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Explicit algebraic solution of Zolotarev’s First Problem
for low-degree polynomials, Part II

Heinz-Joachim Rack a · Robert Vajda b,c

Abstract

With recourse to [41], we consider three algorithms for explicitly solving, by algebraic means, Zolotarev’s
First Problem (ZFP) of 1868 which is described e.g. in [1, 5, 26, 27]. We avoid the application of
elliptic functions by drawing first on three tentative forms Zn,s,α,β (1< α < β) of the sought-for monic
proper Zolotarev polynomial Zn,s (n ≥ 4, s > tan2(π/(2n))). In order to compute then the compatible
α= α0 and β = β0, so that Zn0 ,s0 ,α0 ,β0

= Zn0 ,s0
will hold for a prescribed degree n= n0 and prescribed

intrinsic parameter s = s0, we draw on three intertwined variants and deploy them exemplarily to the
third tentative form (not considered in [41]). We conclude that our first tentative form constitutes,
in conjunction with our third variant, a deterministic algebraic algorithm for solving ZFP, which is
advantageous with respect to complexity reduction. Three related algebraic algorithms from literature for
solving ZFP, [20, 28, 48], are examined, refined and exemplified. Further existing non-elliptic approaches
to ZFP, including the one by means of parametrization of algebraic curves [44], are referenced and
annotated. Explicit representations of Zn,s in the algebraic power form (unexampled if n> 7) and novel
characteristics, which facilitate the algebraic construction of Zn,s , are provided and additionally stored,
for n≤ 13, in an online ZFP-repository.

Keywords: Algebraic solution, Gröbner Basis, least deviation from zero, reduced relation curve, two fixed leading coefficients,
Zolotarev’s First Problem, Zolotarev polynomials.
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1 Reviewing Introduction

1.1 Zolotarev’s First Problem (ZFP)

A forerunner of Zolotarev’s First Problem dates back to 1854 [8, p. 123], see also [9, Theorem 5]:
Chebyshev’s Extremal Problem (CEP). Determine, for a given degree n ≥ 1, among all real monic polynomials Pn, with
Pn(x) =

∑n−1
k=0 ak,n x k + xn, the one which deviates least from the zero-function on the unit interval I = [−1, 1], measured in the

uniform norm ‖.‖∞.
Thus, the first leading coefficient of Pn is assumed to be fixed (an,n = 1). The solution of CEP is P∗n = 21−nTn with least

deviation Ln =min(a0,n ,...,an−1,n) ‖Pn − 0‖∞ = ‖21−nTn‖∞ = 21−n, where

Tn(x) =
bn/2c
∑

k=0

(−1)k
n

n− k

�

n− k
k

�

2n−2k−1 xn−2k, with x ∈ R and ‖Tn‖∞ = 1, (1)

denotes the n-th Chebyshev polynomial of the first kind with respect to I , see [1, 11, 46].
CEP emanated from Chebyshev’s passion for linkage mechanisms which convert rotary to approximate straight-line motion

[38, p. 102]. He posed to his student Zolotarev [60, p. 2] an extension of CEP which was later renamed after the latter:
Zolotarev’s First Problem (ZFP). Determine, for a given degree n ≥ 2 and for a given parameter s ∈ R\{0}, among all real
monic polynomials Qn,s with Qn,s(x) =

∑n−2
k=0 ak,n x k + (−ns)xn−1 + xn, the one which deviates least from the zero-function on I ,

measured in the uniform norm.
Thus, in ZFP not only the first but also the second leading coefficient of Qn,s is assumed to be fixed (an−1,n = −ns). Zolotarev’s

original assumption was an−1,n = −σ, which is still in use [35, p. 67] while some authors [20, p. 934] prefer to consider
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an−1,n = σ, where σ ∈ R. However, the here considered form of an−1,n is most commonly used [2, p. 16], [5]. We denote by
Q∗n,s = Zn,s with

Zn,s(x) =
n−2
∑

k=0

a∗k,n(s)x
k + (−ns)xn−1 + xn, (2)

the solution of ZFP in the algebraic power form with optimal coefficients a∗k,n(s), and by Ln(s) its (least) deviation from the
zero-function on I . We shall write n0 respectively s0 in place of n and s when a concrete number is considered.

At first sight, CEP might appear to be harder to solve than ZFP because the latter has one less coefficient to be optimized. The
following Example is an eligible candidate for disproving that impression.

Example 1.1. Let n0 = 5. The solution of CEP is then T5(x)/16 =
�

5
16

�

x +
�−5

4

�

x3 + x5, and the least deviation is Ln0
= L5 =

1
16 .

That is, three of the optimal coefficients are zero, and the remaining two, as well as L5, are neat rational numbers.
On the other hand, ZFP, with s0 =

1
5 (say), requires to optimize Q5, 1

5
(x) =

∑3
k=0 ak,5 x k + (−1)x4 + x5. Using the approach

(A) or (B) to ZFP as described below, the solution turns out to be Z5, 1
5
(x) =

∑3
k=0 a∗k,5(

1
5 )x

k + (−1)x4 + x5, where the optimal

coefficients a∗k,5(
1
5 ) and the least deviation Ln0

(s0) = L5(
1
5 ) can be explicitly expressed in terms of bulky radicals, see Appendix

8.1. After chopping, a numerical decimal approximation to Z5, 1
5

and L5(
1
5 ) reads

Z5, 1
5
(x)≈ −0.1065834340+ 0.4581775889x + 0.9557598788x2 + (−1.4581775889)x3 + (−1)x4 + x5,

L5(
1
5 )≈ 0.1508235551.

(3)

Thus, here the explicit solution of ZFP is much more involved than the explicit solution of CEP, and this is because the function
given by f (x) = −x4 + x5, which is to be approximated by a polynomial of degree ≤ 3, is not symmetric, whereas the function
given by g(x) = x5, which is to be approximated by a polynomial of degree ≤ 4, is symmetric (to the origin). Figure 1 displays
the graphs of T5

16 and Z5, 1
5

on the interval [−1, 1.5] (including the constants ±L5 and ±L5(
1
5 )).
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Figure 1

Zolotarev’s solution of ZFP in 1868 [59], and in a reworked form in 1877 [60], splits into an improper and into a proper part.
But first of all, he observed that Zn,−s(x) = (−1)nZn,s(−x) holds, so that it henceforth suffices to consider s > 0. Zolotarev then
showed that, if 0< s ≤ τn := tan2( π2n ) ∈ (0, 1] (τn = 1 only if n= 2), Zn,s can be represented algebraically by means of Tn as

Zn,s(x) = 21−n(1+ s)nTn

� x − s
1+ s

�

, with Ln(s) = 21−n(1+ s)n, (4)

which nowadays is called an improper Zolotarev polynomial (in the limiting case s = 0 it would reduce to the solution of CEP),
see [1, p. 280], [2, p. 16], [5], [26, p. 406], [53]. Using Zolotarev’s original assumption an−1,n = −σ, the condition 0< s ≤ τn

has to be replaced by 0< σ ≤ nτn (misprinted e.g. in [12], [35, (5.7)]), see [13, p. 467].
In what follows, we focus on the solution of ZFP when s > τn holds. It is considered as complicated [26, p. 405], unwieldy

[52, p. 118] or even as mysterious [53, p. 219], and is nowadays called a proper [15, 49, 57], or hard-core [26, 30, 47] Zolotarev
polynomial, due to the fact that, for s > τn, Zn,s was represented transcendentally by means of elliptic functions (without providing
algebraic expressions for the optimal coefficients, although in the original problem statement [60, p. 2] the sought-for remaining
coefficients are explicitly enumerated). That solution resembles the solution of CEP when describing it with the aid of circular
(trigonometric) functions, i.e., 21−nTn = 21−n cos(n arccos(x)) for x ∈ I . In contrast to the circular solution of CEP [11, p. 46],
there does not exist a simple process for converting Zolotarev’s elliptic solution of ZFP into an algebraic one. Even for the first
reasonable degree n0 = 2 (for which Z2,s(x) = a∗0,2(s) + (−2s)x + x2 holds (with a∗0,2(s) = −1) for all s > τ2 = 1, and which we
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henceforth leave aside) it turns out to be unexpectedly complicated and very hard to do so [5, p. 3 and Section 3], [28, p. 245].
On the other hand, an algebraic solution of ZFP for all n does exist, see the editorial remark in [61, p. 361] where the paper [7]
by Chebotarev is referenced.

Here we describe how to construct, for a given s > τn, a proper Zn,s by algebraic means, and we provide precomputed data for
the solution of ZFP if n≤ 13. This is within the spirit of statements e.g. by Kaltofen [16, p. 8]: One of my favorite open problems
in Symbolic Computation . . . solve [ZFP] for n≥ 6 on a computer or by Peherstorfer [32, p. 143]: There was and still is a demand
for a description [of Zn,s] without elliptic functions.

In textbooks on Approximation Theory, we were able to find a non-elliptic solution to ZFP only for n0 = 3, see [27, p. 156],
[57, p. 98], and Remark 6 below. Experience shows that intricacies and complexity are typical features to encounter when dealing
with algebraic solutions of ZFP if s > τn. Bernstein [3, p. 156] concedes: I soon recognized its algebraic difficulties which increase
rapidly with the degree n of the polynomial, and it occurred to me to formulate the asymptotic problem, and Malyshev [20, p. 932]
states: An algebraic solution [of ZFP] requires an amazing amount of calculations.

From the Alternation (aka: Equal Ripple) Theorem of Approximation Theory the following properties of Zn,s can be condensed
[1, p. 280], [2, p. 16], [5, 13], [26, p. 406]:

Theorem 1.1 (Characterizing Properties of a proper Zolotarev Polynomial). Zn,s attains the values ±Ln(s) = ±‖Zn,s‖∞
alternately at n equioscillation points −1 = z0 < z1 = z1(n, s)< . . .< zn−2 = zn−2(n, s)< zn−1 = 1 of I , where Zn,s(−1) = (−1)n Ln(s)
may be assumed. Additionally, there exist three special points γ = γ(n, s) < α = α(n, s) < β = β(n, s) such that −Zn,s(1) =
−Zn,s(α) = Zn,s(β) = Ln(s) holds, and γ (with 1< γ) is a zero of the first derivative of Zn,s with respect to x, so that Zn,s possesses n
equioscillation points on I and two on [α,β] (i.e., the endpoints of that interval). The range of γ and α is (1,∞), whereas the range
of β is (νn,∞) with νn := 1+ 2τn. The four parameters α,β ,γ, s are interrelated by the identity α+ β = 2(γ+ s).

Thus there holds |Zn,s(x)| ≤ Ln(s) for x ∈ I ∪ [α,β] and |Zn,s(x)|> Ln(s) elsewhere, so that the set {x ∈ R : |Zn,s(x)| ≤ Ln(s)},
the inverse polynomial image of Zn,s, is said to consist of two Jordan arcs (I and [α,β]), see [36, 48].

We note in passing that in Example 1.1 the three special points of Z5, 1
5
, that is, γ = γ(n0, s0) = γ(5, 1

5 ) < α = α(n0, s0) =

α(5, 1
5 )< β = β(n0, s0) = β(5, 1

5 ), can be expressed as

γ = Root[− 185+ 560z − 18z2 − 1080z3 + 675z4, 2] ≈ 1.2102107032,
α = Root[− 17− 332z + 738z2 − 540z3 + 135z4, 2] ≈ 1.3606346018,
β = Root[− 269+ 260z − 702z2 − 540z3 + 675z4, 2] ≈ 1.4597868046.

(5)

Here, and in what follows, a root object Root[P(z), l] with index l denotes (in the traditional form) the l-th root of the polynomial
P in the variable z and constitutes an exact representation for algebraic numbers (for details see the CAS Mathematica, which we
are using to conduct computations). Since in (5) P is a quartic polynomial, the three special points γ,α,β could alternatively,
but less compactly, be expressed in terms of radicals. On the other hand, the least deviation L5(

1
5 ) which was given in terms of

radicals, see Example 1.1 and Appendix 8.1, can be denoted more compactly in terms of a root object:

Ln0
(s0) = L5(

1
5
) = Root[− 11943936− 693026816z + 13578720768z2 − 85074300000z3 + 192216796875z4, 2]. (6)

The same holds for the optimal coefficients of Z5, 1
5
, see also Section 4 below:

a∗0,5(
1
5 ) = Root[− 1178141+ 1571039500z + 23548707018z2 + 102160237500z3 + 192216796875z4, 1],

a∗1,5(
1
5 ) = Root[− 37− 44z + 378z2 − 540z3 + 675z4, 2],

a∗2,5(
1
5 ) = Root[2697536− 10535680z + 15437952z2 − 10060200z3 + 2460375z4, 1],

a∗3,5(
1
5 ) = Root[1600+ 5120z + 6048z2 + 3240z3 + 675z4, 1].

(7)

Generally, a representation of Zn,s in terms of root object coefficients will assume a compact form if the intrinsic parameter s > τn

is chosen to be an algebraic number.
It follows from Theorem 1.1 that y = Zn,s satisfies the Abel-Pell differential equation [1, p. 280], [2, p. 17], [5, p. 10], [22, p.

15], [51, p. 2486]:

(1− x2)(x −α)(x − β)
�

y ′(x)
n(x − γ)

�2

+ (y(x))2 = (Ln(s))
2. (8)

Summarizing, we found in literature two frequent approaches to a constructive algebraic solution of ZFP (thus avoiding the
use of elliptic functions):

(A) Determine a power form representation of the (proper) Zolotarev polynomial with re-parametrized and explicit closed-form
expressions for the coefficients:

eZn,t(x) =
n−1
∑

k=0

bk,n(t)x
k + xn, (9)
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where the parameter t varies in some finite interval In and bk,n is a continuous injective function of t with bn−1,n(t) = −nsn(t).
For a prescribed n0 and s0 > τn0

one then has to solve the equation sn0
(t) = s0 to get the optimal t0 ∈ In0

so that eZn0 ,t0
= Zn0 ,s0

will hold. To the best of our knowledge, the highest known degree n = n0 for which ZFP has been solved along the
approach (A), is n= 7, and the delineated parametrization turns out to be rational (for n< 5) or radical (for 5≤ n≤ 7),
see [44] and the references given therein.

(B) Create, by deploying Theorem 1.1 and (8), a tentative form Zn,s,α,β of Zn,s which depends, additionally to n and s, also on
α and β (the endpoints of the interval [α,β] in Theorem 1.1), and then determine algebraically, for a prescribed n= n0

and s = s0 > τn0
, the compatible numbers α= α0 = α(n0, s0) and β = β0 = β(n0, s0) so that Zn0 ,s0 ,α0 ,β0

= Zn0 ,s0
will hold.

We shall consider three tentative forms of Zn,s and three variants for the determination of α0 and β0. To the best of our
knowledge, the highest known degree n= n0 for which ZFP has been explicitly solved along the approach (B), is n= 13
(see Appendix 8.3 and [55]).

Since s = s(α,β), see Section 2.4 below, we shall henceforth denote a tentative form Zn,s,α,β by Zn,α,β . We leave aside purely
numerical approaches to ZFP, such as given e.g. in [14, 17, 19], and focus here on the approach (B).

In doing so it would suffice, in view of the approach (A), to consider n> 7. However, in the Examples given below we treat
cases of n≤ 7 to allow a cross-check between these two approaches and to narrow the bulkiness of the terms occurring. Because,
when applying the approach (B) for n> 7, the Examples grow quite complex, see Appendix 8.3 and [55].

Three algebraic solution paths to ZFP from literature, which are related to approach (B), are considered in Sections 4 - 6
below. Further non-elliptic approaches to ZFP are referenced in Remark 6 below.

1.2 Three algebraic Algorithms for solving ZFP

In [41] we have proposed two solutions to ZFP by algebraic means along the approach (B). In view of the mentioned complexity,
we have confined ourselves to the construction of (proper) Zolotarev polynomials of a degree n ≤ 12, backed by an online
ZFP-repository [55] to which bulky precomputed data were outsourced. In the meantime, we have added more data to [55] in
order to facilitate the practical calculation for the degree n0 = 13, too. We briefly sketch the two two-staged algorithms from [41]:

Our 1st algebraic algorithm for solving ZFP sets up for Zn,s the ansatz Zn,s(x) =
∑n−2

k=0 ak,n x k + (−ns)xn−1 + xn. A recursive
description is provided which expresses first an−2,n in terms of α,β , s; then expresses an−3,n in terms of α,β , s and an−2,n =
an,n−2(α,β , s); and so forth percolating down, until finally describing how a0,n can be recovered from previously determined
coefficients by back substitution, see [41, Theorems 4.1, 5.1] for n ∈ {6, 7}. In this way Zn,s(x) transforms into a tentative form
(we keep the prescribed parameter s in the second leading coefficient only)

Rn,α,β (x) =
n−2
∑

k=0

Ak,n(α,β)x k + (−ns)xn−1 + xn. (10)

This solves ZFP algebraically, provided α and β are known for the given n and s. In the second part of the algorithm, the
determination of α= α0 and β = β0 in [41] was accomplished by means of Malyshev polynomials, see also Remark 7 below. A
granulated, hands-on creation of (10) and of Malyshev polynomials, in a Mathematica-conformal syntax is given, for n= 5, in
[55] where Rn,α,β is provided for n≤ 13.

Our 2nd algebraic algorithm for solving ZFP along the approach (B) starts with a rough tentative form of Zn,s which depends
on α,β and additionally on those equioscillation points z j = y j from I\{−1, 1} where Zn,s(y j) = −Ln(s) holds:

(if n= 2m+ 1 is odd) Sn,α,β ,y j
(x) = (x −α)(x2 − 1)

∏m−1
j=1 (x − y j)2−(

1
2 )(β −α)(β

2 − 1)
∏m−1

j=1 (β − y j)2

(if n= 2m+ 2 is even) Sn,α,β ,y j
(x) = (x − 1)(x −α)

∏m
j=1(x − y j)2−(

1
2 )(β − 1)(β −α)

∏m
j=1(β − y j)2,

(11)

see Theorem 1.1 and [48, (36), (37)] (corrected is here a misprint for n even).
Expressing then, for n≥ 4, the y j by means of α,β (using a result of Schiefermayr [48, Theorems 1(ii), 2(ii)] for which in

[55] we provide a calculation rule in Mathematica-syntax) one obtains a refined tentative representation of Zn,s whose coefficients
depend on α and β:

Sn,α,β (x) =
n−1
∑

k=0

Ck,n(α,β)x k + xn, where Cn−1,n(α,β) = −ns must be in force. (12)

This solves ZFP algebraically, provided α and β are known for the prescribed n and s. In the second part of the algorithm, the
determination of α = α0 and β = β0 in [41] was again accomplished by using Malyshev polynomials. For n ∈ {6,7}, Sn,α,β is
given in [41, (4.15), (5.5)], and for n≤ 13 in [55]. If n0 = 3 (for this degree there is no z j = y j), one gets from (11) that α = 3s,

and using α+ β = 2(γ+ s), one furthermore gets β = s+ 2
q

1
3 + s2 so that, for s > τ3 =

1
3 ,

Z3,s(x) =
1
∑

k=0

a∗k,3(s)x
k + (−3s)x2 + x3 = 2s+ s3 −

�

1
3
+ s2

�
3
2

+ (−1)x + (−3s)x2 + x3 (13)
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constitutes a desired form of (2) if n0 = 3, see also [5, p. 4], [27, p. 156], [46, Exercise 2.4.39], [57, p. 98]. This special degree
we henceforth leave aside, except in Appendix 8.2 below where we will retain it for the sake of brevity. Schiefermayr [48, p. 156]
also provides a representation, quite similar to (11), which is based on those equioscillation points z j = x j from I\{−1, 1} where
Zn,s(x j) = Ln(s) holds. Our Mathematica-based calculation rule for z j = y j can be adapted for z j = x j , see [55].

In the present paper we consider an 3rd two-staged algebraic algorithm for solving ZFP which is inspired by an approach to
ZFP by Sodin & Yuditskii [50, 51]: An alternative tentative form, Pn,α,β , for Zn,s is set up which in contrast to the tentative form
Sn,α,β in (12) works without recourse to the equioscillation points z j = y j , see Section 2.1 below for details.

In order to convert, in a second step, a tentative form Zn,α,β ∈ {Pn,α,β , Rn,α,β , Sn,α,β} of Zn,s into the desired final form (2) for a
concretely prescribed n = n0 ≥ 4 and s = s0 > τn0

, all three algorithms require as input the compatible numbers α = α0 and
β = β0 (with 1< α0 < β0), so that Zn0 ,s0

= Zn0 ,α0 ,β0
will hold (solution of ZFP along the approach (B)). Hence the key question is:

How to determine α0 and β0? We have already pointed to the variant via Malyshev polynomials. This variant will be examined
here in more detail (Variant 1 below), and we will also provide two alternative variants (Variant 2 and Variant 3).

1.3 Overview

With recourse to [41], we have at our disposal altogether three algebraic algorithms to generate, in a first step, three tentative
forms Zn,α,β ∈ {Pn,α,β , Rn,α,β , Sn,α,β} of Zn,s which still depend on α and β . For the conversion of any of them into the desired final
explicit algebraic solution (2), when n= n0 and s = s0 > τn0

are prescribed, we provide three variants for the calculation of the
sought-for compatible numbers α = α0 and β = β0. Although each variant is applicable to each of the three tentative forms Zn,α,β

(thus offering, in sum, nine solution paths to ZFP), we will focus on Zn,α,β = Pn,α,β to demonstrate how to deploy and to rate the
three variants. This is accomplished in Section 2.

In Section 3 we provide, by means of resultants, some theoretical background which reveals how the algebraic terms, that
occur when deploying the three variants, are intertwined.

In Section 4 we examine an 4th algebraic solution path to ZFP, as proposed by Malyshev [20, p. 935]. The there considered
tentative form of Zn,s is basically identical with Pn,α,β and the determination of the two parameters (denoted there by x and y) is
basically identical with the here deployed Variant 1.

In Section 5 we examine an 5th algebraic solution path to ZFP, based on (12), as proposed by Schiefermayr [48, Section
4.2]. His determining equations for α0 and β0 [48, Corollary 3] may produce non-unique results, contrary to [48, Remark 1 (i)].
Nevertheless, we translate [48, Corollary 3] into a Mathematica-conformal syntax to facilitate the application of our final version
of Variant 3, which produces α0 and β0 unambiguously.

In Section 6 we examine an 6th algebraic solution path to ZFP due to Peherstorfer [28] who exploits an orthogonal property
of T -polynomials (of which Zolotarev polynomials are a special case). This path turns out to be related to the 3rd algorithm
which builds on the tentative form Zn,α,β = Pn,α,β .

Overall, we conclude that the 1st tentative form, Zn,α,β = Rn,α,β , in conjunction with the final version of Variant 3 provides
an advantageous algorithm, with respect to complexity reduction and uniqueness, for the algebraic solution of ZFP along the
approach (B).

Section 7 includes additional information on non-elliptic approaches to ZFP, and on Malyshev polynomials. We outsource to
the Appendices in Section 8, and also to the online ZFP-repository [55], some lengthy calculations and bulky algebraic terms
related to ZFP. In particular, in [55] we provide, for n ≤ 13, the three tentative forms of Zn,s as well as terms occurring in the
three deployed variants, e.g., Malyshev polynomials, reduced relation curves, moments, and interrelationships among the four
parameters in Theorem 1.1. These objects increase our arsenal for attacking ZFP by algebraic means, and we generate them
algorithmically by means of Mathematica-functions which allow extensions to n> 13. Furthermore, explicit Examples of Zn,s in
the algebraic power form (2) are provided for n≤ 13. To the best of our knowledge, these are novel for n> 7, see Appendix 8.3
and [55]. The stored objects in [55] are easily accessible and can be copied and pasted into a CAS for further processing. Our
paper advances [41] and is of a surveying and unifying character, but it contains also elements of novelty; the style of writing is
expository.

2 Explicit algebraic Solution of ZFP by the 3rd Algorithm with three Variants

2.1 The 3rd Algorithm in detail

The announced 3rd algebraic algorithm for solving ZFP builds on a tentative representation of (2) as a quotient of two determinants.
Our starting point is a determinant-based representation of a monic polynomial (used e.g. in the Theory of Moments and Continued
Fractions [50]):

Pn,α,β (x) = det M n+1×n+1
0 /det M n×n

1 = det









σ0 σ1 . . . σn

σ1 σ2 . . . σn+1

. . . .
1 x . . . xn









/det M n×n
1 (14)
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with det= determinant and Hankel matrix

M n×n
1 =









σ0 σ1 . . . σn−1

σ1 σ2 . . . σn

. . . .
σn−1 σn . . . σ2n−2









. (15)

The moments σk, k ≥ 0, are here assumed to depend on the (unknown) interval endpoints α and β in Theorem 1.1, i.e.,
σk = σk(α,β). Such a link of (14) to Theorem 1.1, via (8) and exploitation of an orthogonal property, can be achieved by means
of the Laurent series expansion

∞
∑

k=0

σk

x k+1
=

√

√ x − 1
(x + 1)(x −α)(x − β)

, (16)

see Sodin & Yuditskii [51, p. 2487]. We have computed σk = σk(α,β), which is in fact a bivariate polynomial in α and β , up to
k = 25, and have stored the values in [55] so that one is able to set up Pn,α,β in the tentative form (14) for n≤ 13.

Algorithmic Generation of Moments σk = σk(α,β). A calculation formula (in Mathematica-syntax) for σk = σk(α,β),
here exemplarily for the first four instances, is

Reverse[CoefficientList[Collect[x4Normal[Series[

√

√ x − 1
(x + 1)(x −α)(x − β)

, {x , Infinity, 4}]],x],x]]//Simplify (17)

which yields the list
{σ0,σ1,σ2,σ3}= {1, 1

2 (−2+α+ β), 1
8 (4− 4α+ 3α2 − 4β + 2αβ + 3β2),

1
16 (−8+ 4α− 6α2 + 5α3 + 4β − 4αβ + 3α2β − 6β2 + 3αβ2 + 5β3)}.

(18)

Replacing in (14) σk by σk(α,β) as indicated in (18), and expanding det M n+1×n+1
0 by minors of the last row, one eventually

gets, after evaluation of the occurring determinants in (14), a power form representation of Pn,α,β with coefficients Bk,n(α,β)
depending on the two parameters α and β , i.e.

Pn,α,β (x) =
n−1
∑

k=0

Bk,n(α,β)x k + xn, where Bn−1,n(α,β) = −ns must be in force. (19)

With the goal to select and to insert, for a concretely prescribed n ≥ 4 and s > τn, the sought-for optimal values α = α0 and
β = β0 into Zn,α,β and thus solving ZFP, we consider three intertwined variants which constitute the second step in each of the
three algorithms. We deploy these variants exemplarily to the tentative form Zn,α,β = Pn,α,β , and will denote by Ln(α,β) = ‖Zn,s‖∞
= |Zn,s(1)| its (least) deviation, on I , from the zero-function.

2.2 Variant 1 (Zeros of Malyshev polynomials)

Malyshev [21] introduced, for 2≤ n≤ 5 only, bivariate polynomials Fm(n),s(α) and Gm(n),s(β), with degree m(n) and parameter s
(originally denoted in [21] by fn(α,σ) and gn(β ,σ) which is misleading in so far as m(n) = n only if n= 4) which we termed
Malyshev polynomials in [41].

Algorithmic Generation of Malyshev Polynomials. The polynomials Fm(n),s(α) and Gm(n),s(β) can be computed by Gröbner
basis as a byproduct of the 1st algorithm, see [41, Sections 4.1, 5.1], [54, Lemma 2.4] and [55] (for n= 5); or by resultants, see
[55]. We provide them, up to n≤ 13, in [55], see also Remark 7 below.

For a given n0 and s0 > τn0
the sought-for α0 and β0 (with 1< α0 < β0) are to be found, according to Malyshev [20, p. 936],

[21], among the (finitely many real) zeros > 1 of Fm(n0),s0
(α) respectively among the zeros > νn0

of Gm(n0),s0
(β). To reduce the

search for α0 and β0, Malyshev advises to make use of asymptotic approximations, see (76) below. However, this strategy for
fixing the sought-for α0 and β0 remains vague. In [21, p. 711] Malyshev moreover observes: Examples show that [for a given
n= n0 and s = s0] the desired α and β [i.e. α0 and β0] are the greatest real roots of the [Malyshev] polynomials in question. If his
observation were true in general, then one would have a deterministic strategy for finding α0 and β0. However, this is not the
case, as the setting n0 = 7 and s0 =

1
10 > τ7 reveals:

Example 2.1. The largest real zero of Fm(7),s0
(α) = F12, 1

10
(α) quantified by its index, is α0 = Root[F12, 1

10
(α), 4]≈ 1.1986614376,

and the largest real zero of Gm(7),s0
(β) = G12, 1

10
(β) quantified by its index, is β0 = Root[G12, 1

10
(β), 4] ≈ 1.2952331978. But

the pair (α0,β0) does not produce Zn0 ,s0
= Z7, 1

10
; rather, the said largest (simple) zero α0 and the second largest (simple) zero

β̂0 = Root[G12, 1
10
(β), 3]≈ 1.2398104774, when inserted into P7,α,β , do generate Z7, 1

10
, see [41, Theorem 5.1].

Alternatively, this fact can be deduced from s7(α0, β̂0) = s0 =
1

10 (whereas s7(α0,β0) 6=
1
10 holds), or from H7

m(7)(α0, β̂0) =

H7
12(α0, β̂0) = 0 (whereas H7

12(α0,β0) 6= 0 holds), see Section 2.4 below for the definitions of the analytical Formulae sn(α,β) and
Hn

m(n)(α,β) which enter into (31).

But we can confirm that a weaker version (concerning the range of s) of Malyshev’s observation holds true. We confine
ourselves to the degrees n≤ 13 covered by the online ZFP-repository [55].
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Proposition 2.1 (Variant 1 (assuming 1≤ s)). For a prescribed degree n = n0 ∈ {4, . . . 13}, take for the sought-for unique α0 and
β0 (with 1 < α0 < β0) the indexed root objects α0 = Root[Fm(n0),s0

(α), l(n0)] respectively β0 = Root[Gm(n0),s0
(β), l(n0)], provided

that the prescribed parameter s = s0 satisfies 1≤ s0. Here l(n0) is the common index of the largest zero of Fm(n0),s0
(α) and Gm(n0),s0

(β).
It is given in Table 1 below, together with the total degree m(n) = m(n0) of Fm(n0),s0

(α), Gm(n0),s0
(β).

n0 4 5 6 7 8 9 10 11 12 13
l(n0) 2 4 2 6 4 6 4 10 4 12
m(n0) 4 6 8 12 16 18 24 30 32 42

Table 1

Incidentally, the finite sequence {l(n0)}13
n0=4 in Table 1 turns out to be part of the infinite integer sequence A000010 (Euler’s

totient function) in the database OEIS (see www.oeis.org).
Variant 1 is based on the fact that, for 4≤ n≤ 13, the Mathematica-function Solve, i.e. here

Solve[Fm(n0),s(α) == 0∧ s ≥ 1∧α > 1, {α}] and Solve[Gm(n0),s(β) == 0∧ s ≥ 1∧ β > νn0
, {β}], (20)

returns several real zeros of Fm(n0),s(α) respectively of Gm(n0),s(β) (in terms of root objects) of which the respective largest zero is
indexed by l(n0), say. With the additional conditions |α− n0s|< 1 and |β − n0s|< 1 the Mathematica-function Reduce, i.e. here

Reduce[Fm(n0),s(α) == 0∧ s ≥ 1∧α > 1∧Abs[α− n0s]< 1, {α}]

and (21)

Reduce[Gm(n0),s(β) == 0∧ s ≥ 1∧ β > νn0
∧Abs[β − n0s]< 1, {β}],

returns as the unique solution the largest real zero, i.e., α = Root[Fm(n0),s(α), l(n0)] and β = Root[Gm(n0),s(β), l(n0)], with identical
index l(n0). According to [41, Remark 8.2], the additionally imposed conditions |α− n0s|< 1 respectively |β − n0s|< 1 hold for
all n0 ∈ {6, . . . 12} and s ≥ 1; they hold for n0 ∈ {4, 5, 13} too, as we have verified by the same method as indicated in [41], see
also Remark 7 below.

By analyzing the outcomes of

Reduce[Fm(n0),s(α) == 0∧ 1> s > τn0
∧α > 1∧Abs[α− n0s]< 1, {s,α}]

and

Reduce[Gm(n0),s(β) == 0∧ 1> s > τn0
∧ β > νn0

∧Abs[β − n0s]< 1, {s,β}],

the following can be concluded:

Proposition 2.2 (Addendum to Variant 1). The inequality 1≤ s = s0 in Variant 1 can be improved to δ(n0)< s0 (if δ(n0) = τn0
)

or to δ(n0)≤ s0 (if δ(n0) 6= τn0
)). Here δ(n0)< 1 varies with n = n0 and is given, together with few exceptional cases of s0, in Table

2 below. Table 2 implies the following overall improvement of the Variant 1: 9
13 ≤ s = s0 for n0 ≤ 13.

n0 δ(n0)
4 δ(4) = τ4 = 3− 2

p
2

5 δ(5) = 1
5 6= τ5

6 δ(6) = τ6 = 7− 4
p

3, except for s0 =
1
3

7 δ(7) = 3
7 6= τ7

8 δ(8) = τ8 = 7+ 4
p

2− 2
Æ

2(10+ 7
p

2) except for s0 ∈ {
1
4 , 2

4 }
9 δ(9) = 5

9 6= τ9

10 δ(10) = τ10 = 11+ 4
p

5− 2
Æ

2(25+ 11
p

5) except for s0 ∈ {
1
5 , 2

5 , 3
5 }

11 δ(11) = 7
11 6= τ11

12 δ(12) = τ12 = 15− 6
p

6− 2
Æ

2(49− 20
p

6) except for s0 ∈ {
1
6 , 2

6 , 3
6 , 4

6 }
13 δ(13) = 9

13 6= τ13

Table 2

The pattern in Table 2 suggests an obvious parity-dependent generalization for n= n0 > 13. Observe that the Addendum to
Variant 1 does not cover the marginal cases τn0

< s0 < δ(n0) if n0 ∈ {5, 7, 9, 11, 13}; for n0 = 7 see Example 2.1 above. Neither it
covers the exceptional cases s0 if n0 ∈ {6,8, 10,12}.
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In order to close this second gap, construct Zn0 ,α0 ,β0
= Zn0 ,s0

by taking, with l(n0) from Table 1, α0 = α̂0 = Root[Fm(n0),s0
(α), l(n0)+

4] and β0 = β̂0 = Root[Gm(n0),s0
(β), l(n0)+4], if (n0, s0) ∈ {(10, 1

5 ), (12, 1
6 ), (12, 2

6 )}, respectivelyα0 = α̂0 = Root[Fm(n0),s0
(α), l(n0)+

2] and β0 = β̂0 = Root[Gm(n0),s0
(β), l(n0) + 2] for the remaining exceptional pairs. To close the first said gap (the marginal cases

if n0 ∈ {5, 7, 9, 11, 13}) would require a fragmented case-by-case analysis. We skip it here and propose to apply in these cases the
final version of Variant 3 below.

We now deploy the Variant 1 in order to convert Pn,α,β into (2) so that Pn0 ,α0 ,β0
= Zn0 ,s0

will hold.

Example 2.2. The goal is to solve ZFP algebraically by using the 3rd algorithm in the setting n0 = 6 and s0 = 1> τ6. We set up
the particular case of (14) for n0 = 6, i.e., the tentative form P6,α,β = det M6+1×6+1

0 /det M6×6
1 . Here we replace σk by σk(α,β),

which we adopt, for k ∈ {0, . . . , 11} from [55]. Finally, we replace α and β by α0 respectively β0 which we get as follows: We
adopt Fm(6),s(α) = F8,s(α) and Gm(6),s(β) = G8,s(β) from [55], replace there s by s0 = 1, and form (see Table 1), with Mathematica,
α0 = Root[F8,1(α), 2]≈ 6.0827162524 and β0 = Root[G8,1(β), 2]≈ 6.0828088063. This will eventually give, after expanding
P6,α.β (x) into the polynomial power form, the sought-for monic Zolotarev polynomial P6,α0 ,β0

= Z6,s0
= Z6,1. Its optimal coefficients

as well as its least deviation from zero, ‖Z6,1‖∞ = |Z6,1(1)|, can be explicitly expressed in terms of root objects, see Appendix 8.1
below. These quantities can be evaluated to arbitrary numerical precision p by means of the Mathematica-function N (numerical
value), that is here: N[Root[P(z), l], p]. Chopping them after the tenth digit after decimal point, a numerical approximation to
Z6,1 and to |Z6,1(1)| is given by

Z6,1(x) =
∑4

k=0 a∗k,6(1)x
k + (−6)x5 + x6 ≈

−0.0620748101+ (−1.8673118711)x + 0.8103624015x2 + 7.4897255420x3 + (−1.7482875914)x4 + (−6)x5 + x6,
L6(α0,β0) = |Z6,1(1)| ≈ 0.3775863290.

(22)

This deviation of Z6,1 from zero, on I , is least among all polynomials of form Q6,1(x) =
∑4

k=0 ak,6 x k +(−6)x5+ x6, where ak,6 ∈ R
is arbitrary. Figure 2 displays the graph of Z6,1 on the interval [−1, 1.1].

-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

Figure 2

The preceding Example coincides with our solution of ZFP in [41, Example 4.2], which we have deduced recursively along
our 1st algorithm (and Variant 1), and with our solution of ZFP in [42, Example 3.2], which we have deduced along the approach
(A) deploying the representation (9) of proper Zolotarev polynomials. Solving ZFP in the setting n0 = 6 and s0 =

1
8 by using (14)

and Table 2, would give the same result as in [41, Example 4.6].

Example 2.3. Solving ZFP in the setting n0 = 6 and s0 =
1
3 (exceptional pair, see Table 2) would give α̂0 = Root[F8, 1

3
(α), 4] =

Root[− 257923− 33678z + 156979z2 + 52988z3 + 7187z4 − 84750z5 + 28125z6, 2]≈ 2.2332896407, β̂0 = Root[G8, 1
3
(β), 4] =

Root[46493− 397778z+ 944755z2 − 1098684z3 + 676787z4 − 215250z5 + 28125z6, 2]≈ 2.2388280242, and with these values
P6,α̂0 ,β̂0

= Z6, 1
3

can be constructed, see also [41, p. 186]. For solving ZFP in the setting n0 = 7 and s0 =
1
10 (not covered by Table

2), see Example 2.1 and Example 2.6 below.

2.3 Variant 2 (Solution of determinant equations)

Variant 2 deploys two further determinants, det M n×n
2 and det M n+1×n+1

3 , in order to convert Pn,α,β into Zn0 ,s0
for a prescribed

n= n0 and s = s0:
Since the coefficient of Pn,α,β at xn−1 must be of form Bn−1,n(α,β) = −ns, one gets, in view of (14), the determinant equation

s = sn(σk) =
�

1
n

�

det













σ0 σ1 . . σn−2 σn

σ1 σ2 . . σn−1 σn+1

. . . . . .
σn−2 σn−1 . . σ2n−4 σ2n−2

σn−1 σn . . σ2n−3 σ2n−1













/det M n×n
1 =

�

1
n

�

det M n×n
2 /det M n×n

1 , (23)
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which is also given in [51, p. 2487] (deleted is here a misprinted minus sign).
A further determinant equation we adopt directly from [51, (4)]:

0= det













σ0 σ1 σ2 . . σn−1 σn

σ1 σ2 σ3 . . σn σn+1

. . . . . . .
σn−1 σn σn+1 . . σ2n−2 σ2n−1

0 σ0 σ0 +σ1 σ0 +σ1 +σ2 . . σ0 +σ1 +σ2 + . . .+σn−1













= det M n+1×n+1
3 . (24)

In both of these identities the right-hand sides depend via σk = σk(α,β) on α and β and the left-hand sides are concrete real
numbers if we identify s = sn(σk) with s0 (assuming s0 > τn). We now merge the identities (23) and (24) by deploying Reduce
and using, as additional information, the known range of α and β:

Proposition 2.3 (Variant 2). The sought-for α0,β0 are among the solutions of

Reduce[sn0
(σk)− s0 == 0∧ det M n0+1×n0+1

3 == 0∧ 1< α < β ∧ νn0
< β , {α,β}]. (25)

But note that (25) also may produce nuisance values (non-uniqueness).

With α0 and β0 at hand one can proceed analogously as before, that is, inserting them into (14) and simplifying the outcome
(e.g., with the Mathematica-function FullSimplify).

A rationale for Variant 2 can be concluded from a statement by Malyshev [21, p. 711] when he surveyed the paper [51]: The
authors construct a system of algebraic equations eFn(α,β) = 0, s eHn(α,β) = eGn(α,β) from which the desired roots 1< α < β [in the
Abel-Pell differential equation] can be obtained for any fixed s (we have added here the tilde and have set σ = s to avoid confusion
with our notation). One readily identifies this quoted system of algebraic equations with (24) and (23); furthermore, we point
out that in [51] β is assumed to be fixed.

To substantiate the delineated Variant 2, we set the goal to solve algebraically ZFP in the setting n0 = 4 and s0 = Root[11−
88z + 263z2 − 318z3 + 96z4, 1] = 1

192 (159+ 17
p

33−
Æ

30(527+ 97
p

33)) = 0.3974272232 . . .> τ4.

Example 2.4. With n0 = 4 and σk = σk(α,β) adopted from [55], Formula (23) reads

s4(σk) =
�

1
4

�

det









σ0 σ1 σ2 σ4

σ1 σ2 σ3 σ5

σ2 σ3 σ4 σ6

σ3 σ4 σ5 σ7









/det









σ0 σ1 σ2 σ3

σ1 σ2 σ3 σ4

σ2 σ3 σ4 σ5

σ3 σ4 σ5 σ6









, (26)

where its expanded form (in terms of α and β) is provided in Appendix 8.1 below.
Formula (24) reads, in expanded form,

0= det M4+1×4+1
3 =

=
H4

4 (α,β)H4
4 (−α,−β)(−2+α+β)(2+α−β)(α+β)(−16+16α2+α4+4α3β+16β2−10α2β2+4αβ3+β4)

−33554432 ,
(27)

with H4
4(α,β) = 6− 8α2 + 8α3 +α4 + 16αβ + 8α2β − 4α3β − 8β2 − 8αβ2 + 6α2β2 − 8β3 − 4αβ3 + β4. Executing (25) with the

prescribed s0 and using (26) - (27), yields the unique optimal values

α = α0 = Root[− 503+ 83z + 715z2 − 531z3 + 108z4, 2] ≈ 1.8034303689,
β = β0 = Root[1543+ 667z + 13z2 − 603z3 + 108z4, 1] ≈ 1.9444055070.

(28)

Inserting them now into the tentative form (14) produces (with n0 = 4 and σk = σk(α0,β0)), after simplification, the desired
solution for the particular ZFP:

Z4,s0
(x) = P4,α0 ,β0

(x) = det M4+1×4+1
0 /det M4×4

1 =
= Root[− 101+ 481z − 207z2 + 79z3 + 4z4, 2] +Root[391072− 1811744z + 2620930z2 − 1528713z3 + 314928z4, 2]x+

Root[− 864− 1116z − 420z2 − 63z3 + 4z4, 1]x2 +Root[352+ 704z + 526z2 + 159z3 + 12z4, 2]x3 + x4 =

=
∑2

k=0 a∗k,4(s0)x k + (−4s0)x3 + x4
�

with − 4s0 =
1
48

�

−159− 17
p

33+
Æ

30(527+ 97
p

33)
��

≈ 0.2308733204+ 1.1564149581x + (−1.2308733204)x2 + (−1.5897088931)x3 + x4,
|Z4,s0

(1)|= Ln0
(α0,β0) = L4(s0) = Root[442368−176832z−861584z2−2644083z3 + 314928z4, 1]≈ 0.4332939350.

(29)

L4(s0) is least, on I , among all polynomials of form Q4,s0
(x) =

∑2
k=0 ak,4 x k +(−4s0)x3+ x4, where ak,4 ∈ R is arbitrary. Figure

3 displays the graph of Z4,s0
on the interval [−1, 2.04] and indicates the interval [α0,β0].
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Remark 1. The polynomial −Z4,s0
/L4(s0), see (29), has uniform norm 1 on I and coincides with the explicit solution, for n = 4, of

an extremal problem posed by Schur in 1919, see [13], [35, Section 5d], [39]. For explicit solutions of Schur’s problem in terms
of Zn,s, if n ∈ {5, 6, 7}, see [40, 43, 45]. Another problem, for which the Zolotarev polynomials Zn,s/Ln(s) turn out as extremizers,
is the characterization of the supremum in the pointwise inequality of V. A. Markov, see e.g. [49]. Incidentally, V. A. Markov was
the first to give a representation (9) of Zn,s, if n= 4, see [37], [39, p. 160], [49, p. 242].

Note that e.g. in the setting n0 = 5 and s0 = 1, the Variant 2 would produce two solutions, (α0,β0) and (α1,β1), with α0 ≈ 5,
α1 ≈ 2, i.e., non-uniqueness. Since s ≥ 1, one deduces from |α− ns| < 1 (see Variant 1) that (α0,β0) would be the sought-for
optimal pair.

Remark 2. We observe the comparatively bulky expressions on the right-hand sides of (26) and (27), although the polynomial
degree n0 = 4 is quite low. Actually, the numerator and denominator of (23) increase with n as O(n2), see [21, p. 711], and for
n0 = 13 the corresponding right-hand side in (23) might result in a bulky term which stretches over more than one printed page.
Therefore, we are looking for more concise representations of the right-hand sides in (23) and (24). In the next Section we will
introduce such substitutes to the extent that, when taking the setting of Example 2.4, the right-hand side in (26), as given in
Appendix 8.1, will be dramatically reduced to the quotient in (30) below, and the right-hand side in (27) will shrink to the first
factor in the numerator, i.e., to H4

4(α,β). Executing (25) with these terms, that is,

Reduce[
4(1+ β) + (α− β)(α+ 2α2 + 5αβ + β(3+ 5β))

4(4+ (α− β)(α+ 3β))
− s0 == 0∧H4

4(α,β) == 0∧ 1< α < β ∧ ν4 < β , {α,β}], (30)

indeed produces the same result (α0,β0) as given in (28). Therefore, the Variant 2 is to be considered inferior to (31) below.

2.4 Variant 3 (Common points on reduced algebraic curves)

Setting in the ansatz Sn,α,β , see (12),
Cn−1,n(α,β)

−n = s we now write s = sn(α,β) (or simply s = s(α,β) if there is no ambiguity) to
better distinguish it from s = sn(σk) in (23).

Algorithmic Generation of Moments sn(α,β). The terms sn(α,β) can be generated by inserting n≥ 4 into equations (54)
respectively (57) below, and then solving for the variable s. We have stored the results in [55] for 4≤ n≤ 13.

The special cases s6(α,β) and s7(α,β) are given in [41, pp. 195-196], s5(α,β) in Appendix 8.1 below and s4(α,β) is the
quotient in (30). The terms sn(α,β) are, for n≥ 4, bivariate rational functions and will serve as downsized substitutes for the
right-hand side in (23), i.e., for sn(σk). For a prescribed n = n0 and s = s0 we obtain the condition sn0

(α,β)− s0 = 0 which
defines a planar algebraic curve.

To derive downsized substitutes for the right-hand side in (24), i.e., for det M n+1×n+1
3 , we choose, in view of (44) below, the

bivariate polynomials Hn
m(n)(α,β) of total degree m(n) which describe reduced relation curves Hn

m(n)(α,β) = 0 (with respect to
α and β) associated to ZFP, see [15, 44, 54] for details. For a concretely prescribed n = n0, the planar curve Hn0

m(n0)
(α,β) = 0

contains all compatible pairs (α,β) = (α(n0, s),β(n0, s)) = (α(s),β(s)) for Zn0 ,α,β which are generated when s varies in (τn0
,∞),

see Theorem 1.1, and it even contains the limiting pair (α,β) = (1,νn0
).

Algorithmic Generation of Hn
m(n)(α,β). These terms can be generated as those factors with degree m(n), and coefficient 1

at the monomial αm(n), which arise on the left-hand side of equations (53) respectively (56) below, when n≥ 4 is inserted there.
Hn

m(n) is stored, for n≤ 13, in [55]; for the degrees see Table 1.
The special cases H6

m(6) = H6
8 and H7

m(7) = H7
12 are given in [41, p. 195, p. 197] and H7

12 and H4
m(4) = H4

4 have already emerged
in Sections 2.2 and 2.3 above; see also Section 3 below. It is remarkable that the degrees m(n) are not strictly increasing with n
because m(14) = m(15) = 48, see [54, Table 2].

To identify points (α0,β0) which lie on both said planar curves, and satisfy 1< α0 < β0 as well as νn0
< β0, we continue with

Proposition 2.4 (Preliminary version of Variant 3). The sought-for α0,β0 are among the solutions of

Reduce[sn0
(α,β)− s0 == 0∧Hn0

m(n0)
(α,β) == 0∧ 1< α < β ∧ νn0

< β , {α,β}]. (31)
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But note that (31) also may produce nuisance values.

Given the setting of Example 2.4, (31) becomes identical with (30). For n = n0 ∈ {6,7}, (31) is identical with [41, (7.5),
(7.10)]. For a visualization of (31), if n= n0 = 5, see Figure 6 (contour plot) in Appendix 8.1 below.

The first respectively second equation occurring in (31) correspond, for n ≤ 13, to equations (33), (35) respectively to
equations (32), (34) of Corollary 3 in [48]. It describes how to generate α0 and β0 for a given n0 and s0 > τn0

, and was deduced
by different means in [48], see Section 5 below. The non-uniqueness of (31) is in contrast to [48, Remark 1(i)].

To exemplify (31), we are going to solve ZFP algebraically in the setting n0 = 7 and s0 = 2> τ7 = Root[− 1+ 21z − 35z2 +
7z3, 1]≈ 0.0520950836, so that one can draw a comparison to the Example given in [44, Remark 4.3]. Note that we pursued
there, for n0 = 7, the particular approach (A) to ZFP via the form (9). We want to know the compatible α0 and β0.

Example 2.5. With n0 = 7 and s0 = 2, (31) reads

Reduce[s7(α,β)− 2== 0∧H7
12(α,β) == 0∧ 1< α < β ∧ ν7 < β , {α,β}]. (32)

Before executing (32), one has to replace s7(α,β) and H7
12(α,β) by the corresponding terms as provided in [55]. As a result, one

obtains two root objects for α, α≈ 4 and α≈ 14, and two associated root objects for β , i.e., non-uniqueness. Since s ≥ 1, one
deduces from |α− ns|< 1 (see Variant 1) that α≈ 14 must be the optimal one, so that we set

α= α0 =
Root[1596640261888+ 1382185254912z − 2943026759680z2 + 1110163950336z3 + 433952450240z4−

579218113600z5 + 268614534928z6 − 73851260224z7 + 13191160848z8−
1542461200z9 + 113418000z10 − 4725000z11 + 84375z12, 6]≈ 14.0356687900,

β = β0 =
Root[614128742778112− 378933592095744z − 107722313416704z2 + 365630011835648z3 − 320300886075520z4+

150022279642816z5 − 39835757959760z6 + 5296218682048z7 − 1384872496z8−
114339324400z9 + 17574291000z10 − 1157625000z11 + 28940625z12, 6]≈ 14.0356689052.

(33)

We note in passing that one will get the identical values for α0 and β0 e.g. by choosing α0 = Root[Fm(7),2(α), 6] and
β0 = Root[Gm(7),2(β), 6], see Variant 1 above, or by inserting the parameter value t = t0, which is given in [44, Remark 4.3], into
the Formulae for α= α(t) and β = β(t) which are given in [44, (2.10)].

To obtain uniqueness for the Variant 3, we introduce the following

Proposition 2.5 (Final version of Variant 3). For a prescribed degree n0 ∈ {4, . . . , 13}, and s = s0 > τn0
, the sought-for α0 and

β0 can be determined uniquely by means of

Reduce[sn0
(α,β)− s0 == 0∧ β == β(α,λn0

)∧ 1< α, {α,β}, Reals, Backsubstitution→ True], (34)

where β(α,λn0
) is the parametric root object with lowest index λn0

resulting from

Reduce[Hn0
m(n0)
(α,β) == 0∧ 1< α < β ∧ νn0

< β , {β}]. (35)

The unique index λn0
is displayed in Table 3.

n0 4 5 6 7 8 9 10 11 12 13
λn0

1 3 1 4 1 4 1 6 1 7

Table 3

Example 2.6. Let again n0 = 7 and s0 = 2. Executing (35) yields three possible solutions for β consisting of parametric root
objects (which are related to H7

12(α,β) and depend on α) with respective indexes 4, 5 or 6, see [55] for details. Hence λ7 = 4.
Inserting the corresponding parametric root object, β(α, 4), into (34), as well as s0 = 2 and the known s7(α,β), and executing,
yields the unique solution α0 and β0 as given in (33).

Let now n = 7 and s0 =
1
10 , see Example 2.1, so that here again β(α,λn0

) = β(α, 4) holds. Executing (34) with β(α, 4),
s0 =

1
10 and with the known s7(α,β) yields the expected unique solution α0 = Root[F12, 1

10
(α), 4], β0 = Root[G12, 1

10
(β), 3].

The uniqueness of α0 and β0, when computed according to Proposition 2.5, follows from limα→1 β(α,λn0
) = νn0

and
limα→1 β(α,λn0

+ k)> κ > νn0
where k ≥ 1 is an integer and κ is a constant; this property implies, according to Theorem 1.1,

that the limiting pair (α,β) = (1,νn0
) which solves Hn0

m(n0)
(α,β) = 0 can only be reached if β = β(α,λn0

) is chosen. Note that
the curve Hn0

m(n0)
(α,β) = 0 does not intersect itself when β > α > 1 and therefore the appropriate branch can be uniformly

determined by the unique index λn0
given in Table 3.
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Example 2.7. In continuation of Example 2.5 and Example 2.6, one then sets up the particular case of the tentative form (14)
for n0 = 7 and proceeds as in Example 2.2, that is, replacing σk by σk(α,β), which can be adopted for k ∈ {0,1, . . . , 13} from
[55], and replacing α and β by α0 respectively β0 as given in (33). However, one may run, when using a not enough powerful
hardware, into time constraints due to the complexity of (14), when n = n0 = 7. As a way out one may determine the coefficients
of P7,α0 ,β0

at first numerically (by applying to them the Mathematica-function N with high precision (e.g., using p = 3000)), and
then convert the outcomes, with the aid of the Mathematica-function RootApproximant, to root objects Root[P(z), l], which, by
definition, are approximating the coefficients of P7,α0 ,β0

well (the P ’s would turn out to be polynomials of degree 12). Actually, the
so approximated coefficients coincide here with the true optimal coefficients of P7,α0 ,β0

= Z7,2, as a comparison with the expanded
version of the polynomial, given in [44, Remark 4.3], reveals. They are given, together with the deviation from zero, |Z7,2(1)|, in
Appendix 8.1.

Chopping them after the tenth digit after decimal point, a numerical approximation to (2) and to its norm, for n0 = 7 and
s0 = 2, is thus given by

Z7,2(x) =
∑5

k=0 a∗k,7(2)x
k + (−14)x6 + x7 ≈

0.4369440905+ (−0.1873410678)x + (−7.8705484829)x2

+1.1870230011x3 + 20.9955470665x4 + (−1.9996819333)x5 + (−14)x6 + x7,
|Z7,2(1)| ≈ 0.4380573257.

(36)

The deviation |Z7,2(1)| of Z7,2 from zero, on I , is least among all polynomials of form Q7,2(x) =
∑5

k=0 ak,7 x k + (−14)x6 + x7,
where ak,7 ∈ R is arbitrary. Figure 4 displays the graph of Z7,2 on the interval [−1, 1.1].

-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

Figure 4

Remark 3. The Variants in (25) and (31) are, due to possible non-uniqueness, inferior to the Variant in (34).

Remark 4. The preceding Examples indicate that the 3rd algorithm for solving ZFP, although it is of theoretical interest, is not
well suited for the practical algebraic construction of Zn,s if the coefficients a∗k,n(s) are required to be expressed non-numerically,
even when the degree n is comparatively low. With either of the three variants, the determinant-based tentative form (14) of Zn,s

must be held responsible for possibly encountered computing time constraints because basically (14) corresponds to Cramer’s
rule for the solution of a system of linear equations, and this rule is known to be computationally inefficient, see also the related
Remark 4 in [4, p. 23] which references to [20, 51]. To compare the complexity of the three tentative forms Pn,α,β , Rn,α,β , Sn,α,β

we computed, exemplarily for the degree n= n0 = 4, their constant terms A0,n(α,β), B0,n(α,β) and C0,n(α,β). The results are
given in Appendix 8.1 below, and they evidently support the assumption that Rn,α,β is the least complex one and Pn,α,β is the most
complex one among the three tentative forms. Analogous computations which we have conducted for several n = n0 > 4 confirm
this assumption.

Proposition 2.6 (Conclusion). Based on the preceding discussion (in particular Remarks 2, 3, 4) we propose to solve (for s > τn

and n≤ 13) ZFP algebraically by deploying the 1st algorithm consisting of the tentative form Rn,α,β in conjunction with Proposition
2.5.

In closing this Section, we point out how the parameters α and β in Theorem 1.1 are related to each other via the parameter
s, here exemplarily for 4≤ n≤ 7.

Algorithmic Generation of α = αn(β , s) and β = βn(α, s). These function equations can be generated by Gröbner basis
computation as a byproduct of the 1st algorithm, see [55] for n= 5. For n= 4 they read as follows:

α= α(β , s) =
−27+ 130s− 192s2 + 96s3 − 35β − 44sβ + 120s2β + 27β2 − 126sβ2 + 27β3

8(1+ 2s+ 9s2)
, (37)

β = β(α, s) =
27+ 130s+ 192s2 + 96s3 − 35α+ 44sα+ 120s2α− 27α2 − 126sα2 + 27α3

8(1− 2s+ 9s2)
. (38)
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For n≥ 6 one can proceed by analogy, and for n = 6, 7 the Formulae for α = αn(β , s) and β = βn(α, s) (or simply α = α(β , s) and
β = β(α, s) if there is no ambiguity) are stored in [55].

Remark 5. With α = αn(β , s), β = βn(α, s), s = sn(α,β), Hn
m(n)(α,β) = 0, Fm(n),s(α) = 0, Gm(n),s(β) = 0, one has at hand

interrelated Formulae for validating whether, for a given n = n0 and admissible s = s0, a compatible pair (α0,β0) has been found
for the construction of Zn0 ,α0 ,β0

= Zn0 ,s0
(necessary conditions); note that then also γ= γn will be known. Furthermore, we point

to Formulae [35, (5.11)], [41, (8.3)], [48, (30), (31)] which interrelate equioscillation points of Zn,s with the parameters α,β , s.
All these Formulae add to the stated properties of Zn,s, see Theorem 1.1.

Example 2.8. In continuation of Example 1.1, where the setting was n = n0 = 5 and s = s0 =
1
5 , one readily verifies by

insertion that the pair (α,β) = (α0,β0), as given in (5), is indeed a compatible one for Z5, 1
5

since there holds: α5(β0, s0) = α0,

β5(α0, s0) = β0, s5(α0,β0) = s0, H5
6(α0,β0) = 0, F6,s0

(α0) = 0, G6,s0
(β0) = 0.

3 Intertwining of the three Variants by means of Resultants

To find possible intersection points of two planar curves, use can be made of resultants which are implemented in Mathematica as
Resultant. We now reveal, for 4≤ n≤ 13, how the terms Fm(n),s, Gm(n),s, Hn

m(n), det M n+1×n+1
3 , sn(α,β) occurring in the preceding

three variants, see Sections 2.2, 2.3, 2.4, are intertwined.

Hn
m(n)(α,β) |Resultant[Fm(n),s(α), Gm(n),s(β), s], (39)

i.e., the resultant (with respect to s) of the pair of Malyshev polynomials Fm(n),s, Gm(n),s is divided by the polynomial Hn
m(n) which

defines the reduced relation curves (with respect to α and β); this property has already been noticed in [54, Remark 3.2].
Writing sn(α,β)−s = Numn(α,β ,s)

Denomn(α,β) and det M n+1×n+1
3 = det M n+1×n+1

3 (α,β) = Numn+1(α,β)
dn+1

with (dn+1 6= 0 constant), we furthermore
get that

Gm(n),s(β) |Resultant[Numn(α,β , s), Numn+1(α,β),α], (40)

Fm(n),s(α) |Resultant[Numn(α,β , s), Numn+1(α,β),β], (41)

Gm(n),s(β) |Resultant[Numn(α,β , s), Hn
m(n)(α,β),α], (42)

Fm(n),s(α) |Resultant[Numn(α,β , s), Hn
m(n)(α,β),β], (43)

Hn
m(n) | det M n+1×n+1

3 . (44)

Example 3.1. For n0 = 4, the said terms occurring in the three variants can be adopted from (27), (30), [55] and using these
terms, the statements (39) - (43) are readily checked with Mathematica. As for (39) one obtains

Resultant[F4,s(α), G4,s(β), s] = 4294967296 ·H4
4(α,β) · P12(α,β), (45)

with a bivariate polynomial P12 of total degree 12, and concerning (44) see (27).

Checking (39) - (44) for 5≤ n≤ 13 can be accomplished similarly, with recourse to [55].

4 On an algebraic Solution Path to ZFP due to Malyshev

Malyshev [20, p. 934] was unaware of the paper by Sodin & Yuditskii [51] (and of the paper by Peherstorfer [28]), when he
proposed an algebraic algorithm for solving ZFP, see also [21].

It will turn out that Malyshev’s algorithm basically builds on a tentative representation of (2) which is equivalent to (14) as
used in the 3rd algorithm. Furthermore, it will turn out that Malyshev’s determination of the two variable parameters is basically
equivalent to Variant 1.

In place of Qn,s(x), see Section 1.1, Malyshev [20] considers polynomials in the variable t of form eQn,σ(t) = tn +σtn−1 +
∑n

k=2 ak tn−k where σ ∈ R (originally, σ is denoted by z in [20]). In place of the moments σk = σk(α,β), see Section 2.1, he
uses bivariate polynomials λk = λk(x , y) (not to be confused with λn0

from Proposition 2.5), which are coefficients in the series
expansion

p

R∗ =
Æ

(1−τ2)(1−τ2 + 2xτ+ yτ2) = 1+ xτ+
∞
∑

k=0

λkτ
k+2. (46)

The Mathematica-function Series[
p

R∗, {τ, 0, 7}]//Simplify yields the first six instances of λk:

λ0(x , y) = 1
2 (−2− x2 + y), λ1(x , y) = 1

2 (x
3 − x y), λ2(x , y) = 1

8 (−5x4 − y2 + x2(−4+ 6y)),
λ3(x , y) = 1

8 (7x5 + x3(8− 10y) + x y(−4+ 3y)),
λ4(x , y) = 1

16 (−21x6 + (−2+ y)y2 + 5x4(−6+ 7y) + x2(−8+ 24y − 15y2)),
λ5(x , y) = 1

16 (33x7 − 7x5(−8+ 9y) + x y(−8+ 12y − 5y2) + x3(24− 60y + 35y2)).

(47)
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Malyshev then defines the Hankel determinant

∆n−1(x , y) = det









λ1 λ2 . . . λn−2

λ2 λ3 . . . λn−1

. . . . . .
λn−2 λn−1 . . . λ2n−5









, setting ∆1(x , y) = 1, (48)

and with its aid he asserts for the coefficients of the least-deviating eQn,σ a tentative representation (which we compare to the
tentative coefficients of Pn,α,β):

a2 = φ2(x ,y)
∆n−1(x ,y) (corresponds to Bn−2,n(α,β) if σ = −ns)

. . .
an = φn(x ,y)

∆n−1(x ,y) (corresponds to B0,n(α,β) if σ = −ns)
(49)

without, however, defining exactly the meaning of, and exemplifying, φ2(x , y), . . . ,φn(x , y). But the similarity of (49) to the
representation (14), when det M n+1×n+1

0 is expanded by minors of the last row, becomes obvious. To be more specific, we compare
the Hankel determinant ∆n−1(x , y) in the denominator of (49) to the Hankel determinant det M n×n

1 = det M n×n
1 (α,β) in the

denominator of (14) and we deduce that they differ, when the parameters x and y are properly expressed by means of the
parameters α and β , only by a scalar factor, and this is the least deviation of Pn,α,β from zero:

det M n×n
1 (α,β) =∆n−1(x , y)Ln(α,β) with x = x(α,β) and y = y(α,β). (50)

This implies that the numerator φ(x , y) of the coefficient a j , (2 ≤ j ≤ n), is equal to the quotient
Numeratorn− j

Ln(α,β) , where
Numeratorn− j

det Mn×n
1

= Bn− j,n(α,β) is that coefficient which corresponds to a j . A verification of (50) for the degree n0 = 3 is given in

Appendix 8.2.
To determine, for a given n= n0 and σ = σ0, the optimal parameters x = x0 and y = y0, Malyshev [20, p. 936] introduces,

for 2 ≤ n ≤ 5, bivariate polynomials Um(n),σ(x) and Vm(n),σ(y) and he seeks x0 and y0 among the (positive) solutions of the
polynomial equations Um(n),σ(x) = 0 and Vm(n),σ(y) = 0. Um(n),σ and Vm(n),σ correspond to the Malyshev polynomials Fm(n),s and
Gm(n),s which he later introduced in [21], see Remark 7 below, so that his proceeding can be viewed as being basically equivalent
to deploying the Variant 1.

In order to exemplify his own algebraic solution (49) of ZFP, Malyshev [20] considers the special degree n0 = 5 and he
prescribes σ0 = 1, which in our notation corresponds to s0 = −

1
5 , so that he actually proceeds to calculate the least deviating

eQ5,1(t) = Z5,− 1
5
(x) = −Z5, 1

5
(−x). In view of Example 1.1 and (6) - (7) we know Z5, 1

5
and hence we know the exact expressions,

by radicals as well as by root objects, for the optimal coefficients and for the least deviation L5(
−1
5 ) of Z5,− 1

5
. Malyshev [20, p.

937], on the other hand, provides these coefficients (denoted by a2, . . . , a5) in a biased numerical form and sketches the graph
of Z5,− 1

5
from which the value L5(

−1
5 ) = L5(

1
5 ), see (3) and (6), can be roughly read (compare Figure 1 above to the mirrored

Figure 7 in [20]). Also, for the numerical form of the optimal parameters x = x0 and y = y0 as given in [20, p. 937] we can now
subtend an exact expression in view of (5) and (80) below:

x0 = α(5, 1
5 )+β(5, 1

5 )
2 = Root[− 288+ 416z + 792z2 − 1620z3 + 675z4, 2]≈ 1.4102107032,

y0 = α(5, 1
5 )β(5, 1

5 ) + 1= Root[695808− 1723904z + 1573344z2 − 631800z3 + 91125z4, 2]≈ 2.9862364377.
(51)

Observe that these values are among the positive zeros of Um(5),1(x) and Vm(5),1(y).
Shadrin [49, p. 243] compares Malyshev’s algebraic approach to ZFP with the algebraic approaches published in [28, 51]

and he comments: Recently, the interest in an explicit algebraic solution of the Zolotarev problem [i.e., ZFP] was revived in the papers
by Peherstorfer, Sodin-Yuditsky and Malyshev, but it is only Malyshev who demonstrates how his theory can be applied to some explicit
constructions for particular n.

We note in passing that Malyshev [20] was not the first to provide an algebraic solution of ZFP for n0 = 5 and particular
value(s) of s = s0: To the best of our knowledge, it was Collins [10], see also [6], [40, Section 5].

For n0 ≥ 6 however, explicit (non-numerical) algebraic solutions to ZFP are rare in literature: see [41, 42, 44] (and the
present paper) for n0 ∈ {6,7}; partially [28, Section 5] for n0 = 6 and [35, Section 7] for n0 ≤ 7; for n0 > 7, see Appendix 8.3
below and [55].

5 On an algebraic Solution Path to ZFP due to Schiefermayr

Yet another algebraic algorithm for solving ZFP was proposed by Schiefermayr [48, Section 4.2]. As indicated in Section 1.2
above, his suggested tentative form of Zn,s is closely related to the one in the 2nd algorithm, Sn,α,β . To the key question stated at
the end of Section 1.2 above, he provides an answer in Corollary 3 of [48], which is related to (31) and likewise may produce
nuisance values for α and β . Nevertheless, we translate that answer into the Mathematica-syntax to facilitate tedious determinant
evaluations as well as the computation of the moments sn(α,β) and the reduced relation curves Hn

m(n)(α,β) = 0.
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If one defines, for n= 2m+ 1≥ 5 odd:

(52)

so [α_ ,β_ , k_]=1/2(−α̂ k−β̂ k−1−(−1)^k ) ;
sso [α_ ,β_ , k_]=1/2(α̂ k+β̂ k+1+(−1)^k ) ;
Fo [α_ ,β_ ,0]=1;
Fo [α_ ,β_ , k_? Negat ive ]=0;
Fo [α_ ,β_ , k_]:=(−1)^k/k ! Det [ Table [ I f [ j>i , I f [ j==i+1, i , 0 ] , so [α ,β , i− j +1]] ,
{ i , k } ,{ j , k } ] ] ;
FFo [α_ ,β_ , k_? Negat ive ]=0;
FFo [α_ ,β_ ,0]=1;
FFo [α_ ,β_ , k_]:=(−1)^k/k ! Det [ Table [ I f [ j>i , I f [ j==i+1, i , 0 ] , s so [α ,β , i− j +1]] ,
{ i , k } ,{ j , k } ] ] ;
Ps i2 [3]=1;
Ps i3 [3]=0;
Ps i2 [n_]:=Module [{m=(n−1)/2} , Det [ Table [FFo [α ,β ,m+i− j +1] ,{ i ,m−1} ,{ j ,m−1}]]] ;
Ps i3 [n_]:=Module [{m=(n−1)/2} , Det [ Table [ I f [ j==1,−FFo [α ,β ,m+ i +1] ,FFo [α ,β ,m+i− j +1]] ,{ i ,m−1} ,{ j ,m−1}]]] ;
Phio [k_ , n_]:=Module [{m=(n−1)/2} , Det [ Table [ I f [ j==k,−Fo [α ,β ,m+i −1] ,Fo [α ,β ,m+i−j −1]] ,{ i ,m+1} ,{ j ,m+1}]]] ;

lhsequation32odd [n_]:= Factor [Sum[ β̂ j Phio [ ( n+1)/2− j , n ] ,{ j , 0 , ( n+1)/2}]]
lhsequation33odd [n_]:= Factor [−2 Ps i3 [n]+(α−n s ) Ps i2 [n ] ]

then the proposed system of determinant equations [48, (32),(33)] for the computation of the endpoints α= α0 and β = β0

(when n is odd) reads, here exemplarily for n= 5:

lhsequation32odd[5] == 0, yielding (53)

64−80α2+44α4+α6+96αβ−16α3β+6α5β−16β2+104α2β2−29α4β2−80αβ3+36α3β3−52β4−9α2β4−10αβ5+5β6

1024 = 0

(i.e., 1
1024 H5

m(5)(α,β) = 1
1024 H5

6(α,β) = 0),

lhsequation33odd[5] == 0, yielding (54)

1
64
(−9α4 + 8α3β + 6α2β2 + 24α2 − 5β4 + 8β2 + 20α3s− 20α2βs− 20αβ2s− 80αs+ 20β3s− 80βs− 16) = 0.

Likewise, if one defines, for n= 2m+ 2≥ 4 even:

(55)

se [α_ ,β_ , k_]=1/2(−α̂ k−β̂ k+1−(−1)^k ) ;
s se [α_ ,β_ , k_]=1/2(α̂ k−β̂ k+1+(−1)^k ) ;
Fe [α_ ,β_ , k_? Negat ive ]=0;
Fe [α_ ,β_ ,0]=1;
Fe [α_ ,β_ , k_]:=(−1)^k/k ! Det [ Table [ I f [ j>i , I f [ j==i+1, i , 0 ] , se [α ,β , i− j +1]] ,
{ i , k } ,{ j , k } ] ] ;
FFe [α_ ,β_ ,0]=1;
FFe [α_ ,β_ , k_? Negat ive ]=0;
FFe [α_ ,β_ , k_]:=(−1)^k/k ! Det [ Table [ I f [ j>i , I f [ j==i+1, i , 0 ] , s se [α ,β , i− j +1]] ,{ i , k } ,{ j , k } ] ] ;
Ps i0 [n_]:=Module [{m=(n−2)/2} , Det [ Table [FFe [α ,β ,m+i− j +1] ,{ i ,m} ,{ j ,m} ] ] ] ;
Ps i1 [n_]:=Module [{m=(n−2)/2} , Det [ Table [ I f [ j==1,−FFe [α ,β ,m+1+ i ] , FFe [α ,β ,m+i− j +1]] ,{ i ,m} ,{ j ,m} ] ] ] ;
Phie [k_ , n_]:=Module [{m=(n−2)/2} , Det [ Table [ I f [ j==k,−Fe [α ,β ,m+ i ] , Fe [α ,β ,m+i− j ] ] ,
{ i ,m+1} ,{ j ,m+1}]]] ;

lhsequat ion34even [n_]:= Factor [Sum[α̂ j Phie [n/2− j , n ] ,{ j , 0 , n /2 } ] ] ;
lhsequat ion35even [n_]:= Factor [−2 Ps i1 [n]+(α+1−n s ) Ps i0 [n ] ]

then the proposed system of determinant equations [48, (34), (35)] for the computation of the endpoints α = α0 and β = β0

(when n is even) reads, here exemplarily for n= 4:

lhsequation34even[4] == 0, yielding (56)
1
64 (−α

4 + 4α3β − 8α3 − 6α2β2 − 8α2β + 8α2 + 4αβ3 + 8αβ2 − 16αβ − β4 + 8β3 + 8β2 − 16) = 0

(i.e., − 1
64 H4

m(4)(α,β) = − 1
64 H4

4(α,β) = 0),

lhsequation35even[4] == 0, yielding (57)

1
8
(−2α3 − 3α2β −α2 − 2αβ + 5β3 + 3β2 − 4β + 4α2s+ 8αβs− 12β2s+ 16s− 4) = 0.

We examine first the equations given in [48, (32)] (for n odd) and [48, (34)] (for n even): They arise from Theorems 1 (i), 2 (i)
in [48] when d is replaced there by β , and a by α. Evaluating now (53), (56), i.e., the equations [48, (32), (34)], one finds
that the left-hand sides contain as a factor the polynomial Hn

m(n). More precisely: For n ∈ N1 = {4,5,7,8,11,13} the left-hand

sides are of form cnHn
m(n)(α,β) where cn 6= 0 is a constant (e.g., c4 =

−1
64 ). Hence for n ∈ N1 the equations in [48, (32), (34)] are

equivalent to Hn
m(n)(α,β) = 0. But for n ∈ N2 = {6, 9,10, 12} the left-hand sides are of form
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lhsequation34even[6] = c6 ·H2
1(α,β) ·H6

8(α,β) with H2
1(α,β) = (2+α− β) (58)

lhsequation32odd[9] = c9 ·H3
2(α,β) ·H9

18(α,β) with H3
2(α,β) = (4+α2 + 2αβ − 3β2) (59)

lhsequation34even[10] = c10 ·H2
1(α,β) ·H10

24(α,β) (60)

lhsequation34even[12] = c12 ·H4
4(α,β) ·H12

32(α,β) with H4
4(α,β) as given in (27). (61)

Thus for n ∈ N2 the equations in [48, (32), (34)] are equivalent to, respectively,

H2
1(α,β) ·H6

8(α,β) = 0, H3
2(α,β) ·H9

18(α,β) = 0, H2
1(α,β) ·H10

24(α,β) = 0, H4
4(α,β) ·H12

32(α,β) = 0. (62)

We refer to [54, Theorem 3.4] for a deeper analysis, which even covers degrees n > 13, of the two kinds of factorization
occurring in the left-hand sides of (53) and (56) when n≥ 4. Table 2 in [54] displays the total degrees m(n) of the polynomials
Hn

m(n)(α,β), see also Table 1 above, and of the composite polynomials in (62). Moreover, as pointed out in [54, Remark
3.5], both kinds of polynomials correspond to the four-variate polynomials p(a, b, c, d) whose zeros {a, b, c, d} are so-called
Tn-tuples (see [48, pp. 149] for details), here specialized to p(α, 1,−1,β) according to the inverse polynomial image of Zn,s.
In [48, Section 4.1] the polynomials p(a, b, c, d) are given, due to their bulkiness, only for n ∈ {2,3,4}. Specializing there
(a, b, c, d) = (α, 1,−1,β), one gets back the polynomials H2

1(α,β), H3
2(α,β) and H4

4(α,β) , but for n= 6 one would get back the
composite form H2

1(α,β) ·H6
8(α,β).

We draw here another parallel, with a paper by Lazard [18], see also Remark 6 (iv) below: Investigating ZFP by methods of
Algebraic Geometry, the author considers algebraic curves, denoted by V ′2 and V2, whose degrees for n ∈ N2 coincide with the
degrees of Hn

m(n) respectively with the degrees of the composite polynomials in (62), see [18, Proposition 7]. However, in [18]
only their total degrees are provided, for particular values of n≤ 12, but not their explicit defining polynomials. Now e.g. the
polynomials Hn

m(n) can be generated algorithmically, see (53) and (56), even if n> 13.
Next, we examine equations [48, (33), (35)] which are deduced as follows:
In view of Theorem 1.1 and (11), the monic polynomials Sn,α,β ,y j

+ Ln(s) possess m− 1 double zeros y j and additionally the
zeros ±1 and the zero α (if n = 2m+ 1), respectively m double zeros y j and additionally the zeros 1 and α (if n = 2m+ 2),
where n ≥ 4. By Vieta’s theorem, the sum of these zeros equals the negative second leading coefficient, which is ns, and this
yields the equations [48, (30), (31)]. The y j in turn are the zeros of the polynomials given in [48, Theorems 1 (ii), 2 (ii)]. By
Vieta’s theorem, applied to these polynomials, the sum of the y j equals the number −detF1/detF (in the notation of [48]) and
inserting it into equations [48, (30), (31)] finally yields the equations [48, (33), (35)], which correspond to our equations (54)
and (57) when n≥ 4.

Evaluating now (54) and (57), one sees that the left-hand sides of the said equations are of form cnJn(α,β , s), with cn 6= 0
a constant, and with certain trivariate polynomials Jn for n ∈ N1 ∪ N2. Hence the equations in [48, (33), (35)] are equivalent
to −Jn(α,β , s) = 0. Invoking sn(α,β) and setting, as in Section 3, sn(α,β) − s = Numn(α,β ,s)

Denomn(α,β) , the condition sn(α,β) − s = 0
becomes equivalent to Numn(α,β , s) = 0, but on the other hand, Numn(α,β , s) = −Jn(α,β , s) holds, as can be readily verified by
comparing Numn(α,β , s) to the values generated by Formulae (54), (57) when n≥ 4. Hence the equations [48, (33), (35)] are
equivalent to sn(α,β)− s = 0. In view of (31) we conclude that Schiefermayr’s proposal [48, Corollary 3] how to determine
α= α0 and β = β0 for a concretely prescribed n= n0 and s = s0 > τn0

is thus identical with (31), and hence lacks uniqueness,
provided that n ∈ N1. For n= n0 ∈ N2, however, that proposal amounts to a modification of (31):

Reduce[sn0
(α,β)− s0 == 0∧ lhsn0

(α,β) == 0∧ 1< α < β ∧ νn0
< β , {α,β}], (63)

where lhsn0
(α,β) is an appropriate left-hand side in (62).

We observe that for n0 ∈ N2 the (first) extra factor at Hn
m(n)(α,β) in (62) may affect the set of solutions for α and β to the

extent that nuisance values are generated. In such a case the determination of α0 and β0 according to [48, Corollary 3] would
again not be unique (so that Remark 1(i) in [48] would need to be adapted).

More specifically, we strive to determine α= α0 and β = β0 by means of Corollary 3 of [48] for the setting n0 = 6 ∈ N2 and
s0 = 2 (see also [41, p. 195]); the extra factor is H2

1(α,β) = 2+α− β:

Example 5.1. With n0 = 6 and s0 = 2, Formula (63) reads

Reduce[s6(α,β)− 2== 0∧ (2+α− β) ·H6
8(α,β) == 0∧ 1< α < β ∧ ν6 < β , {α,β}], (64)

where s6(α,β) and H6
8(α,β) are given in [41, 55]. Equivalently, (64) can be stated as

Reduce[lhsequation34even[6] == 0∧ lhsequation35even[6] == 0∧ s == 2∧ 1< α < β ∧ ν6 < β , {α,β}]. (65)

Executing (64) or (65) with Mathematica yields the nuisance values

α= α0 = 3 and β = β0 = 5 (66)
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as well as the alternative values (which can be cross-checked by deploying e.g. the Variant 1):

α= α0 = Root[− 458570907− 42254808z + 244930588z2 − 129874632z3 + 39870030z4−
8679464z5 + 1247868z6 − 99000z7 + 3125z8, 2]≈ 12.0415915958,

β = β0 = Root[177361957− 16506088z − 10658852z2 − 37145848z3 + 28468366z4−
8498200z5 + 1294268z6 − 101000z7 + 3125z8, 2]≈ 12.0415975617.

(67)

Inserting (66) into any tentative form Z6,α,β of Z6,2 produces a monic polynomial, q6, with the desired second leading coefficient
−n0s0 = −12:

q6(x) = 11+ 36x + (−57)x2 + (−40)x3 + 45x4 + (−12)x5 + x6 = (−1+ (−4)x + x2)(−11+ 8x + 14x2 + (−8)x3 + x4). (68)

However, q6 is not a proper sextic Zolotarev polynomial as characterized in Theorem 1.1 since it exhibits less than six equioscillation
points on I (actually, q6 coincides with [41, (4.5)] if choosing there s = 2, and q6(x)/q6(1) coincides with [42, (48)] if choosing
there t = 2).

Whereas the insertion of (67) into Z6,α,β does produce the sextic Zolotarev polynomial Z6,2 in the power form (2) with
coefficients a∗k,6(2) expressed by means of root objects. We provide them, together with the deviation from zero, |Z6,2(1)|, in [55]
and give here only their chopped numerical representations:

Z6,2(x)≈ −0.0623920549+(−3.7461095036)x+0.8119595277x2+14.9948096730x3+(−1.7495674727)x4+(−12)x5+ x6,
(69)

|Z6,2(1)| ≈ 0.7512998305. (70)

Figure 5 displays the graphs of q6 and Z6,2 (with four respectively six equioscillation points) on I .
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6 On an algebraic Solution Path to ZFP due to Peherstorfer

Peherstorfer [28, p. 259, p. 262] considers Zolotarev polynomials as special instances (with exactly 2 deviation points on [b, 1])
of the so-called (monic) T -polynomials of degree n, Tn, on sets E = [−1, a]∪ [b, 1], where −1 < a < b < 1, see also [34]. To
ensure the existence of such polynomials, he exploits their orthogonality, with respect to a certain weight-function, to the set Pn

of all polynomials of degree ≤ n, see [28, Theorem 4] (replace there the misprinted τn by Tn). It turns out that the existence of
Tn is equivalent to the periodicity of the recursion coefficients in the three-term recurrence relation of orthogonal polynomials
[28, p. 259], [29]. This fact enables him to calculate Zolotarev polynomials on E for at least small n [28, p. 245], and in [28,
Section 5] he provides a description how to proceed so for 2 ≤ n ≤ 6. We are going to trace Peherstorfer’s algebraic solution
path to ZFP exemplarily, for n= n0 = 4, and it will become obvious that his approach corresponds to the third algorithm which
is based on the tentative form Z4,α,β = P4,α,β , inspired by [51]. Actually, in [31, p. 194] Peherstorfer himself refers to parallels
between the papers [28] and [51].

For convenience, we reconsider Example 2.4 above with the particular prescribed s = s0 as given there. The goal is to
recover, from prescribed parameters a = a0, b = b0 (respectively c = c0, d = d0), following Peherstorfer’s solution path [28], the
particular Zolotarev polynomial Z4,s0

as given in (29). To set the stage, we transform Z4,s0
, whose inverse polynomial image is

I ∪ [α,β] (with α = α0 and β = β0 from (28)), to a compressed monic Zolotarev polynomial, whose inverse polynomial image is
E = [−1, a]∪ [b, 1], with

a = a0 =

√

√11
20
(−17+ 3

p
33)≈ 0.3585085309, b = b0 =

√

√ 1
20
(−403+ 73

p
33)≈ 0.9042420361. (71)
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This is accomplished by forming first Z4,s0
(l̃(x)), where l̃(x) = ((1+ β0)/2)x + (−1+ β0)/2, and then dividing Z4,s0

(l̃(x)) by its

leading coefficient, which is
� 1+β0

2

�4
. The result is

Z4(x) =
1

400
(3221− 555

p
33) +

(−8)x
p

775+ 135
p

33
+

3
10
(−55+ 9

p
33)x2 +

8x3

p

775+ 135
p

33
+ x4. (72)

To be compliant with [28, p. 247, p. 275], one then has to set c = b+a
2 , and d = b−a

2 (i.e., a = c − d and b = c + d) so that the
inverse polynomial image of (72), E, turns to eE = [−1, c − d]∪ [c + d, 1] with

c = c0 =

√

√ 1
20
(−285+ 51

p
33)≈ 0.6313752835, d = d0 =

√

√ 1
10
(−5+

p
33)≈ 0.2728667525. (73)

After this preparation we restart and proceed reversely in three steps, guided by [28].
Step 1. Prescribe c0 and d0 (we choose here deliberately the values in (73)) and form the two lists of periodic (cyclic)

recursion coefficients, for n= 4, as given in [28, p. 276] (we correct there 2d to 2c in the denominators of the first list):

α4= (d, c −
1− d2

2c
,−d, c −

1− d2

2c
), λ4= (

1− d2 + 2dc
4

,
1− d2 + 2dc

2
,

1− d2 − 2dc
4

,
1− d2 − 2dc

4
). (74)

The recursive computational steps for generating the sought-for polynomial we provide in the Mathematica-syntax:

α4={d , c−(1−d^2)/(2c ) ,−d , c−(1−d^2)/(2c ) } ;
λ4={(1−d 2̂+2d c )/4 ,(1−d 2̂+2d c )/2 ,(1−d^2−2d c )/4 ,(1−d^2−2d c )/4} ;
c0=Sqrt [1/20(−285+51Sqrt [3 3 ] ) ] ; d0=Sqrt [1/10(−5+Sqrt [3 3 ] ) ] ;
q40=1;q4m1=0;
q41=q40(x−α4[[1]])−λ4 [ [1 ] ]q4m1/ . { c→c0 , d→d0 } ;
q42=Expand [ ( x−α4 [ [2 ] ] ) q41−λ4 [ [2 ] ] q40 / . { c→c0 , d→d0 } ] ;
q43=Expand [ ( x−α4 [ [3 ] ] ) q42−λ4 [ [3 ] ] q41 / . { c→c0 , d→d0 } ] ;
q44=Expand [ ( x−α4 [ [4 ] ] ) q43−λ4 [ [4 ] ] q42 / . { c→c0 , d→d0}]//RootReduce// Ful lS impl i fy
Out[1]= 1/400 (3221−555 Sqrt [33])−(8 x )/ Sqrt [775+135 Sqrt [33]]+
3/10 (−55+9 Sqrt [33]) x^2+(8 x^3)/Sqrt [775+135 Sqrt [33]]+x 4̂

Thus one gets q44 = Z4(x), see (72), as expected.
Step 2. Identify Z4(x) with a T -polynomial on [−1, a]∪ [b, 1] with a = a0 and b = b0, see (71).
Step 3. Transform Z4 linearly to a Zolotarev polynomial whose inverse polynomial image is I ∪ [α,β], where α= α0 and

β = β0 are from (28). This eventually recovers Z4,s0
(take Z4(k(x)) with k(x) = 1

20 (10 +
Æ

55(−17+ 3
p

33))x + 1
20 (−10 +

Æ

55(−17+ 3
p

33)) and divide by the leading coefficient).
It is insightful to consider the intermediate results 1 = q40, q41, q42, q43, q44 of the computation in terms of determinants,

compare with (29): In the two determinants of (14) replace, for n= 4, σk by σk(α,β) as indicated in (18); furthermore, in the
first of these determinants replace x by the above defined l̃(x), where β = β0 according to (28). Then there holds

q4 j =
�

1+ β0

2

� j

(det M j+1× j+1
0 /det M j× j

1 ) for j = 1,2, 3,4, with q44 = Z4(x). (75)

This reveals the mentioned parallels between the papers [28] and [51].

Example 6.1. Prescribing e.g. c0 = 24/35 and d0 = 1/7, Peherstorfer’s algebraic solution path will yield, for n0 = 4, the Zolotarev
polynomial Z4,s̃0

on I ∪ [α0 = 37/27,β0 = 43/27], where s̃0 = 5/18. The details are left to the reader.

7 Remarks (6-8)

Remark 6. Additionally to the here considered solution paths to ZFP, in literature there exist several further (non-elliptic)
approaches to ZFP which remain a fruitful subject for future investigation:

(i) A. A. Markov [22, p. 15] starts off with the Abel-Pell differential equation (8), from which Zolotarev [59, 60] had deduced
his elliptic solution of ZFP. By announcing: Without relying on E. I. Zolotarev’s formulas, we show how it is possible to
reduce our problem to three algebraic equations, Markov continues to transform (8) to the task of solving a system of linear
first-order differential equations. With respect to (i), Sodin & Yuditskii [51, p. 2489] remark: A. A. Markov noted that it is
desirable to find an algebraic solution to this problem [i.e., ZFP when s > τn] and sketched a method that could be used to find
such a solution, without carrying the computation to completion.
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(ii) Voronovskaja’s suggestion for solving ZFP (on [0,1]) [57, p. 96] requires to solve a non-linear system of differential
equations. But curiously, when it came down to construct Z3,s/L3(s) (on [0, 1]) Voronovskaja [57, pp. 97-98] applied an ad
hoc-method rather than the method suggested by herself. However, Paszkowski [27, p. 156] did apply a Voronovskaja-type
method and solved ZFP for n= n0 = 3 (on I). With respect to (i) and (ii) Shadrin [49, p. 243] remarks: But as far as we
know, nobody (including A. Markov and Voronovskaya themselves) has ever tried to apply these methods for constructing Zn

[i.e. Zn,s] for any particular n. But note the mentioned instance [27, p. 156]; also note that a polynomial solution of the
differential equation (8) needs not be a proper Zn,s, as Examples show.

(iii) By deploying methods of Complex Analysis, Meiman [23, 24, 25] addressed a generalization of ZFP when several leading
coefficients an,n, an−1,n, . . . , an− j,n of a polynomial are prescribed, j ≥ 1. Peherstorfer in [33, p. 3] comments on Meiman’s
papers and in particular remarks: For an explicit representation of the polynomial eZn explicit expressions for the endpoints
α j,n,β j,n and the zeros of the derivative γ j,n would be needed. To find such explicit expressions is extremely unlikely ... . In
[20,21,22] [i.e., [23, 24, 25]] no way of solution is offered to this fundamental open question.

Note that when the said generalization is adjusted to ZFP (i.e., j = 1), then eZn (notation as used in [33]) becomes identical
with Zn,s/Ln(s) (using our notation) and α j,n coincides with α, β j,n coincides with β , γ j,n coincides with γ; and Proposition
2.5 then offers, for n≤ 13 and s > τn, a way of solution to determine α and β , and hence γ.

(iv) Lazard [18, Section 4.2] develops an algebraic solution strategy for solving ZFP for the degrees n≤ 12 without, however,
providing a solution formula or a concrete Example, see e.g. the remark by Grasegger & Vo [15, p. 173]: There is no
explicit expression printed there. But the paper [18] contains theoretical results to which we have already referenced to in
[41, p. 182] and in the present paper, see Section 5.

(v) Peherstorfer & Schiefermayr [35, Section 7] compute T–polynomials of degree n ≤ 7 on two intervals with the aid of
Gröbner basis. Key is a system of equations [35, (7.3)] (correct there the second upper index of summation to n−2) which
involves the unknown deviation points of a T -polynomial and hence, as a special case, the unknown equioscillation points
of Zn,s. We provide in [55] a worked-out Example for computing Zn,s along [35, Section 7]. Note that explicit Formulae for
the equioscillation points of Zn,s of form (9) are given for n ∈ {4, 5,6,7} in [39, 15, 42, 44] respectively.

(vi) Vlček & Unbehauen [56] consider Zolotarev polynomials in their original elliptic form [59, 60], transformed to the intervals
[−1, a]∪ [b, 1]. Deploying the apparatus of Complex Analysis (e.g., elliptic and theta functions and conformal mappings)
they derive from the Abel-Pell differential equations linear differential equations which are key for deducing two recurrent
Formulae for the coefficients of a proper Zolotarev polynomial of form

∑n
m=0 b(m)ωm or

∑n
m=0 a(m)Tm(ω), see [56, Table

IV and V]. They call these forms algebraic forms of a Zolotarev polynomial, but e.g. the starting values (which in our
notation would correspond to α0 and β0) involve the modulus of elliptic functions. In [55] we provide a worked-out
Example showing how to derive the coefficients b(m) in the first form.

(vii) Suppose the goal is to determine algebraically Zn,s under the assumption that the right interval-endpoint β = β0 > νn

of [α,β] is prescribed. According to a result of Erdős & Szegő [13, Lemma 1], fixing β implies that α > 1 and γ > 1 are
uniquely determined so that according to Theorem 1.1 then also s would be uniquely determined and hence, in that setting,
cannot be freely chosen. If one finds a way to determine the unique α= α0 which corresponds to the fixed β = β0, then
s = s0 can be determined by using s = sn(α,β), see Section 2.4, and hence also γ = γ0 =

α0+β0
2 − s0 will be known. Sodin &

Yuditskii [51, (4), (4’)] propose even two methods how to determine α0. Formula [51, (4)] is (24), with β = β0 fixed, and
can be simplified to Hn

m(n)(α,β0) = 0, see (44).

In a follow-up study we intend to investigate the mirrored Zolotarev’s problem, mentioned in [30, p. 298], when the left
interval-endpoint α = α0 > 1 is prescribed in advance, and also the related problem, when γ = γ0 > 1 is prescribed in
advance, in lieu of the parameter s.

Remark 7. Concerning the origin of the Malyshev polynomials, Malyshev states in [21, p. 711]: For a practical solution, in [6] [i.e.,
here [20]] the present author separated arguments, found useful branches, and reduced the initial algebraic system to Fm(n),s(α) = 0,
Gm(n),s(β) = 0 [using here our notation]. However, his statement is imprecise in so far as the polynomials Fm(n),s, Gm(n),s do not
occur in [20]; rather, the statement evidently applies to some different pair of polynomials Um(n),σ(x) and Vm(n),σ(y), as given, for
2≤ n≤ 5, in [20, p. 936] using Malyshev’s x , y-notation, see Section 4 above. So actually, the Malyshev polynomials in [21]
emerge unanticipated.

They can be derived from the polynomials Um(n),σ and Vm(n),σ (see [20]) and vice versa, but we do not dwell on this here.
As to the mentioned useful branches (of x and y) Malyshev [20, p. 936] explicates: To choose x and y properly, we must

use the branch distinguished at infinity by the asymptotics x ∼ z and y ∼ z2 [with z = σ = ns]. In view of (51), the two said
asymptotics thus translate as

α+ β
2
∼ ns (which in view of Theorem 1.1 implies γ∼ (n− 1)s) and αβ + 1∼ n2s2. (76)
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The first (asymptotic) approximation is basically known since limns→∞ |α−ns| = limns→∞ |β −ns| = 0, for n≥ 3, see [35, (5.12)];
recall the related conditions |α− ns|< 1 and |β − ns|< 1 for n≥ 4 and s ≥ 1 which we utilized to verify the Variant 1 above.

The second approximation in (76) seems to be new. The goodness of these approximations becomes obvious when one
replaces the variables α and β by appropriate concrete values taken from the Examples given in this paper. For the nuisance values
α = α0 = 3 and β = β0 = 5 in (66) however, where n0 = 6 and s0 = 2 holds, (76) would result in the poor approximations 4∼ 12
and 16 ∼ 144, which immediately indicate an exceptional situation. We refer to Remark 2.5 for a non-asymptotic procedure
for validating, in a given setting, whether a compatible point (α0,β0) has been found for the construction of Zn0 ,α0 ,β0

= Zn0 ,s0
.

Another useful procedure, now for validating the computed least deviation of Zn0 ,s0
from zero, on I , L = Ln0

(s0), is to verify
whether Bernstein’s [3, p. 156] lower and upper bounds for L are met, see also [32]. These bounds read, with n= n0, s = s0:

21−n(ns+
p

1+ n2s2)(1− (1+
p

1+ n2s2)(ns+
p

1+ n2s2)−n)< L,
L < 21−n(ns+

p
1+ n2s2)(1+ (1+

p
1+ n2s2)(ns+

p
1+ n2s2)−n),

(77)

see also [42, Section 4.2]

Remark 8. The reason why we have restricted our consideration in [55] to polynomials of low degrees n≤ 13 is for the sake of
convenience but not mathematically inherent. In principle, with a powerful computer hardware, the tentative forms Zn,α,β as well
as the compatible numbers α= α0 and β = β0 can be computed beyond n= 13. For a related discussion see [18, Section 6].

The situation turns out to be different if one tries to raise the degree from n = n0 = 7 to n = n0 = 8 in the parametric
representation (9) of Zolotarev polynomials: Here the obstacle is not the computer’s performance, rather, one is faced with the
problem of finding a radical parametrization of an algebraic curve of genus 5 which is non-hyperelliptic, see [44, Remark 4.8].

8 Appendices (1-3)

8.1 Appendix 1: Some bulky terms

Cf. Example 1.1, n= n0 = 5 and s = s0 =
1
5 , exemplarily only one coefficient and the least deviation

a∗3,5

�

1
5

�

=
1

15



−2

√

√

√

−
�

A
2

�1/3
+ 11

�

2
A

�1/3
+ 10

√

√ 1
B
− 6+ 2

p
B − 18





with

A= (151+ 75
p

5) and B =

�

−3− 11
�

2
A

�1/3
+
�

A
2

�1/3�

;

L5

�

1
5

�

=
4

84375





√

√

√

62156312508
�

2
C

�1/3
− (864C)1/3 + 1396207000

�

2
D

�

+ 417704− D+ 2334





with

C = 852402263891947+ 506449999328125
p

5 and D =

√

√

√

208852− 62156312508
�

2
C

�1/3
+ (864C)1/3 .

Cf. Example 2.2, n= n0 = 6 and s = s0 = 1

a∗0,6(1) = Root[3241459654490570809+ 49783767533822891288z − 38910627082299150692z2 + 5145258693723461864z3

+ 1504602912709166710z4 − 266755810397021656z5 + 13486749433271644z6 − 160761765625000z7

+ 3814697265625z8 , 2],

a∗1,6(1) = Root[− 1021989042369725915757312+ 244669107598347832851456z + 256101507002053458107136z2

− 83638261751265815387904z3 − 6680043385386504530976z4 − 4068780301288627236288z5

+ 661923785943217011888z6 − 25764139160156250000z7 + 298023223876953125z8 , 1],

a∗2,6(1) = Root[− 5317434243658104380775+ 4551246405611892070920z + 2175766930032706940796z2

+ 352617906344731462584z3 + 28678246167819701142z4 + 1296099455313654072z5

+ 33482656598971644z6 + 494941453125000z7 + 3814697265625z8 , 2],

a∗3,6(1) = Root[− 43243251333529600+ 45342031458467840z − 18508977003249664z2 + 1396579762397184z3

+ 291712710213120z4 − 45181918308864z5 + 1425866885312z6 + 28962500000z7 + 1220703125z8 , 2],

a∗4,6(1) = Root[− 24974796693375+ 518755962600z + 4763147078844z2 − 1611134445672z3 + 249132993894z4

− 21634573608z5 + 1098618876z6 − 31095000z7 + 390625z8 , 1],
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and trivially a∗5,6(1) = −6 and a∗6,6(1) = 1;

|Z6,1(1)|= Ln0 (α0 ,β0) = Ln0 (s0) = L6(1) =

Root[879609302220800000− 628419273785606144000z + 546261524565802876928z2 + 2860413758092238389248z3

+ 925970165840272687104z4 − 2039880344435917062144z5 + 471472810197860261888z6 + 4388101562500000000z7

+ 298023223876953125z8 , 2].

Cf. Example 2.4, n= n0 = 4 and s = s0 = Root[11− 88z + 263z2 − 318z3 + 96z4, 1]

s4(σk) = (α+ β)(α
12 − 12α11β + 22α11 + 66α10β2 + 74α10β − 96α10 − 220α9β3 − 366α9β2 + 416α9β + 280α9 + 495α8β4 − 50α8β3

− 992α8β2 − 680α8β + 1392α8 − 792α7β5 + 1276α7β4 + 2432α7β3 − 800α7β2 − 384α7β − 1600α7 + 924α6β6 − 956α6β5 − 5056α6β4

+ 3680α6β3 + 7232α6β2 − 2752α6β − 3072α6 − 792α5β7 − 956α5β6 + 6592α5β5 − 2480α5β4 − 14976α5β3 + 5568α5β2 + 7168α5β

− 256α5 + 495α4β8 + 1276α4β7 − 5056α4β6 − 2480α4β5 + 13472α4β4 − 1216α4β3 − 17408α4β2 + 4864α4β + 5888α4 − 220α3β9

− 50α3β8 + 2432α3β7 + 3680α3β6 − 14976α3β5 − 1216α3β4 + 26624α3β3 − 4608α3β2 − 15360α3β + 3584α3 + 66α2β10 − 366α2β9

− 992α2β8 − 800α2β7 + 7232α2β6 + 5568α2β5 − 17408α2β4 − 4608α2β3 + 18944α2β2 + 512α2β − 8192α2 − 12αβ11 + 74αβ10

+ 416αβ9 − 680αβ8 − 384αβ7 − 2752αβ6 + 7168αβ5 + 4864αβ4 − 15360αβ3 + 512αβ2 + 8192αβ − 2048α+ β12 + 22β11

− 96β10 + 280β9 + 1392β8 − 1600β7 − 3072β6 − 256β5 + 5888β4 + 3584β3 − 8192β2 − 2048β + 4096)/

(2(α12 − 12α11β + 24α11 + 66α10β2 + 104α10β − 104α10 − 220α9β3 − 376α9β2 + 464α9β + 352α9 + 495α8β4

− 520α8β3 − 1096α8β2 − 416α8β + 2032α8 − 792α7β5 + 2416α7β4 + 2496α7β3 − 3200α7β2 + 1152α7β − 1280α7 + 924α6β6 − 1648α6β5

− 4944α6β4 + 8576α6β3 + 9792α6β2 − 7936α6β − 3840α6 − 792α5β7 − 1648α5β6 + 6368α5β5 − 5312α5β4 − 16512α5β3 + 15104α5β2

+ 8704α5β − 5120α5 + 495α4β8 + 2416α4β7 − 4944α4β6 − 5312α4β5 + 7072α4β4 − 5888α4β3 − 16640α4β2 + 15360α4β + 7936α4

− 220α3β9 − 520α3β8 + 2496α3β7 + 8576α3β6 − 16512α3β5 − 5888α3β4 + 23552α3β3 − 10240α3β2 − 15360α3β + 14336α3

+ 66α2β10 − 376α2β9 − 1096α2β8 − 3200α2β7 + 9792α2β6 + 15104α2β5 − 16640α2β4 − 10240α2β3 + 14848α2β2 + 2048α2β

− 10240α2 − 12αβ11 + 104αβ10 + 464αβ9 − 416αβ8 + 1152αβ7 − 7936αβ6 + 8704αβ5 + 15360αβ4 − 15360αβ3 + 2048αβ2 + 4096αβ

− 8192α+ β12 + 24β11 − 104β10 + 352β9 + 2032β8 − 1280β7 − 3840β6 − 5120β5 + 7936β4 + 14336β3 − 10240β2 − 8192β + 4096)).
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Cf. Example 2.7, n= n0 = 7 and s = s0 = 2

a∗0,7(2) = Root[− 1484280356032053583936860770516272885904527151240542918083981072863

+ 2942430910419341594590489563882834989240741139691643801796128582400z

+ 990702952999654482961856713547320436591436783963493681796252001536z2

+ 111156640145202985093920555109221314608071021564066788184951296640z3

+ 5029934767716946074972760335931555719981297539950855134542833280z4

+ 76676842477502699186749970119505894790110584131172458925822976z5

+ 380168432196348318989427980556432282104428523774730521028352z6

+ 3023645209840317332650316144014958977547678106005324177408z7

+ 86422599316830298042747986095564865000641559962328735744z8

+ 64690128173272265780796604050769444381665344000000000z9

− 7369864047740819304421640851367574369000000000000000z10

− 20699104770153631836342539503425000000000000000000z11

+ 214723793803735920112910156250000000000000000z12 , 4],

a∗1,7(2) = Root[22810679487187328966585804251376533512291+ 120119127469976475065324606507180488643328z

− 8738808881071380874974187481822371065216z2 + 111780778822587207540255654349526782368z3

+ 3420844544096061629663144080146768640z4 − 49721232314192671401318715474803200z5

− 484981323444127877641786510503680z6 − 151853013085226028361694818304z7

+ 19470582126262293894633644032z8 + 129175376354192978007040000z9

+ 369554511385036800000000z10 + 507037536000000000000z11 + 270000000000000000z12 , 4],

a∗2,7(2) = Root[89094118010250569175485559904244080625130342266203

+ 32550922732001563643513794380880046769674850307092z

− 4034041478184383342951763234302956769368970423844z2

+ 145247495082282903686507084690867494900998210672z3

− 2867439970259572842278770672695413757386355408z4

+ 36731046013067960413189377739010358753869120z5

− 329748813518410821751377540750846966360048z6 + 2128385464589646184398020848444854113408z7

− 9667658483643080962712414494809380288z8 + 28894389565926224459145561500000000z9

− 49886051534788080656250000000000z10 + 36360852910839843750000000000z11

+ 1501693725585937500000000z12 , 2],

a∗3,7(2) = Root[− 13551111365952692501857237668605796891807+ 9756945736662425735755686477601833950016z

+ 1366397401707440099034290610919580953440z2 + 26276706798092864773391352918893982624z3

+ 80209590112387254303276057280098432z4 − 855547113007416953291132499158016z5

+ 461891579059016183740491969280z6 + 12191109389858819507612366848z7

− 254502375997283101147869184z8 + 187021383292109460480000z9 + 3803648636838400000000z10

− 12219168000000000000z11 + 10000000000000000z12 , 4],

a∗4,7(2) = Root[29735191037722607216799896605065469083+ 1121222282638149892012162522069028628z

− 26067643684587580913490910031668026z2 − 2476775522979664216410167133954832z3

− 69188213867718108279513169218635z4 − 1074980170552174625660885781832z5

− 10514733506034275574861770672z6 − 66987675604282657464459408z7

− 274045904308245457854823z8 − 666995041801777461500z9 − 740115106646343750z10

+ 217674843750000z11 + 961083984375z12 , 5],

a∗5,7(2) = Root[38318777589714630392958077259+ 14331665480146967400892063200z − 2155949123251738666384843128z2

+ 122446707330048177939186744z3 − 3632836782987165835961712z4 + 54804480026424548730464z5

− 92132037486244489776z6 − 13147546858271652736z7 + 281658291489807232z8 − 3058367690761600z9

+ 19490724288000z10 − 69552000000z11 + 108000000z12 , 2],
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and trivially a∗6,7(2) = −14 and a∗7,7(2) = 1;

|Z7,2(1)|= Ln0 (α0 ,β0) = Ln0 (s0) = L7(2) =

Root[3951919268642568309188041256134063799828844917342960890869140625

− 6123646852563392965523704891667533846955967058441754352075000000z

− 7813567592033954637230270912348467344651161880439862595104880000z2

+ 2903891779040594499179875304492805699796474258762485069343626816z3

− 395572005910664856447268384076331480672057131307279465780652800z4

+ 27146667962377118496169101943571705107006209948732178351966208z5

− 1016984057755353965725828202591102754573176379922277790573824z6

+ 21372785692334014485998367250779672516503206425726130130944z7

− 268815215804722423588895027290556268991114261813632864256z8

+ 2170046417801724173868455615179337122099546144000000000z9

− 8846959497941514222157434050567489094000000000000000z10

+ 15415242393298089515021127918450000000000000000000z11

+ 214723793803735920112910156250000000000000000z12 , 3].

Cf. Remark 4 (Constant Terms B0,4(α,β), A0,4(α,β), C0,4(α,β) of, respectively, P4,α,β , R4,α,β , S4,α,β)

Coefficient B0,4(α,β) =

(

α16 + (16β − 32)α15 +
�

−200β2 + 160β − 160
�

α14 +
�

816β3 + 352β2 − 1216β − 768
�

α13 +
�

−1380β4 − 5088β3 − 736β2 − 768β + 6592
�

α12

+
�

−496β5 + 19040β4 + 8320β3 − 24064β2 − 2816β + 512
�

α11 +
�

7304β6 − 38368β5 + 11360β4 + 123392β3 − 34944β2 − 45568β − 15872
�

α10

+
�

−16720β7 + 44000β6 − 38720β5 − 175360β4 + 33024β3 + 173568β2 − 60416β + 57344
�

α9

+
�

21318β8 − 20064β7 − 10464β6 + 54016β5 − 50624β4 − 202240β3 − 42496β2 + 221184β + 50688
�

α8

+
�

−16720β9 − 20064β8 + 63232β7 + 23552β6 + 297472β5 + 13312β4 − 364544β3 + 131072β2 + 143360β − 253952
�

α7

+
�

7304β10 + 44000β9 − 10464β8 + 23552β7 − 497408β6 + 60416β5 + 1106944β4 − 196608β3 − 333824β2 − 106496β − 90112
�

α6

+
�

−496β11 − 38368β10 − 38720β9 + 54016β8 + 297472β7 + 60416β6 − 1247232β5 − 212992β4 + 1331200β3 − 253952β2 − 278528β + 327680
�

α5

+
�

−1380β12 + 19040β11 + 11360β10 − 175360β9 − 50624β8 + 13312β7 + 1106944β6 − 212992β5 − 2382848β4 + 614400β3

+1138688β2 − 196608β + 114688
�

α4 +
�

816β13 − 5088β12 + 8320β11 + 123392β10 + 33024β9 − 202240β8 − 364544β7 − 196608β6

+1331200β5 + 614400β4 − 1540096β3 − 131072β2 + 458752β − 131072
�

α3

+
�

−200β14 + 352β13 − 736β12 − 24064β11 − 34944β10 + 173568β9 − 42496β8 + 131072β7 − 333824β6 − 253952β5 + 1138688β4

− 131072β3 − 622592β2 + 131072β − 131072)α2 +
�

16β15 + 160β14 − 1216β13 − 768β12 − 2816β11 − 45568β10 − 60416β9 + 221184β8

+ 143360β7 − 106496β6 − 278528β5 − 196608β4 + 458752β3 + 131072β2 − 262144β)α

+ β16 − 32β15 − 160β14 − 768β13 + 6592β12 + 512β11 − 15872β10 + 57344β9 + 50688β8 − 253952β7 − 90112β6 + 327680β5

+ 114688β4 − 131072β3 − 131072β2 + 65536

)/

(128(

α12 +α11(24− 12β) +α10 �66β2 + 104β − 104
�

+α9 �−220β3 − 376β2 + 464β + 352
�

+α8 �495β4 − 520β3 − 1096β2 − 416β + 2032
�

+α7 �−792β5 + 2416β4 + 2496β3 − 3200β2 + 1152β − 1280
�

+α6 �924β6 − 1648β5 − 4944β4 + 8576β3 + 9792β2 − 7936β − 3840
�

+α5 �−792β7 − 1648β6 + 6368β5 − 5312β4 − 16512β3 + 15104β2 + 8704β − 5120
�

+α4 �495β8 + 2416β7 − 4944β6 − 5312β5 + 7072β4 − 5888β3 − 16640β2 + 15360β + 7936
�

+α3 �−220β9 − 520β8 + 2496β7 + 8576β6 − 16512β5 − 5888β4 + 23552β3 − 10240β2 − 15360β + 14336
�

+α2 �66β10 − 376β9 − 1096β8 − 3200β7 + 9792β6 + 15104β5 − 16640β4 − 10240β3 + 14848β2 + 2048β − 10240
�

+α
�

−12β11 + 104β10 + 464β9 − 416β8 + 1152β7 − 7936β6 + 8704β5 + 15360β4 − 15360β3 + 2048β2 + 4096β − 8192
�

+ β12 + 24β11 − 104β10 + 352β9 + 2032β8 − 1280β7 − 3840β6 − 5120β5 + 7936β4 + 14336β3 − 10240β2 − 8192β + 4096

);

Coefficient A0,4(α,β) = −8s2 + 1
4 (α− β)

2 + s(α+ β);

Coefficient C0,4(α,β) =
1

8(4+α2 + 2αβ − 3β2)2

(α7(β + 1) +α6β(7− 3β) +α5
�

β3 + 13β2 − 8β − 8
�

+α4β
�

5β3 − 13β2 + 8β − 8
�

+

α3
�

−5β5 + 3β4 + 16β3 − 48β2 + 16β + 16
�

−α2β
�

β5 + 59β4 + 16β3 − 144β2 − 16β + 80
�

+

αβ2
�

3β5 + 47β4 − 8β3 − 72β2 − 16β + 48
�

− (β − 1)β3
�

β2 − 4
�2
).

Cf. Proposition 2.4 (Visualization of Formula (31))
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s5(α,β) =
16+ 9α4 − 8α3β − 8β2 + 5β4 − 6α2(4+ β2)

20(α3 −α2β + β(−4+ β2)−α(4+ β2))
; s0 =

41

25
p

145
;

H5
m(5)(α,β) = H5

6(α,β) = 64− 80α2 + 44α4 +α6 + 96αβ − 16α3β + 6α5β − 16β2 + 104α2β2 − 29α4β2 − 80αβ3

+ 36α3β3 − 52β4 − 9α2β4 − 10αβ5 + 5β6.

Result of Formula (31) is (α0,β0) =
�

67

5
p

145
,

77

5
p

145

�

≈ (1.1128094300, 1.2789003897).

0 1 2 3 4 5

0

1

2

3

4

5

Figure 6: (α0,β0) as an intersection point of two algebraic curves

8.2 Appendix 2: Verification of Identity (50) for n= n0 = 3

One readily deduces the following two equations:

det M3×3
1 = det M3×3

1 (α,β) =
(1/1024)(α6+α5(12−6β)+α4(15β2+28β−28)+α3(−20β3−40β2+48β+32)+α2(15β4−40β3−40β2−32β+112)+

α(−6β5+28β4+48β3−32β2+32β−64)+β6+12β5−28β4+32β3+112β2−64β−64)

(78)

and
L3(α,β) = −P3,α,β (1) = −det M3+1×3+1

0 (α,β , 1)/det M3×3
1 =

(α9+α8(9β−36)+α7(−60β2+96β−96)+α6(116β3+144β2−864β+768)+α5(−66β4−864β3+96β2+2304β−864)+
α4(−66β5+1320β4+864β3−3840β2+288β+1920)+α3(116β6−864β5+864β4+1536β3+576β2−4608β+2048)+

α2(−60β7+144β6+96β5−3840β4+576β3+5376β2+3072β−6144)+α(9β8+96β7−864β6+2304β5+288β4−4608β3+3072β2−768)+
β9−36β8−96β7+768β6−864β5+1920β4+2048β3−6144β2−768β+3072)/

(32(α6+α5(12−6β)+α4(15β2+28β−28)+α3(−20β3−40β2+48β+32)+α2(15β4−40β3−40β2−32β+112)+
α(−6β5+28β4+48β3−32β2+32β−64)+β6+12β5−28β4+32β3+112β2−64β−64)).

(79)

Setting
x = x(α,β) = −(α+ β)/2, and y = y(α,β) = αβ + 1 (80)

one gets

λ1(x , y) =∆3−1(x , y) =∆2(x(α,β), y(α,β)) = −
1

16
(−2+α− β)(2+α− β)(α+ β) (81)

and
∆2(x(α,β), y(α,β)) · L3(α,β)/det M3×3

1 (α,β) =
−2(α−β−2)(α−β+2)(α+β)(α9+9α8β−36α8−60α7β2+96α7β−96α7+116α6β3+144α6β2−864α6β+768α6−66α5β4−864α5β3+96α5β2+

2304α5β−864α5−66α4β5+1320α4β4+864α4β3−3840α4β2+288α4β+1920α4+116α3β6−864α3β5+864α3β4+1536α3β3+

576α3β2−4608α3β+2048α3−60α2β7+144α2β6+96α2β5−3840α2β4+576α2β3+5376α2β2+3072α2β−6144α2+9αβ8+96αβ7−

864αβ6+2304αβ5+288αβ4−4608αβ3+3072αβ2−768α+β9−36β8−96β7+768β6−864β5+1920β4+2048β3−6144β2−768β+3072)/

(α6−6α5β+12α5+15α4β2+28α4β−28α4−20α3β3−40α3β2+48α3β+32α3+15α2β4−

40α2β3−40α2β2−32α2β+112α2−6αβ5+28αβ4+48αβ3−32αβ2+32αβ−64α+β6+12β5−28β4+32β3+112β2−64β−64)2 .

(82)

The goal is to show that (82) is identically 1 when inserting any pair (α,β) which constitutes a solution of (34) for n= n0 = 3,

i.e., when inserting α = α0 = 3s and β = β0 =
α+2
p

3+α2

3 = s+2
q

1
3 + s2, where s > 1

3 is arbitrary, see (13). Applying FullSimplify
to the so modified right-hand side in (82) indeed verifies the claim (50).
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8.3 Appendix 3: Algebraic Solutions of ZFP if 8≤ n≤ 13, by Example

For illustration and for testing purposes we provide here certain proper Zolotarev polynomials Zn,s of degree 8 ≤ n ≤ 13
(not exemplified above), and their graphs on I . The corresponding second leading coefficients are chosen to be −ns with
s ∈ {3,4,5,6,7,8} in ascending order. Use was made of the tentative form Rn,α,β (emerging from the 1st algorithm). The
corresponding compatible values α= α0 and β = β0 as well as the explicit coefficients of Zn0 ,s0

= Rn0 ,α0 ,β0
are given in [55]. Due

to their bulkiness, these coefficients are given here in a (numerical) chopped form. For the setting n0 = 8 and s0 = 3 additionally
one exact coefficient, a∗1,8(3), is given here exemplarily in the explicit form as a root object, the remaining coefficients a∗k,8(3) are
given in that form in [55]. To the best of our knowledge, Examples of explicit algebraic solutions of ZFP in the algebraic power
form, for n> 7, are not provided elsewhere in literature.

Chopped Coefficients and Graphs of Zn,s for n= n0 = 8,9 and s = s0 = 3,4:

Z8,3(x)≈ 0.0156182271+ 2.6241871151x + (−0.3905369292)x2 + (−20.9967478963)x3 + 1.6248102892x4 + 41.9973980914x5+

(−2.2498915871)x6 + (−24)x7 + x8 .

Z9,4(x)≈ −0.2811957779+ 0.0624909624x + 8.9990238977x2 + (−0.6874427580)x3 + (−44.9973969212)x4 + 2.1249035888x5+

71.9982645583x6 + (−2.4999517932)x7 + (−36)x8 + x9 .
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(a) Graph of Z8,3
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0.3

(b) Graph of Z9,4

Figure 7

Exact Coefficient a∗1,8(3) of Z8,3:

Root[1507111423119009106581848772229143898032066399157047271728515625z16

− 341015979433344802836858928313952986073790015206772521972656250000000z15

+ 56503151047559994593863092572001964445963038479399682298562421875000000000z14

− 829848593363851861945348171240346513079450005104063974516492084730800000000000z13

+ 16295080792003742601649931730918111870066832386421979869051597963195486197504000000z12

− 129917743579357654555230709195684357122352487273592430862644624386155877163834771243008z11

+ 475992365754856221454556657845122897744250349270303093741505790581740346745413961544368128z10

− 1009434761288291771718279877893745440282951697967757933216539152418884289756664808494059225088z9

+ 1399393881028416964053764557764283917811459403797659636443768324675283030752664559727090469961728z8

− 1287491665277637881998979518441187071992988125284965216883437142082449349151322949619056783931736064z7

+ 681105565114285716170073524070928455107237441952361038672115008543747720380951441025770820248853807104z6

− 94541922812533316404835721367381311469165117150068438757911453259953046214417914999801643017546638557184z5

− 76925917920072700697651243364005125291687413481803016986883599426468918748372938824997328780186445301153792z4

+ 14284047094867553042838147677353957251661690631089037980772937611285352616584492008279386994601782168631902208z3

+ 5718937274049485312218094605212933664422939605329694694299596379235615756788926357204426090208829895337903652864z2

+ 386713094769191221923306771374385836725916551400307184118146609123976241699274592251259557840809327905079690264576z

− 1054444638880787925082962676630252047817442079246121222335438048024947700879545857135443781676364644316162054684672, 2]

≈ 2.6241871151.

Chopped Coefficients and Graphs of Zn,s for n= n0 = 10, . . . , 13 and s = s0 = 5, . . . , 8:

Z10,5(x)≈ −0.0039058594+ (−1.7576758183)x + 0.1601464868x2 + 23.4364065077x3 + (−1.0937093842)x4+

(−84.3728129686)x5 + 2.6874437618x6 + 112.4987502499x7 + (−2.7499750049)x8 + (−50)x9 + x10 .

Z11,6(x)≈ 0.1288988530+ (−0.0195303533)x + (−6.4450757923)x2 + 0.3320213871x3 + 51.5613164441x4 + (−1.6249695143)x5

+ (−144.3731062915)x6 + 3.3124641342x7 + 164.9990531389x8 + (−2.9999856536)x9 + (−66)x10 + x11 .

Z12,7(x)≈ 0.0009765279+ 0.9023175946x + (−0.0595688940)x2 + (−18.0465262581)x3 + 0.6054590626x4 + 101.0612445201x5

+ (−2.2968511967)x6 + (−230.9983260180)x7 + 3.9999756431x8 + 230.9992560051x9 + (−3.2499911429)x10

+ (−84)x11 + x12 .

Z13,8(x)≈ 0.0507800763+ 0.0058592621x + 3.6561913159x2 + (−0.1425762064)x3 + (−42.6557805248)x4 + 1.0117093604x5

+ 181.9986854643x6 + (−3.1249808597)x7 + (−350.9984976690)x8 + 4.7499826654x9 + 311.9993990662x10

+ (−3.4999942217)x11 + (−104)x12 + x13 .
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