurately.

Listing 10: Wavelets: comparing FFT vs spectrogram vs CWT

f [10 30 50 100]; Fs = 1000; % same 4 frequencies
t = (0:1/Fs:1)?; N = numel(t); N2= floor(N/2);
fvec = (0:N2-1)*Fs/N;

mask = [t<0.25 (t>=0.25&t<0.5) (t>=0.5&t<0.75) (£>0.75)]1; % logical matrix
harmonics = cos (2*pix*xt*f); % matrix with harmonics in 4 columns
signals = zeros (numel(t),2); % preallocate matrix for 2 signals
signals(:,1) = sum(harmonics,2); % build signal_1
signals(:,2) = sum(harmonics .* mask,2); % build signal_2
signals = signals + 5x(t>=0.5&t<=0.501); %» add peak at t = 0.5
F = abs(fft(signals))."2/N; % FFT of all signals
figure, tiledlayout (2,4)
for i = 1:size(signals,2)

nexttile,plot(t, signals(:,i)), ylim([-4 10]1) % plot signals in time

ax (1)=nexttile;, plot(F(1:N2,i), fvec) % plot FFT

ax (2)=nexttile;, spectrogram(signals(:,i),[]1,[]1,[],Fs,’yaxis’) % short-time FFT

colorbar ("off") % get rid of colorbar

[cfs,frql = cwt(signals(:,i), ’morse’, Fs); % compute CWT

ax (3)=nexttile;, surface(t,frq,abs(cfs)), shading flat % scalogram

set (ax,’YLim’,[0, 150]) % set common range
end

3.2 Discrete Wavelet Transform and Multiresolution Analysis

The CWT (3.1.5) is continuously defined for any scale a > 0 and time-shift b € R, so it can be numerically approximated through
any sampling of the scale-shift plane. The Discrete Wavelet Transform (DWT) actually refers to a particular choice of sampling, i.e.

1. DWT uses a standard dyadic lattice in (3.1.4) and (3.1.5) with: a =2/ and b = n2/, for any j,n € Z (see )
2. DWT uses particular mother wavelets 2} generating orthonormal (or biorthogonal) bases of L2(R):

BY ={y; ()=27"2y(27t—n): nez jer} (3.2.1)

3. DWT uses mother wavelets 1 that must be compactly supported (hence the entire family (3.2.1) is compactly supported).

This is the choice done in MATLAB and in most engineering and applied sciences. In mathematical literature, we can find a = 27/ and b =n27/, so that (3.2.1)
becomes v; ,(t) = 2//2 4 (ZJ t— n). In this case, the approximation spaces described in the item 2. would be V;; D V;.
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Figure 9: Comparison of FFT, Short-Time FFT and CWT. The two signals on the left (Column 1) contain exactly the same frequencies 10, 30, 50, 100
Hz, but differently distributed over time. Moreover, they both contain a spike at time t = 0.5. FFT (Column 2) just shows the same 4 frequencies,
ignoring the different time-distribution and the peak. On the contrary, Short-time FFT and CWT (Column 3 and 4) are able to capture the change
of frequency across the time. Moreover, CWT is able to identify the instant of the peak more precisely.

Under these conditions, there is an efficient DWT implementation with a fast (pyramid) algorithm using only finite impulse
response (FIR) filters, i.e. the Fast Wavelet Transform, with O(N) complexity, if N is the number of points in the signal (see [23]).

To built such special orthonormal bases (ONB) made of wavelets, Mallat [15] and Meyer [18] developed in 1989 a key
framework called multiresolution analysis (MRA). Let us review briefly the key elements of MRA.

1. There are two types of wavelet: father and mother. The father wavelet ¢, called also scaling function, with non-zero mean,
is responsible to represent the smooth approximation and low-frequency parts of signal, while the mother wavelet 1), with
zero mean, is responsible to describe the detail and high-frequency components:

J p(t)dt =1, f Y(t)dt =0 (3.2.2)

—0Q

2. The father wavelet ¢ "generates" nested closed spaces V;, called approximation spaces, that behave like "zooming grids" at
multiple resolution levels j. More precisely, the couple ({Vj}neZ , p € VO) is called a multiresolution analysis (MRA) of
L%(R) if, by definition, the following conditions hold:

* Vi CV,C Vi and | J,, V; is dense in L*(R)
* Vs are self-similar in scale, i.e. f(t/2) €V, & f(t) €V, & f(2t) €V,
* B = {@j(6)=27"2 (277t —n): neZ} is a "Riesz basis" * of V;.

As ¢, €V, CV, =span{y(t —n) : n € Z}, we get the refinement or two-scale equation for the father wavelet:

o(t) = V2 Y h,p(2t—n) (3.2.3)

nez
where h,, are called low-pass filter coefficients.
3. The mother wavelet v "generates" mutually orthogonal spaces W; € L2(R), called detail spaces. More precisely, given an
MRA, we define W; LV; the orthogonal complement, i.e. W; o' V; =V,_;, and ¢ € W, is defined, on top of ¢ § such that:
. EB].lGZ W; is dense in L*(R), i.e. W;’s are an orthogonal decomposition of L*(R)

. B;p ={y,;,(t)=27"24 (27t —n) : n €2} is an ONB of W,. Remarkably, BY = J B;./’ is ONB for L*(R).

jez
As ) € W, € V., = span{+/2p(2t —n)}, we get the refinement or two-scale equations for the mother wavelet:
P()=v2) g2t —n) (3.2.4)
nez

where g, are called high-pass filter coefficients.

*{ey} is a Riesz basis if 34, B > 0 such that Vf € L2(R) A||f||* < Sk <frex >2< B||f]|?. Riesz basis is a generalization of orthonormal basis (for which A= B = 1).
Their advantage is that they are easier to be found.

$Fourier Transform of (3.2.3) shows that $(&) = H(E/2)@(E/2), with H(E) := 1/\52,1EZ h,e™¢. If we define {E(i) = H;(E/2)P(E/2), with Hy(§) = *H(E + 1),
we can prove that < v, p(t —n) >=0 VYn € Z, so ¢ € W,. Moreover, Bg’ = {y(t —n): n €Z} is an ONB for W,.
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4. The low-pass and high-pass filter coefficients satisfy

Dih,=v2, DR=1, >lg,=0, ».g*=1 > g =0 (3.2.5)

n
Now, by applying V;_; = W, ot V; recursively, we get that for any resolution level J > 1
Vo=W, et v, =W, et W, et V,)=w, et W,e!...0t (W, el V) (3.2.6)

It follows that for any f € V; and J > 1, we can decompose f =d; +d,+...+d; +a;, where d; = ijf € W; is the detail obtained
by the projection operator Py, on W; and a; =Py, f €V; is the approximation obtained by projection Py, on V;:

GO=Pyf(O)=D <, > Y1), a,(O)=P,f()=D.<F0,.> (0. 3.2.7)

nez nez

When choosing a compactly-supported wavelet (like Daubechies), the coefficients < f,1);, > (same for < f, ¢, , > ) are the
Discrete Wavelet Transform (DWT) of f:

DWT,(£)G,n)=(f,h;n) = f FOP; (0 de (3.2.8)

If we put D;f (t) := 277 f(27¢t), then ¢, ,(t) = 2/2Djap(t —2/n). So d;(t) =2/ Y., < f (W), Djp(u—2/n) > Djyp(t —2/n),
where the DWT coefficients can be rewritten

< f(u),Djy(u—2/'n) >= f f@Djp(u—2"n)du = (f * Djyp(—u))(Q) ¢ain (3.2.9)
i.e. with engineer’s language, the detail operator Py, can be expressed as a convolution (or high-pass filter) followed by a

downsampling. Similarly, the approximation operator P, can be expressed as a convolution (or low-pass filter) followed by a
downsampling. Fig. 10 illustrates this idea.

[ 1 1
Level 1 ' Level2 ! Level3 | |Leveld I Level5
d EW, ! .

{I»Dj,n}nEZ d = Z <ol > Y €W,

detail

fEW

approximation

{(Pj,n}nEZ A Z <fifin > #yn €V

Figure 10: Left: Approximation and detail operators can be represented by filters, low-pass and high pass, respectively, followed by a dyadic
downsampling. Right: iterated decomposition at Level 5: f ~d; +a; =d; +(dy +ay) = ... =dy +dy +d3 +dy + (ds + as).

In MATLAB we can choose among many discrete wavelets. Each one has specific properties which make is suitable for
specific applications. The most important properties we may take care of are: the number of vanishing moments (= sparsity of
coefficients), symmetry (= linear phase), and orthogonality (= energy preserving). For instance, the wavelet families in the
following list are all compactly supported, orthogonal and widely used in practical analysis:

* Haar: compactly supported wavelet, symmetric and orthogonal, but not continuous (the oldest and the simplest wavelet).
Application: edge detection, feature extraction. Example: haar, dbl

* Daubechies: compactly supported wavelets, with extremal phase and highest number of vanishing moments for a given
support width. Quite asymmetric (non linear phase). Associated scaling filters are minimum-phase filters. Application:
image denoising. Examples: db2, db3, db4, ..., db4bs.

* Symlet: compactly supported wavelets, built to be as nearly symmetric as possible, and with the highest number of
vanishing moments for a given support width. Associated scaling filters are near linear-phase filters. Application: ECG.
Examples: sym2, sym3, sym4, sym5,

* Coiflet: compactly supported wavelets, symmetric, with highest number of vanishing moments for both ¢ and v for a
given support width. Examples: coif2, coif3, coif4, coifb.

* Biorthogonal: compactly supported, biorthogonal spline wavelets for which symmetry and exact reconstruction are possible
with FIR filters (in orthogonal case it is impossible except for Haar). Application: image compression and reconstruction.
Examples: bior3.5, bior3.7, bior3.9, bior4.4, bior6.8,

To get a list of all the wavelet families available in MATLAB, we can type » waveinfo or » wavemngr (’read’, []). Fora
particular wavelet family, i.e. wnamefam = ’db’, and a particular wavelet, i.e. wname = ’db4’, we can use the following
commands:
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* waveinfo(wnamefam) to get detailed information about a wavelet family;

e [p,¢,xi] = wavefun(wname,iter) to compute scaling ¢ and mother wavelet v);

e [LoD,HiD] = wfilters(wname) to compute the Lowpass and Highpass filter coefficients for Decomposition;
e [LoD,HiD,LoR,HiR] = wfilters(wname) to compute lowpass and highpass filter for Reconstruction as well.

The following code visualize father ¢, mother 1p, high-pass and low-pass filters for 3 Daubechies wavelets db2, db4, dbi6:

Listing 11: Wavelets: comparison of Daubechies wavelets db2, db4 and db16

waveinfo (’db’) % Daubechies family (include 45 wavelets)
figure, wname = ["db2", "db4", "dbl6"]; ¥ compare some Daubechies wavelets
Nw = length(wname);
for i = 1:Nw
[phival ,psival,tval]l] = wavefun(wname(i) ,10); % compute phi and psi
[Low,High] = wfilters (wname(i)); % compute filters coefficients

subplot (3,Nw,i), hold on, plot(tval, phival, "r") 7 plot scaling phi

plot(tval, psival, "b") % plot mother psi
title (wname(i)), legend("\phi","\psi")
subplot (3,Nw,Nw+i), stem(High,"b") % plot highpass filter
subplot (3,Nw,2*Nw+i), stem(Low,"r" % plot lowpass filter
end
db2 . db16
! /\ "H\ "
/1A
/ 0 1/ l\u
0 f— o I‘H" v uu —
2 1 1
0 1 2 3 0 2 4 6 8 0 10 20 30
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05 0.5 T 0 @r\? R e
b ¢ & b 4) T
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3 5 ]
050 -05 -0.5
1 2 3 4 0 2 4 ) 8 0 10 20 30
i db2-Lowpass Filter db4-Lowpass Filter db16-Lowpass Filter
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Figure 11: Daubechies wavelets dbN, with N vanishing moments and filter length of 2N: compare db2, db4, d16 (from left to right). Top row:
the scaling ¢ (in red) and mother wavelet ¢ (in blue). Central row: high-pass filter coefficients. Bottom row: low-pass filter coefficients.

Daubechies orthogonal wavelets dbN are widely used because they also have compact support, N vanishing moments, i.e.
f x"Pgpn(t)dt =0forn=0,1,2,...,N, and filter length 2N, i.e only finitely many h,, n =0, 1,...,(2N —1) are nonzero. Moreover,
gn = (—1)(””)h(2N_1)_n, n=0,1,2,3, with h, and g, defined in (3.2.4) and (3.2.3). For example, db2 has 2 vanishing moments,
filter length 4 and the low-pass filter coefficients h,, n =0, 1,2, 3 are exactly:
po1=v3 h_3—¢§ poo3tVY3 1443
sz a4zt a2 442

while g, = —h,, g, = h,, g8, = —h;, g5 = hy. The values returned by wfilters command allow to verify the theory and all the
relations (3.2.5):

h, (3.2.10)

Listing 12: Wavelets: low-pass and high-pass filters for Daubechies db2

>> [h,g] = wfilters("db2")
h =
-0.1294 0.2241 0.8365 0.4830 % hO, hi, h2, h3
g =
-0.4830 0.8365 -0.2241 -0.1294 % g0=-h3, gl = h2, g2 = -hl, g3=ho

>> [sum(h) sum(h."2) sum(g) sum(g."2) h*xg’]
ans =
1.4142 1.0000 -0.0000 1.0000 0
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In MATLAB we can verify (3.2.6) and compute approximation A; € V; and detail components D; € W;, j =1,2,...J, of 1D
signals x in many ways:

* DWT and inverse DWT (at a single level):

- [A,D] = dwt(x,waveletname)
- x = idwt(A,D,waveletname)

e Decomposition at level J: [C;,L;] = wavedec(x,J,waveletname)
* Reconstruction at any level j =1,2,...,J:

- A; = wrcoef(’a’,C,,L; ,waveletname, j)

- D; = wrcoef(’d’,C;,L;,waveletname, j)
where L;=[length(A), length(D,), ..., length(D;), length(x)] is the bookkeeping vector (used to parse decom-
position vector C;). See also appcoef and detcoef. Similarly, we have functions for 2D images: dwt2, idwt2, wavedec?2,
wrcoef2, appcoef?2, detcoef2.

Listing 13: Wavelets: approximation and detail decomposition with wrcoef

load sumsin, ydata = sumsin’; J = 5;

figure, plot(ydata)

[C,L] = wavedec(ydata, J, ’db4’); % J-level decomposition using db4
figure

A = zeros(numel(ydata), J);

D = zeros(numel (ydata), J);

for j = 1:J
A(C:,j) = wrcoef(’a’, C, L,’db4d’,j); % approximation Aj in Vj
D(:,j) = wrcoef(’d’, C, L,’db4’,j); % detail Dj in Wj
subplot (J,2,2*j-1), plot(A(:,j))
y1lim([-3 31), title("A_"+j+"\in V_"+j)
subplot (J,2,2*%j), plot(D(:,j))
y1im([-3 31), title("D_"+j+"\in W_"+j)

end

% Check that Aj = A(j+1)+D(j+1) as Vn=V(n+1)+W(n+1)

max (abs (ydata - (A(:,1) + D(:,1)))) % f = A1 + D1 (err=7.35e-12)
max (abs(A(C:,1) - (A(:,2) + D(:,2)))) % A1 = A2 + D2 (err=4.44e-16)
max (abs (A(:,2) - (A(:,3) + D(:,3)))) % A2 = A3 + D3 (err=8.88e-16)
max (abs(A(:,3) - (A(:,4) + D(:,4)))) % A3 = A4 + D4 (err=1.11le-15)
max (abs (A(:,4) - (A(:,5) + D(:,5)))) % A4 = A5 + D5 (err=1.33e-15)
J = 5; % check that ydata = AJ+(D1+...+DJ) any J =1,2,...,5

max (abs (ydata - (A(:,J) + sum(D(:,1:3),2)))) % (err=7.35e-12)

% Optional: Extract the coarse scale approximation
A5 = appcoef (C,L,’db4d’);

% Extract only one detail signal at a specific level
D5 = detcoef(C,L,5);

% Extract all detail signals

[D1,D2,D3,D4,D5] = detcoef(C,L,1:5);

We can also compute Maximal Overlap DWT (also known as undecimated DWT) and its multiresolution analysis by modwt
and modwtmra commands. Both use sym4 wavelet by default. Moreover:

* E = modwt (x,wname, J) is energy-preserving, i.e. modwt partitions a signal’s energy across detail and scaling coefficients.

e M = modwtmra(E,wname) accepts the matrix E returned by modwt as input and returns a matrix M with J + 1 rows. The
j™" row of M is the projection d; € W; of the signal onto the detail subspace W;, for j =1,2,...,J. The last row M(J +1,:)
corresponds to the approximation a; € V;. This means that the original signal can be recovered by a column-wise sum of
all the projections stored on the rows.

Listing 14: Wavelets: Multiresolution Analysis with modwt and modwtmra

load wecg.mat wecg, ydata = wecg; % load ECG signal, sampling frequency 180 Hz
tdata = (0:numel(ydata)-1)/180; % (1xN) samples, with N = 2048

% DWT and MRA

wname = ’db4’; J = 6; % choose Daubechies wavelet db4 and J=6

E = modwt (ydata, wname, J); % compute Maximal Overlap DWT

mraMatrix = modwtmra(E, wname); % compute MRA (J+1) x N matrix

ydata_mra = sum(mraMatrix); % sum down along columns, getting (1 x N) row

% Visualize original and reconstructed signals
figure, plot(tdata,ydata,’b--.’, LineWidth=1, MarkerSize=8);
hold on, plot(tdata,ydata_mra,’r’, LineWidth=1);
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Figure 12: Multiresolution of a signal f € V, at Level J = 5. See (3.2.6). First row: The signal f is decomposed as f =A; + D;. Second row:
Al is decomposed as A} = Ay + D,. Third row: A2 is decomposed as A, = A3 + D3, and so on. Hence, the original signal is decomposed into
f=D1+Dy+...+Ds+As, with D; € W and a; € V.

% Visualize decomposition

alldata = [tdata’, mraMatrix’]; % transpose and concatenate to get N x (J+2)
T = array2table(alldata, VariableNames=["time","D"+Level:-1:1,"Approx"]);
figure, stackedplot(T, "XVariable", 1) % plot the approximation and N details
it | |
D6 03¢ } ,
-0.51 l l ]
0.5
s SIS I
D4o vﬁﬂ«‘)p\w'«\ﬂathwmwMﬂaluquJf, 1o qj’lwwjf,ﬁ 'Jfr «awu*aqlmwllllﬁaﬂh\ﬂ'rﬁ
02r I 1. h ' TR I
03 w.'n'z"'mm"u'f'u“ﬂ'||'fV“~“a“|"f-u|wﬂﬁwwﬁu“““”ﬂv““”ﬂw"'“ﬂ.J|rw.J'M“M|,Wﬂu“fu
0.2F I
0,1 i
D2 aof ;fm{‘ﬂf'u"julh‘“f'ul["I‘ J"m"w"w(‘"m]‘flw \””J'“"‘I(\-\['f'U.WuHM
0.1t VU yv oy
m f i r“f.‘fwf“\_/\ .
««»/f VWMWY A
02k o ‘-\‘_;__,__7--'-"-\.
Approx_D‘g ;_k /,.-r-""* \‘m\\.
L | | | L = o
0 2 4 6 8 10
time (s)

Figure 13: Multire

We can perform MRA also

solution of a signal at Level J = 6, see (3.2.6) using modwt and modwtmra with db4 wavelet.

by using the interactive App called Signal Multiresolution Analyzer (from the App tab of MATLAB

desktop or by typing » signalMultiresolutionAnalyzer). We can quickly import a signal, choose a wavelet, pick the
approximation level, and visualize the decomposition. For each level, the app allows to explore the energy percentage for each
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component and select which levels we would like to include (typically those with highest energy content) to reconstruct the
signal. The App allows also to export the reconstructed signal, the decomposition matrix or automatically generate the MATLAB
script with the commands. In the example in Fig. 14 we can see that, after a decomposition at level 6, the top three levels with
the highest relative energy are:

* approximation (projection on space Vy) with the highest energy 58.46%
* detail at level 3 (projection on space W;) with energy 12.37%

* detail at level 4 (projection on space W,) with energy 8.42%.

4\ Signal Multiresolution Analyzer - m] X

SIGNAL MULTIRESOLUTION ANALYZER

O Work In Samples n p
@ & GF & owicete | OF | ¥
New  Import Add @ Delete | Default | Export
Session O sample Period - Layout -
FILE TIME DECOMPOSED SIGNALS | LAYOUT | EXPORT
Decomposed Signals Decomposition Reconstructions
Name ‘Me(hod T T T T
wecg1 [moowr

Level 2

——wecg1

Level 3

Level Selection

Frequencies Relative Energy Include Show.
(Hz)

Level 1 45 - 90 4.85%
Level 2 21.7-46.7 7.12%
Level 3 109-233 12.37%
Level 4 543-116 8.42%
Level 5 271-581 5.79%
Level 6 1.36-2.91 2.99%
Approx. 0-14 58.46%

Level 4

NOORROn;
NORRR®EO

Level 5

Approx

8 4
seconds seconds

Figure 14: Signal Multiresolution Analyzer App in MATLAB: decomposition of an ECG signal (with frequency 150Hz) has been computed at level
6 with db4 wavelet; we can see corresponding energy for each level on the left panel. We can select the levels with the highest energy, i.e. the
approximation + detail at level 3 + detail at level 4 , and observe the reconstruction by including only these terms on the right plot.

4 Radial Basis Functions

Radial basis functions (RBF) are a means to approximate multivariable functions that are too hard or too time consuming to be
evaluated, so they can be sampled (or measured) only in a finite number of points. Since RBFs are radially symmetric functions
that are shifted by points in a multidimensional normed linear space, they form a convenient data-dependent approximation
space (as suggested by the Mairhuber-Curtis theorem). RBFs have many advantages: scalable to any dimension, high accuracy,
fast convergence, no need for triangulation. RBFs are also used in machine learning, surrogate optimization and neural networks,
as we will briefly see in the following sections.

4.1 Multivariate Scattered interpolation

We consider the problem of interpolating scattered data X = {x,}}_, and F = {f,}}'_,, with x;, € R? and f, € R. We assume:
* X are multivariate (d > 1), pairwise distinct, and meshless (i.e. they don’t need to form a regular grid)
* fi = f(x;) are the only known (or sampled) values for some unknown (or too complex) function f
* We look for a simpler model P; interpolating f, i.e. satisfying N conditions P;(x;) = f k =1,2,...,N.

The fundamental model for P; is a linear combination of radial basis functions, dependent on the distance from each x;:

Pp(x)= ﬁ: A @ (lx —xi 11D, Pi(x)=f Vi=12,.,N (4.1.1)
k=1
where || - — x;]| is any norm-induced distance (Euclidean, Minkowski, Mahalanobis, etc.) and ¢ : [0,00) — R is a radially
symmetric function, chosen among:
o(r)=r (linear)
p(r)=r° (cubic)
¢ (r) =r*log(r) (thin-plate spline) (4.1.2)
P(r)=+/1+(er)? (multiquadric)
P(r)=e (Gaussian)
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Data are shaped such that X is Nxd matrix and F is a Nx1 column. If Dy is the dxd symmetric square matrix of all pairwise
distances, i.e.

0 [ler =xoll Mg —=xsll e e oo e — Xy
[13¢; — x4 0 [y —oxsl| =or oo el — xy]
Dy = . . . . . . . (4.1.3)
[xy —xqll My =l ey =23l oer vee e 0

the problem (4.1.1) becomes equivalent to the linear system
¢(Dy)A=F 4.1.4)

where ¢ is applied to any entry of Dy. The linear system (4.1.4) can be efficiently solved in MATLAB.
To implement this method in MATLAB, we consider the following scattered data in the unit square [0, 1]x[0,1]:
* X;: Quasi-random (low-discrepancy) 2D sequence, i.e. a Halton sequence

* fi: Franke’s bivariate test function (implemented in MATLAB with 2 input arguments)

Listing 15: RBF: Halton quasi-random dataset for testing

d = 2; % d=space dimension

(2~4+1)~2; % N=number of scattered points in R~d

% Generate quasi-random Halton set (see MATLAB Doc for Skip and Leap properties)
p = haltonset(d,’Skip’,1e3,’Leap’,1e2); % define quasi-random object in d-dim

=
|

p = p.scramble(’RR27); % use scramble method (reverse-radix)
X = p.net(N); % use net method to generate N points in R~d
F = franke(X(:,1), X(:,2)); % compute Franke’s test function

scatter3(X(:,1),X(:,2),F), view([70 35])

We can now create the RBF interpolator in MATLAB with three simple steps:
1. choose a distance and compute pairwise distance matrix Dy (4.1.3) by using pdist command;
2. choose an RBF ¢ (4.1.2) and apply it to each entry of the distance matrix;
3. solve the linear system (4.1.4) by using backslash operator (Gauss direct methods):

A=¢(Dy)\ F (4.1.5)

Listing 16: RBF: Build the RBF interpolator

dist_name = ’Euclidean’; % define a distance

phi = @(r) r."3; % define an RBF

D = pdist(X, dist_name); % 1) compute pairwise distances

A = squareform(phi(D)); % 2) apply RBF to distances

lambda = A\F % 3) solve linear system Axlambda = F

To visualize the interpolating surface, we need to prepare uniform mesh for each dimension, stretch them into columns and
compute pairwise distances between these uniform points and the original scattered ones by using pdist2 command:

Listing 17: Visualization of the RBF interpolator

n = 30; % mesh size
gridx = linspace(0,1,n);
gridy = linspace(0,1,n);

[xe,ye]l] = meshgrid(gridx, gridy); % d uniform meshes (nxn)

eX = [xe(:), ye(:)]; % stretch into n~2 x d

eDist = pdist2(eX,X, dist_name); % pairwise distances to get n~2 x N

eA = phi(eDist); % apply RBF

f_interp = eAxlambda; % multiply by lambda (Nxl1) to get n~2 x 1
f_interp_mat = reshape(f_interp,n,n); % reshape into nxn

figure, hold on

scatter3(X(:,1),X(:,2),F, "b", "filled")
surf (xe,ye,f_interp_mat), view([70 35])
shading interp, colormap hot, alpha(0.5)

Another useful model is the scattered interpolator with polynomial precision, able to exactly reproduce a linear interpolator
when the original data are already linear. It can be obtained from (4.1.1) by adding polynomial terms to the RBFs. For simplicity
let us formulate the model in R? and add a polynomial of degree 1 in 2 variables:

N
Pi(x)= Z A @ (lx—=x, ) + €, +CoxP + ¢y x@ | x = (x®,x?) e R? (4.1.6)
=1

polynomial precision
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Cubic RBF Interpolation Cubic RBF interpolation with Linear reproduction

Figure 15: Scattered data interpolation: on the left: with cubic radial basis function for Franke’s test function; on the right: with cubic radial
basis function and linear polynomial precision for some linear data

As we have 3 more unknowns, we can add 3 more conditions. For details, see [9]. If we put P = [1 x® x(z),] we obtain an
augmented linear system, similar to (4.1.4):

d)(Dx)NxN PNX3) (A’le) (Fle)
= 4.1.7
( (PT)BxN 03x3 C3x1 03x1 ( )
MATLAB code for solving the augmented linear system (4.1.7) is straightforward. See Fig. (15) (on the right).

Listing 18: RBF: Cubic RBF interpolator with linear polynomial precision

D = squareform(pdist(X, "euclidean")); 7% compute distance matrix

phi = @(r) r."3; % define cubic RBF

A = phi(D); % apply RBF to Distance matrix

P = [ones(N,1), XI; % define P=[1 xi yi ] as N x 3

A0 = [A P; P’ zeros(3)]; % define augmented interpolation matrix
FO = [F; zeros(3,1)]; % add zeros to F

lambda0 = AO\FO; % solve linear system AO*lambdaO = FO

4.2 Surrogate Optimization

A surrogate is a simpler function that approximates another function and takes less time to evaluate. RBF interpolators can be

used to generate a surrogate of the objective function in a constrained optimization problem. Surrogate optimization is best-suited

when we have a time-consuming objective function (i.e. expensive to evaluate, nonsmooth or kind of black-box with no analytical

input/output expression): to search for a point that minimizes the objective function, simply evaluate its surrogate on thousands

of points randomly chosen in a limited box, and take the best value as an approximation to the minimizer of the objective function.
Surrogate optimization attempts to find a global minimum of the constrained optimization problem:

Ib<x<ub
X; integer for some i
x* =argmin f (x) suchthat { Ax<b 4.2.1)
XECRR Aggx = beg
c(x)<0

where x € Q C R" (optionally, some x;’s can be assumed to be integer); b and ub are lower and upper bounds, respectively;
Ax < b and A,; = b,, are linear inequalities and equalities; c(x) < 0 are non-linear constraints.

In MATLAB, surrogateopt function implements a derivative-free algorithm to solve (4.2.1) by approximating the objective
f(x) with a surrogate s(x) given by a cubic RBF interpolator with linear tail as described in Section 4.1 (which also minimizes a
measure of bumpiness as defined by H.M. Gutmann in [11]):

FE)ms(x)= D A llx—x P + (cx+d) (4.2.2)

k=1
The merit function is a convex combination of two terms: a scaled surrogate and a scaled distance
S (X ) — Smin

P (x) = wT +(1—w)(2ma;fi(x)

max min

(4.2.3)

max ~ “min
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where d(x) is the minimum distance of the point x from trial points. A small value of w looks at points that are far from evaluated
points, leading the search to new regions. A large value of w gives importance to the surrogate values, causing the search to
minimize the surrogate. Typically, w cycles through the values: 0.3, 0.5, 0.8, and 0.95 (see MATLAB Documentation [19] for
details). The surrogate optimization algorithm alternates between two phases (see Fig. 16):

* Phase A: Construct Surrogate

1. Sample within the bounds by generating a small amount of quasi-random sample points and evaluate the objective
function at these trial points (MinSurrogatePoints, default is max(20, 2n)).

2. Create a surrogate model of the objective function by using an RBF interpolator (4.2.2) through these trial points.
Identify the best point (found since the last surrogate reset). This point is called incumbent point

¢ Phase B: Search for Minimum

3. Sample with a large number of pseudorandom points (about 102 —10%) near the incumbent point. Evaluate the merit
function (4.2.3) at these trials, but not at any point within MinSampleDistance of a previously evaluated point
(default is 107°). The point with the lowest merit function value is called the adaptive point.

4. Evaluate the objective at the adaptive point, and update the surrogate based on this point and its value. If the
objective function value at the adaptive point is sufficiently lower than the incumbent value, then the solver deems
the search successful (success=success+1) and sets the adaptive point as the new incumbent. Otherwise, the
solver deems the search unsuccessful (failure = failure+1) and does not change the incumbent.

5. Update the dispersion of the sample distribution upwards if 3 successes occur before max(n, 5) failures. Update the
dispersion downwards if max(n, 5) failures occur before 3 successes.

6. Continue from step 3 until all trial points are within MinSampleDistance of the evaluated points. At that time,
reset the surrogate by discarding all adaptive points from the surrogate, reset the scale, and go back to step 1 to
create MinSurrogatePoints new random trial points for evaluation.

Search for Minimum

Create Surrogate TN | Baiipls haar
2 Q\J incumbent
fix) —

Quasirandom points
within bounds fx)

i : = - X S _—ﬂ% Evaluate
o = 25 X merit function
- X

o

O Evaluate objective
o ©| function
- X

\ | Interpolate to fix)
& Incumbent }R create surrogate ) Update interpolant
' . X - K| and scale
= s X

Figure 16: The two phases of Surrogate Optimization algorithm: 1) Construct the surrogate; 2) Search for Minimum

Evaluate objective
Q_ at best point

fix)

In MATLAB, the interface to call surrogateopt is
[x, fval, exitflag] = surrogateopt (Qobjconstr,1lb,ub,intcon,A,b,Aeq,beq,options),

where [b and ub are mandatory finite bound constraints for all variables and @objconstr is a function handle pointing at
the objective function with signature: function S = objconstr(x). The output S must be a structure array with 2 fields:
S.Fval and S.Ineq, the objective value and the nonlinear inequality constraints c(x), respectively. Note that the non-linear
constraints must be incorporated together with the objective function.

Solving a problem with surrogate optimization. As an example, let us try to solve the following problem where the object-
ive requires to solve a system of ordinary differential equations (ODE): change the position and angle of a bow to throw an arrow
as far as possible beyond a fixed wall and staying below a ceiling. The decision variable is x = (x;, x,) € R?, where x; = the
initial distance of the bow from the wall, and x, = the initial angle of the arrow. Suppose we are given the following data:

* the wall is 20 m high. (Fix the origin of coordinate system on the base of the wall.);

¢ the ceiling is 60 m high;
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* nonlinear air resistance slows the arrow proportionally to the square of velocity, with constant u = 0.01;
* gravity acts on the arrow, accelerating it downward with constant g = 9.81 m/s?;

* the arrow has an initial velocity of v, = 85 m/s;

* initial conditions (initial distance from wall, initial angle): x® =[—50; 7/6];

* bound constraints: —200 < x; < —1and 0.05 < x, < 7 —0.05;

* wall constraint: if the trajectory crosses the wall at a height less than 20, the trajectory is infeasible;

* ceiling constraint: if the trajectory crosses the ceiling at height 60, the trajectory is infeasible.
Highest Distance 125.770567

Ceiling
60

Trajectory height
B
o

201 &// IWau ‘
0 &'/' I I I I I |
60 40 -20 0 20 40 60 80 100 120 140
Horizontal distance

Figure 17: Surrogate Optimization problem: find position A and angle of a bow to throw an arrow as far as possible beyond a wall and staying

below a ceiling. As a first guess, taking initial position xio) = —50 and initial angle xgo) = 1/6, we can achieve the distance 101.75. After
optimization, getting a little closer ng inal) — _3.38 and increasing the initial angle ng inal) _ 0.73, we will achieve the best distance 125.77

As ODE solvers require the model to be a first-order system, we define a 4-dim state column vector q = (q;,45,q3,q4)", with
(q1,95) for the position in the plane and (g3, q,4) for the velocities, so the dynamics of the arrow is given by:

e

d _ q4(t

@O l(as0,0, )] 4500 (4.2.4)
—u ”(%(t),%(f))” q4(t)—g

To solve the problem in MATLAB, we define a structure array with all the problem parameters:

Listing 19: Surrogateopt: defining a structure for problem parameters

param.wallheight = 20;
param.peak = 60;
param.resistancecoeff = 0.01;
param.initialspeed = 85;
param.lb = [-200; 0.05];
param.ub = [-1; pi/2-0.05];
param.gravity = 9.81;
param.x0 = [-50; pi/6];
param.stoptime = 15;

We also define three functions:

* ModelEquations: a nested function defining the ODE system (4.2.4);

* ModelSolver: a function calling ode45 solver to return the ODE solution;

* ObjectiveConstr: the main function for surrogate optimization returning a structure S with two special fields:

— S.Fval: returns the negative distance to be minimized;
— S.Ineq: returns the two constraints (height > WALL and peak < CEILING).

Listing 20: Surrogateopt: ODE solver calling a nested function

function sol = ModelSolver (x,param)
% x(1) = distance from wall, x(2) = angle. Change initial 2-D point x to 4-D qO
90 = [x(1);0; param.initialspeed*cos(x(2)); param.initialspeed*sin(x(2))];

% Solve ODE
sol = ode4b5(@ModelEquations, [0,param.stoptime],q0);
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function dq = ModelEquations(~,q) 7% NESTED function
dq = zeros(4,1); % initialize state q as 4D
v = norm(q(3:4)); % norm of the velocity
dq (1) = q(3);
dq(2) = q((4);

dq(3) = -param.resistancecoeff *v*q(3); % horizontal accel
dq(4) = -param.resistancecoeff #*v*q(4) - param.gravity; 7% vertical accel
end
end
Note that:

* ModelEquations is a nested function in ModelSolver, so that it shares the param structure from the parent workspace.
Because we are using nested functions, all functions must be terminated by end;

* ModelSolver is responsible to convert 2D input x into 4D g as required by ModelEquations;

* ObjectiveConstr calls fzero twice to determine both the achieved distance when the trajectory height is zero and the
achieved height when the arrow passes over the wall. To find the peak of trajectory, it calls fminbnd.

Listing 21: Surrogateopt: objective function (distance) including the nonlinear constraints (wall and ceiling)

function S = ObjectiveConstr(x, param)
sol = ModelSolver (x,param);

horiz_pos = @(t) deval(sol,t,1);
vert_pos = Q@(t) deval(sol,t,2);

% Find time t when trajectory height = 0 and horizontal position at that time
tO0_heightO = fzero(vert_pos,[le-2,param.stoptime]);
dist = horiz_pos(tO_heightO);

% What is the height when the arrow crosses the wall at x = 07
if horiz_pos(15) > 0
tO0_wall = fzero(horiz_pos,[0,param.stoptimel]);
height = vert_pos(tO_wall);
else
height = vert_pos(param.stoptime);
end

% What the maximum height achieved?
tO_peak = fminbnd(@(t) -vert_pos(t), le-2,param.stoptime, optimset(TolX=1e-8));
peak = vert_pos(tO_peak);

% define output structure

S.Fval = -dist; % Objective: negative of distance
S.Ineq(1l) = param.wallheight - height; % height >= WALL, ie WALL-height <= 0
S.Ineq(2) = peak - param.peak; % peak <= CEILING, ie peak-CEILING<=0
end

Finally, we are ready to run the surrogate optimization:

* we change interface of @(x) ObjectiveConstr(x,param) by embedding the param structure, and obtaining a
function depending only on x, which is exactly what surrogateopt needs;

* PlotFcn=’surrogateoptplot’ and Display=’iter’ are useful training options to visualize how the algorithm is
progressing;

* the option UseParallel=true allows to start a parallel pool of workers able to maintain a queue of points on which to
evaluate the objective function; a scheduler takes points from the queue in a FIFO fashion and assigns them to workers as
they become idle, asynchronously.

More options can be explored with » optimoptions("surrogateopt") or » doc surrogateopt.

Listing 22: Surrogateopt: defining options and running surrogateopt

new_interface = @(x) ObjectiveConstr(x,param); 7 embed param to change interface

opts = optimoptions(’surrogateopt’, InitialPoints=param.x0,...
PlotFcn=’surrogateoptplot’, Display=’iter’, ...
MaxFunctionEvaluations=500, MinSurrogatePoints=30, MinSampleDistance=1e-8,...
UseParallel=true);

[xsolution ,distance,exitflag,output] =
surrogateopt (new_interface ,param.lb,param.ub,opts)
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Figure 18: Surrogate Optimization algorithm: PlotFcn=’surrogateoptplot’ provided this graphic showing the two phases. 1) Construct
the surrogate (4.2.2), with random sampling and incumbent points (the best of surrogate); 2) Search for global minimum, with random sampling
around incumbent point and adaptive points (points with the lowest merit function (4.2.3) since last surrogate reset)

4.3 Kernelized Support Vector Machines

Support Vector Machines (SVM) are versatile machine learning models proposed by V. Vapnik, for both classification (1992)
and regression (in 1996), both linear and nonlinear. They can be easily implemented in MATLAB with fitcsvm and fitrsvm
functions (fitc**x* is for classification, fitr*#** is for regression).

Support Vector Classification (C-SVM) is an approximation of the decision boundary between two classes: the boundary not
only separates the two classes, but also stays as far away from the closest training instances as possible. SVM-classifier fits the
widest possible "street" separating two classes. This is called large margin classification. The decision boundary is fully determined
by the instances located on the edge of the street, called support vectors. If we strictly impose that all instances be off the street
and on the correct side (no misclassification at all), this is called hard margin classification. This would be ideal, but there are
issues: it only works if the dataset is linearly separable, and it is quite sensitive to outliers. More realistically, we’d better look for
a good balance between keeping the street as large as possible and limiting margin violations (i.e. instances that end up in the
middle of the street or even on the wrong side). This is called soft margin classification.

Given a dataset of N points with n features, {x) € R"};_14_ x> assume data belong to one of two classes ("positive" or
"negative") and that the two classes are linearly separable. Then we look for a linear boundary of the form y = w - x + b, where
w € R" is an unknown "slope" vector and b € R is an intercept. We define t© =1 & w - x® + b is "positive"; t? = -1 <
w-x® + b is "negative". The soft margin problem is a quadratic programming (QP) problem, whose primal problem is:

weR", beR, {ERN

N
1
min _cww+C L “3.1)
i=1
subject to tO(w-xP+b)>1—-¢ and {;>0fori=1,2,..,N

where {; are N slack variables to measure how much i™" instance is allowed to violate the margin, C is a hyperparameter (Box
Constraint) trading off between two conflicting objectives: making the slack variables as small as possible to reduce margin
violations, and making the norm of w as small as possible to increase the margin. The dual problem is:

N N N
1 N ; .
in — OMG)] @ ,.() _ .
;rel]}k% 2 E E a;o; e < x> E a; (4.3.2)
i=1 j=1 i=1
subjecttoa; >0 fori=1,2,..,N

where @; are N Lagrange multipliers, a; # 0 < x@ is a support vector. Remarkably, the dual problem depends on inner products
of training data < x@, x>,

Example 1. The magic of the Kernel Trick.
The kernel trick allows to extend linear SVM to non linearly separable data. RBF kernels play a key role. To see this, generate 200
non linearly separable random points in R?, i.e. 100 "red" points (class "-1") uniformly distributed in the unit disk, and 100 "blue"
points (class "+1") in the ring of rays 1 and 2. These points are NOT linearly separable in R? (see Fig. 19), but become linearly
separable if embedded in higher dimension space R® through a feature map like this:

0 R —R3: (x,y)— (xz,w/zxy,yz) (4.3.3)

Listing 23: Generate non linearly separable random points in a disk

r = sqrt(rand (100,1)); % random radius
t = 2*pi*rand (100,1); % random angle
datal = [r.*cos(t), r.*xsin(t)]; % points of class -1 (RED)
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r2 = sqrt(3*xrand (100,1)+1); % random radius for ring

t2 = 2*pi*rand (100,1); % random angle for ring
data2 = [r2.*cos(t2), r2.*sin(t2)]; % points of class +1 (BLUE)
data3 = [datal;data2]; % concatenate data together
theclass = ones (200,1); % assign class +/-1
theclass (1:100) = -1;

Figure 19: Non linearly separable random points in R? become linearly separable in R by a feature map (4.3.3)

When applying ¢ to the training data, the dual problem (4.3.2) will contain < (x®), p(x?) >. In general it will be very difficult
(even impossible) to know ¢. The magic is that the inner product in the feature space boils down to a kernel function on the

original space, so we don’t need to know ¢:
<), p(v) >=K(u,v). (4.3.49)
For example, the corresponding kernel for (4.3.3) satisfying (4.3.4) is the 2" degree polynomial K (u,v) = (1’ - v)?. According to

Mercer’s theorem, for every kernel K (u, v) there exists a feature map ¢ satisfying (4.3.4). With Gaussian RBF kernels, ¢ would
actually map data in an co-dim Hilbert space. Next, we see how to apply the kernel trick in MATLAB.

Example 2. SVM Classification with RBF Kernel Trick and Box Constraint

fitcsvnm first solves (4.3.2) to find Lagrange multipliers a, then will solve the primal (4.3.1) with respect to W and b. MATLAB
uses the following solvers: SMO (Sequential Minimal Optimization), ISDA (Iterative Single Data Algorithm), L1QP (L1-quadprog).
See »doc fitrsvm for details. The kernel function can be specified using the KernelFunction option:

e ’rbf’ or ’Gaussian’: K(u,v) = e_”%“_"‘lz), with KernelScale parameter v (y = 1 by default)
e ’linear’: K(u,v)=u'-v

e ’polynomial’: K(u,v)=(1+u'-v)!, with PolynomialOrder parameter q (q = 3 by default)
* ’myKernel’, if we have our own kernel function with signature K=myKernel (U, V)

The output of fitcsvm is an object, let us say mySVM, belonging to the ClassificationSVM class. Objects are instances of a
class, defined in the sense of OOP (Object Oriented Programming), containing properties and methods. All properties are accessible
with the dot notation, i.e. mySVM. Alpha, mySVM.W, mySVM. Solver, mySVM. IsSupportVector, etc. We can also use the
method predict to extract labels and scores of new data. Both syntaxes predict (mySVM, —) and mySVM.predict(—) are
valid. Scores are useful to visualize the decision boundary as a contour plot.

Listing 24: SVM classification with RBF kernel

mySVM = fitcsvm(data3, theclass, ClassNames =[-1,1],

KernelFunction =’rbf’, KernelScale = 1, BoxConstraint = 1);
alpha = mySVM.Alpha % returns just non null alpha of support vectors
supVec = data3 (mySVM.IsSupportVector, :) % Identify support vectors

% Predict scores over a regular meshgrid to visualize boundary

[x1Grid, x2Grid] = meshgrid(min(data3(:,1)):0.02:max(data3(:,1)),...
min(data3(:,2)):0.02:max(data3(:,2)));

xGrid = [x1Grid (:),x2Grid(:)];

[*, scores] = predict(mySVM,xGrid);

boundary = reshape(scores(:,2),size(x1Grid));

% Visualization of data, support vectors and decision boundary
figure, gscatter(data3(:,1),data3(:,2),theclass,’rb’,’.7);

hold on, ezpolar(@(x) 1);

plot (supVec(:,1),supVec(:,2),’ko’, ’MarkerSize’, 10, ’LineWidth’,1);
contour (x1Grid, x2Grid, boundary, [0 0], ’k’, ’LineWidth’,2);
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BoxConstraint is a (positive) hyperparameter of £itcsvm, useful to balance between hard vs soft implementation. It works
as a regularization knob to control the maximum penalty imposed on margin violations and prevent from overfitting:

* asmaller BoxConstraint means a wider street (soft-margin), but larger number of support vectors and more margin
violations.

* alarger BoxConstraint means a narrower street, fewer support vectors and fewer margin violations (but possibly longer
training times). As an extreme, BoxConstraint=00 means hard margin classification.

BoxConstraint = 1 BoxConstraint = co

e L, ° o Oie e®

. o 4 .,
o 15 True boundary . .
. O support Vectors O %
. SVM Boundary ® .
3

15 True boundary e
QO Support Vectors
SVM Boundary

Figure 20: SVM classification with KernelFunction=’rbf’. Left: Soft-margin with BoxConstraint =
BoxConstraint=o00.

1. Right: Hard-margin with

Example 3: SVM Regression with RBF Kernel and custom kernel. Support Vector Regression (SVR) reverses the objective of
SVM classification: instead of trying to fit the largest possible street (or margin) separating two classes while limiting margin
violations, SVM regression tries to fit as many instances as possible ON the street, while limiting instances OFF the street. The
width of the street is controlled by a hyperparameter € > 0 (the larger €, the larger the street). Adding more training instances
within the margin does not affect the model’s predictions; thus the model is said e-insensitive, also known as L1 loss. SVR relies
on kernel functions. Given a dataset (x;, y;);, the goal is to find a function f (x) that deviates from y; by a value not greater than
€ for each training point x;, and at the same time is as flat as possible.

In MATLAB, fitrsvm computes SVM regression using € = iqr(y;)/13.49 by default. It supports kernel functions (’rbf’ by
default) and returns an object in the RegressionSVM class.

Listing 25: SVM Regression with RBF kernel

y = franke(data3(:,1), data3(:,2));
regSVM = fitrsvm(data3,y, ’KernelFunction’,’rbf’,

’BoxConstraint’,10, ’Epsilon’,0.05, ’Standardize’,true);
flag = regSVM.ConvergencelInfo.Converged % Check convergence (1 = Converged)

num_supVec = numel (regSVM.Alpha) % Number of support vectors
idx_supVec = regSVM.IsSupportVector; %

(non null Alpha)
logical array to localize support vectors

To define a custom kernel, we first define a function with signature K = mysigmoid (U, V), returning the Gram matrix
(4.3.4), and then assign the function name to KernelFunction option. In the following example, a new kernel using the
hyperbolic tangent is defined.

Listing 26: SVM Regression with custom kernel

regSVM_mykernel = fitrsvm(data3,y,
’BoxConstraint’,le4,

’KernelFunction’,"mysigmoid", ..
’Epsilon’,0.04, ’Standardize’,true);

function K = mysigmoid (U,V) % custom kernel definition
gamma = 0.5; c = -1;
K = tanh(gammax*UxV’ + c); U mxp, V = nxp, K = mxn

end

Finally, we may need to experiment a bit before we identify the values of BoxConstraint, KernelScale and Epsilon
that ensure convergence and best approximation. So, we can consider to find hyperparameters that minimize cross-validation
loss by using automatic hyperparameter optimization. For more details, look into the MATLAB Documentation searching for »doc
BayesianOptimization.

Listing 27: SVM Regression with automatic hyperparameter optimization

opt = struct(’AcquisitionFunctionName’, ’expected-improvement-plus’)

regSVM_Optim = fitrsvm(data3,y, ’KernelFunction’, ’rbf’,
’OptimizeHyperparameters’,’auto’, ’HyperparameterOptimizationOptions’,opt);

bestHyperparam = bestPoint (regSVM_Optim.HyperparameterOptimizationResults)
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Figure 21: SVM Regression. Left: KernelFunction=’rbf’, BoxConstrain=10, Epsilon=0.05. Right: Custom Kernel function
BoxConstrain=1e6, Epsilon=0.04

5 Neural Networks

In sessions 5.1 and 5.2 we explain neural networks as universal approximators to approximate any (continuous) map f : R" — R™.
In session 5.3 we see how a neural network can approximate a complex dynamic system for which analytic expressions between
input and output may be hard to find or even may not exist. See [1] and [5] for an introduction to neural networks.

5.1 Universal Approximators

Neural networks can approximate at any accuracy large families of target functions. As proven in 1989 by Cybenko, Hornik,
Stinchcombe, White (see [5]), any continuous function f : X CR" — Y C R™ can be approximated by a neural network with a
single arbitrary-width hidden layer with nonlinear activation function. We are going to introduce some terminology and then an
example in MATLAB to demonstrate this result.

Neural networks contain unknown parameters 6 that must be tuned to get the "best" approximation fe of the unknown f via
a supervised learning process which consists in:

* given a large dataset of input-output pairs Xy = (x®),_;, v and Yy = (y®),_,, v, drawn from a joint probability
distribution P(X,Y)

* given a loss function L(y, fo(x)) (root mean squared error for regression, or cross-entropy for classification)

determine the best 6* to minimize the expected loss (known also as generalization error or risk):

6" = argmin By (Eyx(L(Y, f5(X)))) = argmin J J L(y, fo()P(Y = y|X = x)dy P(X = x)dx (5.1.1)
0 0 X JfX) posterior marginal

The architecture of a feed-forward neural network can be defined as a concatenation of layers, each layer made of a number
of artificial neurons characterized by learnable matrix parameters 6 = (W, b) and a nonlinear activation function o if the i*"
layer has p neurons and (i + 1)™* layer has q neurons, then the i** layer is described by:

it layer: n®=o(W®ED 4pD) D eRrp; O eRr (5.1.2)

where W® is a (gxp) weight matrix, b® is a (gx1) bias , and o : R? — R is a scalar nonlinear activation function that can be
applied component-wise.
In MATLAB, many *Layer commands are available to build a neural network from scratch:

* an *InputLayer must come first depending on input type, i.e.featureInputLayer,imageInputLayer, etc
* neuron’s linear part WOE® 4+ p® is implemented by fullyConnectedLayer (QutputSize)

* neuron’s activation o can be implemented with different layers reluLayer, sigmoidlayer,etc

* loss function come at the end, implemented by either regressionLayer or classificationLayer

Table 1 shows the activation layers available in MATLAB. Typically, the most widely used activations for hidden layers are: reLu,
tanh, softPlus; softmax is used after last fully connected layer for classification.

As an example, let us see now how we can build and train a neural network in MATLAB from scratch to approximate a given
map f : R" - R™.

To get started, fix the input size n = 10 and the output size m = 20. Let us choose to have a single hidden layer, namely a
fully connected layer, and fix its number of neurons num_neurons = 50. Then we can pick any non linearity, such as a sigmoid.
So, to create a regression network, we can concatenate the main layers into a layer array:
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| MATLAB Layer | Activation Name Function
sigmoidLayer Sigmoid (or Logistic) o(x)=1/1+e™)
softmaxLayer SoftMax o(x)=e"/>.(e")
softplusLayer SoftPlus o(x)=log(1+¢e")
tanhLayer Hyperbolic Tangent o(x) = tanh(x)
swishLayer Swish (or Sigmoid Linear Unit) ox)=x/(1+e™)
. . . x, ifx>0
relulayer ReLU (Rectified Linear Unit) o(x) =max(x,0) = .
0,ifx<0
leakyReluLayer(a) | Leaky ReLU ()= % Fx=0
e elulayer(a ea e o(x)=
¥ ¥ ¥ ax, ifx <0
C,ifx>C
clippedReluLayer(C) | Clipped ReLU o(x)=1{x,if0<x<C
0,ifx<0
luLayer(a) F tial Linear Unit ()= { % fx=0
elulayer(a xponential Linear Uni o(x)=
y P ale*—1),ifx <0
Table 1: Activation layers
Listing 28: Build a neural network by concatenating different layers
n = 10; m = 20; num_neurons = 50;
layers = [featureInputLayer (n) % Input layer
fullyConnectedLayer (num_neurons) 7 Hidden layer
sigmoidLayer % Activation
fullyConnectedLayer (m) % Output layer
regressionLayer]; % loss layer
net = layerGraph(layers);

analyzeNetwork (net)

The analyzeNetwork (net) command (see Fig. 22, on the left) helps visualize and understand the architecture of the network,
check that the architecture has been defined correctly, and detect problems before training, including missing or unconnected
layers, incorrectly sized layer inputs, incorrect number of layer inputs, and invalid graph structures. The diagram on the left
shows the layers connections. On the right, we can also check the number of learnable parameters for each layer. In this example,
with input size 10, number of neurons 50 in hidden layer, and output size 20, the first fully-connected layer contains a (50x10)
weight matrix and (50x1) bias, while the second fully-connected layer has a (20x50) weight matrix and (20x1) bias. In total,
1570 learnable parameters.

The deepNetworkDesigner app (see Fig. 22, on the right) allows to import an existing network or build the network from
scratch by dragging the layers from the Layer Library.

A Doop Network Designer - o x

Propertes
4\ Decp Losming Notwork Ansyzee
> 8% rulyConnectedLayer 2
Analysis for trainNetwork usage featurelnputLayer

Name: net 1.5k 5 0

=
m

Analysis date: 27-Hay-2022 21:60:11

B, |
B

" i Bee ]
=

fullyConnected

Figure 22: (On the left): analyzeNetwork; (on the right) deepNetworkDesigner

Before starting the training, let us generate synthetic data in a random fashion:

Listing 29: Synthetic data to train the Neural Network

N = 100; % N number of samples

A = rand(m,n); x = randn(n,N); % n = input size, m= output size
b = A*xx + O.1*randn(m,N);

xtrain = x?; % xtrain is N x n

btrain = b?; % btrain is N x m
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Let us define some options with trainingOptions command. For instance we can choose:

* the solver, among three available options: sgdm (Stochastic Gradient Descent with Momentum), rmsprop (Root Mean
Square Propagation) and adam (Adaptive Moment estimation). The solver is mandatory: depending on the solver we
choose, we get a specific training option object;

* the maximum number of epochs (an epoch corresponds to a full pass over the entire training set)

¢ the initial learning rate and other properties regarding its schedule;

* the ExecutionEnvironment (choosing among ’auto’, ’cpu’, ’gpu’, ’multi-gpu’, ’parallel’).
* the visualization of training progress by Plots="training-progress".

To start the training, we use the main trainNetwork command: we can visualize the training progress and check if the loss
is decreasing at each iteration (An iteration is one step taken in the solver algorithm towards minimizing the loss function using a
mini-batch). After some computation, the returned object net contains all learnt parameters. For example, we can extract the
weight matrix of the second fully-connected layer with net.Layers(2).Weights

Listing 30: Neural Networks: trainingOptions and trainNetwork

opt = trainingOptions("adam", Plots = "training-progress", MaxEpochs = 1500,
InitialLearnRate = 0.1, LearnRateSchedule = "piecewise",
LearnRateDropPeriod = 600, LearnRateDropFactor = 0.5,
ExecutionEnvironment= "auto");

% run the training

net = trainNetwork (xtrain, btrain, layers, opt);

W1 = net.Layers (2).Weights % Extract Weights of fc-layer 2

Bl = net.Layers(2).Bias

W2 = net.Layers(4).Weights % Extract Weights of fc-layer 4

B2 = net.Layers (4).Bias

5.2 Radial Basis Function Networks

A Radial Basis Function (RBF) network is another universal approximator of any continuous function f : 2 ¢ R? — R? defined
on any compact subset £, first formulated in a 1988 paper by Broomhead and Lowe. It is made of two main layers:

* a hidden layer of neurons with non-linear radial basis activation (typically, Gaussian), whose number of neurons is initially
set to 0 and incremented gradually during the training process to fit the target output until it meets the specified mean
squared error goal,

* an output layer of purely linear neurons.
The weights and biases of each neuron in the hidden layer define the position and width of a radial basis function. For
example, we can use radbas basic command to create a Gaussian RBE Fig. 23 shows a weighted sum of shifted Gaussian RBFs.

Listing 31: Neural Networks: radbas to compute weighted and shifted Gaussian RBFs

x = -3:.1:3; ¢ = [0; 1.5; -271; % x = row 1x61, ¢ = column 3x1

omega = [1.5 0.5 1]; % omega = row 1x3

a = radbas(x-c); % x-c = a matrix 3x61 (implicit expansion)
plot(x, omega.*a’), hold on % plot of 3 wighted RBFs

plot(x, omega*a,LineWidth=2) % plot of the sum of the 3 RBF

To approximate f : RY — R?, given N training points in R? and N output in R?, we can define and train an RBF network by
using the newrb command. To predict the value on new M points in R?, we collect coordinates in a dxM matrix and apply the
RBF network object, returning a new QxM output array:

* RBFnet = newrb(in, out, MSEgoal, RBFspread, MaxNumNeurons)

The 4th input is the spread parameter of Gaussian RBF: the larger spread is, the smoother the function approximation. Too
large a spread means a lot of neurons are required to fit a fast-changing function. Too small a spread means many neurons are
required to fit a smooth function, and the network might not generalize well. We may need to call newrb with different spreads
to find the best value for a given problem.

In the next example, we take input size d = 2 and output size Q = 2. In this case, after we train the RBF network, we can
make predictions on a uniform grid and visualize Q surfaces. Fig. 24 shows these surfaces.

Listing 32: Neural Networks: training an RBF network to approximate f : R> — R>

N = 100; d = 2; % N input in R~d, d=2
in = randn(d,N); % in (dxN), out (QxN)
% generate syntehic data for Q=2 outputs

Q = 2 % Q = 2 output size

out = sin(in(1,:)).*exp(-0.5%in(1,:)) + sin(in(2,:)).*exp(-0.1*%in(2,:));
out (2,:)= cos(2*in(1,:)).*exp(-0.1*%in(1,:))+cos(3*in(2,:)) .*exp(-0.2%in(2,:));
% Train radial Basis Neural network
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Figure 23: Weighted sum of three shifted Gaussian RBFs

MSEgoal = 0.02; RBFspread = 1;
out, MSEgoal, RBFspread); % train the RBF neural network
% Prediction on a grid of new points

RBFnet2 = newrb(in,

Nx = 20; Ny = 20;

xnew = linspace(min(in(1,:)), max(in(1,:)), Nx);

ynew = linspace(min(in(2,:)), max(in(2,:)), Ny);

[Xnew,Ynew] = ndgrid(xnew,ynew); % Nx x Ny uniform grid
newIn = [Xnew(:),Ynew(:)]’; % d x M (M=Nx*Ny)
newOut = RBFnet2(newlIn); % Q@ x M predictions

% Visualization of Q surfaces

figure

for q = 1:Q
subplot (1,Q,q)
scatter3(in(1,:),

in(2,:), out(q,:), ’filled’) % plot given data

newOut_q = reshape(newOut(q,:),Nx,Ny); % reshape qth predictions
hold on, surf (Xnew,Ynew,newOut_q) % draw qth surface
title("Target Q=" + q), shading interp

end

Target Q=1 Target Q=2

Figure 24: Radial Basis Neural Networks trained to approximate f : R? — R?
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5.3 Neural Networks to approximate complex EKF systems

Neural Networks (NN) are "black-box" models that sometimes can be a valid alternative to very complicated "white-box" models.
To illustrate the flexibility of neural networks, we want to describe a real striking application, where a simple neural network is
used to approximate a complex dynamic systems, like a rechargeable battery, and provide an accurate estimate of unmeasurable
quantities, like its State of Charge.

Rechargeable batteries, in particular lithium-ion (Li-ion) batteries, were discovered after intensive research in ’70 and ’80 ,
commercialized in 1991 and are now widely used in everything, from electric/hybrid vehicles to portable electronics (laptops,
mobile phones, etc). Battery Management Systems (BMS) are complex electronic systems required to monitor the State Of Charge
(SOCQ) of the batteries, which is critical information to prevent from system blockage, overcharging, operating outside the safe
operating area. But SOC cannot be measured directly, so an accurate estimate of SOC is key to ensure reliable and affordable
electrified vehicles and devices (see [7]). Moreover, estimation algorithm must guarantee the simplest code implementation.

By definition, SOC is the ratio of the available level of charge Q(t) to the maximum level Q,,,, available when the battery is
fully charged (also, the maximum capacity expressed by the manufacturer in Amp-hour, Ah). So SOC is a percentage given by
SOC(t) =—Q(t)/Qmax- Taking derivatives and putting I(t) = dQ/dt, we get the SOC differential equation:

I(t)

d
50C()=—= (5.3.1)

max

Estimating SOC is still a significant engineering challenge due to the nonlinear temperature, health, and SOC dependent behavior
of Li-ion batteries, so different estimation methods are available (see [7] for a review). Let us compare three methods: Coulomb
Counting (CC), Extended Kalman Filter (EKF), and Neural Network (NN). In summary, CC turns out to be simple but too poor;
EKF is more accurate, but very complicated and with heavy code implementation; NN is the most efficient approach allowing
similar accuracy as the EKE but lighter code implementation.

First method: Coulomb Counting method (CC).
Coulomb Counting method is the simplest method to estimate SOC (see [20]), obtained by approximating the derivative in
(5.3.1) with a finite difference. The accuracy of CC method is poor because it ignores all temperature and voltage effects.
I(t
10 L,

max

SOC(t)=S0C(t—At)+ (5.3.2)

Second method: Extended Kalman Filter (EKF) in Simulink.

The Kalman Filter is a more advanced algorithm, based on an iterative prediction-correction process, that can be applied
to estimate the internal state of a dynamic system, using its model (i.e. its physical laws), and multiple noisy measurements
from sensors. It was introduced by R. Kalman in 1960, first for linear systems, then extend to non linear ones. Because of its
efficiency, it is still widely used nowadays in signal processing, control and navigation systems, econometrics, etc. There exists
some excellent literature such as [10] and [21] addressing derivation and theory behind the Kalman filter. See also MATLAB
Documentation [19].

In this case, to estimate SOC, EKF leverages on three measurements, namely voltage V, current I, and temperature T. Briefly,
voltage is estimated from measured current and temperature, and then compared with the measured voltage, finally the voltage
error is incorporated back into the SOC estimation:

SOC = frer(I,V,T) (5.3.3)

To implement EKF method, we can leverage on Simulink environment, where the EKF block is already available in the Control
System libraries. Preprocessed input data (I, V, T) for this example have been collected from [14]. Simulink is fed by variables
loaded in MATLAB workspace. We can set automatic ODE solver (variable-step in simulation, or fixed-step! for automatic
embedded C code generation). Running the simulation for about 13 hours, the solver efficiently computes the SOC estimation as
shown in Fig. 26.

Third method: Neural Networks (NN).

In contrast to previous EKF approach, which requires precise parameters and knowledge of the battery composition as well
as its physical response, using Neural Networks is a totally data-driven approach that instead requires minimal knowledge of
the battery or its nonlinear behavior. Remember that each neuron operates on input x as y = o(wx + b), where w and b are
learnable parameters to be optimized and o is a non-linear activation (see 1). Neurons are aggregated in different kind of layers,
such as Fully Connected Layers. To help the network to estimate SOC better, we provide some additional historical memory by
two more inputs: average current and average voltage:

SoC =fNN(IJ V, T’Iavngavg) (5.3.4)

Let us see in details three steps required to build a Neural network in MATLAB and then, optionally, reuse it into Simulink.

Step 1: define a feedforward Neural Network from scratch.
Similarly to what we did in section 5.1, we concatenate some layers:

Li-ion batteries were discovered by M. S. Whittingham, J. Goodenough and A. Yoshino, who won the Nobel Prize for Chemistry 2019.
INote that fixed-step solvers have no zero-crossing and no checking of state error.
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[%a] Block Parameters: EKF Block X
Extended Kalman Filter

Discrete-time extended Kalman filter. Estimate states of a nonlinear plant model. Use Simulink
Function blocks or .m MATLAB Functions to specify state transition and measurement functions.

EXTENDED KALMAN FILTER

See block help for function syntaxes, which depend on If noise Is additive or nonadditive.

System Model ~ Multirate
State Transition
H » i et » ©1 Function: batteryStateFcn [ Jacobian
Process noise: Additive - Covarlance: |le-4 i| [] Time-varyin,
v soc = g
Initialization
Initial state: |1 i Initial covarlance: | 1e-2
EKF Block
Measurement 1
Function batteryMeasurementfcr [ ] Jacobian [[] Add Enable port
®
Measurement [, iditive -| Covariance: 0.5 i| [] Time-varying
noise:
@—T—# [] Has measurement wrapping
[ » Add Measurement Remove Measurement
Simulink Function - State Transition Function1 Settings
° ] Use the current measurements to improve state estimates

[[] Output state estimation error covariance

Data type: double

Sample time: |Ts

\ 4

D,

T Simulink Function - Measurement Function oK Cancel Help

Figure 25: SOC estimation with Extended Kalman Filter in Simulink. Left: the main EKF Block receives voltage V s input and returns SOC estimate.
EKF Block calls two functions: one for the SOC state equation 5.3.1; the other for measurement function. Both have current I and temperature T
as inputs and are implemented with Simulink Function blocks. Right: the EKF block parameters dialog, where we type the two Simulink Function
names.

e et sV AT A A A

Figure 26: Simulation of SOC estimator with EKF method in Simulink. Left: 3 input signals, i.e. current, voltage and temperature. Right: SOC
output, and comparison of true SOC with the SOC estimated with EKE

* an input layer with 5 input features (I, V, T, Iy, Vayg)s
* one hidden fully-connected layer with 64 neurons;
* some non-linear activation layers, like reluLayer (see Table 1);

¢ a fully connected layer with 1 single output (for SOC) and a regression layer to compute loss function.

Listing 33: Neural Networks: define the layer architecture for SOC estimation

VO ® N Y A W N

numFeatures = 5;

numResponses = 1;

numHiddenNeurons = 64; % Number of hidden neurons

% Define network architecture

layers = [ featureInputlLayer (numFeatures ,"Normalization","zerocenter") 7 5 inputs
fullyConnectedLayer (numHiddenNeurons) % 1st hidden layer
relulayer
fullyConnectedLayer (numResponses) % output layer (1 single output for SOC
relulayer
regressionLayer]; % loss function (RMSE)

Step 2: Specify training options and run the training.

* Use trainingOptions command to set multiple options: the solver (i.e. "adam" for ADAptive Moment), the gradient
threshold, the number of epochs, the minibatch size, the initial learning rate, the learning rate drop factor, a learning rate
drop period, the validation data, the validation frequency, the execution environment (GPU vs CPU), etc.

* Use trainNetwork to run the training to optimize all learnable parameters.

net = trainNetwork (trainX , trainY ,layers , optiomns ).
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Listing 34: Neural Networks: train the network for SOC estimation

% Define training options

options = trainingOptions("adam", Plots = "training-progress",
MaxEpochs = 1200, Shuffle = "every-epoch",
MiniBatchSize = 128, GradientThreshold = 1, .
InitialLearnRate = 0.01, LearnRateSchedule = "piecewise",

LearnRateDropFactor = 0.1, LearnRateDropPeriod = 400,
ValidationData = {valX, valY}, ValidationFrequency = 30,

ExecutionEnvironment = "auto");
% Run training
net = trainNetwork (trainX,trainY,layers,options);

% save network for reuse in Simulink
save net.mat net save the network in a mat file

% Use test dataset to estimate RMSE
Y_predicted = predict(net,testX);
residuals = testY - Y_predicted;
RMSE = sqrt(mean(residuals)."~2);

Note: the Experiment Manager App can help set up the training options as it allows to automatically run many tests with
different training options, and check which one yields the best performance. Search in MATLAB Documentation for details.

Step 3: (optional) Reuse the trained neural network in Simulink.

As an option, the trained NN could be integrated into Simulink to take advantage of the system-level simulation environment and
the automatic code generation feature (i.e. the Simulink model could be converted automatically into C/C++ code by using
Embedded Coder®). To do this, we can do the following:

¢ save the trained network net into a .mat file, i.e. save net.mat net

* check you have installed MATLAB Coder Interface for Deep Learning Libraries add-on to call optimized libraries, like
MKL-DNN. If not, click on Add-Ons—Get Add-Ons from Home of MATLAB Desktop and search for this add-on name

* open the Simulink Editor (from MATLAB Home, click on New— Simulink Model—Blank Model). Then click on Library
Browser, scroll down to Deep Learning Toolbox—Deep Neural Networks, and drag the Predict Block

* double click on the block to open its Block Parameter dialog, and in the File Path field type the mat filename where the
trained network was saved (see Fig. 27 and Fig. 28).

£5 Simulink Library Browser
<@ vehicle body B @ =2 Q@

Deep Leaming Toolbox/Deep Neural Networks

simulink ~

An:snaneﬂmuzkcm Block Parameters: Predict X
nated Drving Toolbex I " @) ‘‘‘‘ Predict (mask) (link) |
Predict responses using a trained deep learing neural network. You
Image Clasife can import the trained network from a MAT-file or a MATLAB |

function.You ean also compute the activations from a network layer.

= ot @) uuuuuu Parameters
De
al Network: Network from MAT-file

DSP HDL Toalbox

Predict

030 Sysem Tooo HDL Suppor S et ot Biolse
= - Mini-batch size: |128
Outputs
Stateful Classity [ Predictions
P Activations
Phased Array System Toolbox Stateful Predict
et - Cancel Help Apply

Figure 27: Simulink Library Browser and the Predict Block in Deep Learning Toolbox (on the left); the dialogue of Predict Block (on the right)
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Figure 28: Left: Block diagram in Simulink with the Predict Block. Right: comparison of SOC estimations (true, NN and EKF).
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[ Resources | Research | Teaching | Links |
MATLAB® Code of this paper v N github.com/ppanares2/Approximation-with-MATLAB
MATLAB® Academia v N www.mathworks.com/academia
Campus-Wide License Vv v www.mathworks.com/products/matlab-campus
MATLAB Documentation v v www.mathworks.com/help
MATLAB Discover How to Solve v v www.mathworks.com/discovery
MATLAB-based Books NG NG www.mathworks.com/academia/books
MATLAB File Exchange N www.mathworks.com/matlabcentral
MATLAB Add-Ons NG www.mathworks.com/products/matlab/add-on-explorer
MATLAB Communities NG .../matlabcentral/content/communities
The MATLAB Blog NG https://blogs.mathworks.com/matlab/

MATLAB for Research v www.mathworks.com/academia/research
MathWorks Excellence in Innovation N github.com/mathworks/MathWorks-Excellence...
MathWorks® Books Program N www.mathworks.com/academia/books/join
MATLAB in Science Gateways N .../academia/research/science-gateways
MATLAB for Open Science N v www.mathworks.com/discovery/open-science
Using MATLAB with Python v v .../products/matlab/matlab-and-python
MATLAB in the Cloud NG www.mathworks.com/solutions/cloud

MATLAB Online™ v v matlab.mathworks.com/

MATLAB Drive™ v v drive.matlab.com

MATLAB Cloud Center N N cloudcenter.mathworks.com/

MathWorks Reference Architectures N github.com/mathworks-ref-arch

MATLAB Dockerfile NG hub.docker.com/r/mathworks/matlab

MATLAB for Teaching N www.mathworks.com/academia/educators
MATLAB Grader™ v grader.mathworks.com/

MATLAB Grader™ for LMS v .../products/matlab-grader/Ims.html

MATLAB Courseware N www.mathworks.com/academia/courseware
MATLAB Onramp Training N matlabacademy.mathworks.com/#getting-started
Textbooks by Cleve Moler N www.mathworks.com/moler

Cleve Moler on Mathematics v blogs.mathworks.com/cleve

MATLAB for Computational Thinking N .../discovery/computational-thinking
Mathematical Modeling Vv .../solutions/mathematical-modeling

MathWorks Math Modeling Challenge Vv .../mathworks-math-modeling-challenge
MATLAB Hackathons N github.com/mathworks/awesome-matlab-hackathons
MATLAB Student Competition N N www.mathworks.com/academia/student-competitions

Table 2: Resources available in MATLAB Ecosystem for research and teaching

6 Conclusion

MATLAB environment offers a unique platform to explore a variety of algorithms for approximation tasks, using commands or
interactive apps. In this paper, we have included snippets of MATLAB code to see how to implement different topics:

* function approximation through orthogonal polynomials and Fourier series;

* wavelet analysis and multiresolution decomposition;

» multivariate scattered interpolation with radial basis functions;

 surrogate global optimization via a cubic RBF interpolator with linear precision;

* kernelized support vector machines for both regression and classification;

* universal approximators with neural networks or RBF networks;

* neural networks to approximate an Extended Kalman Filter (to estimate the state of charge of a rechargeable battery).

MATLAB, with its broad spectrum of Toolboxes, included in the Campus-Wide License available in most of Universities, is a great

tool able to inspire cutting-edge research and engaging lectures.

In Table 2 there is a list of additional resources from MATLAB ecosystem to continue a proficient and deeper usage of MATLAB.
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