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GBFPUM - A MATLAB Package for Partition of Unity Based Signal
Interpolation and Approximation on Graphs*

Roberto Cavoretto a,c · Alessandra De Rossi a,c · Wolfgang Erb b,c

Abstract

This is a manual for the software package GBFPUM, a MATLAB toolbox for the generation of a partition
of unity on graphs and their application as an interpolation and approximation tool for graph signals.
GBFPUM combines local kernel approximation based on graph basis functions (GBFs) with a partition of
unity method (PUM) in order to obtain a low-cost global interpolation or classification scheme for large
graphs. We give a detailed description of all the routines implemented in the MATLAB package and show
how the code can be used to interpolate graph signals in concrete examples.

1 Introduction
Partition of unity methods (PUMs) on graphs are simple and highly adaptive auxiliary tools to decompose signals on large graphs
into smaller pieces on overlapping subdomains. In this way, PUMs allow to perform signal processing tasks as interpolation,
approximation or spectral filtering locally on smaller subdomains and then to merge the single pieces to a global result (see
Figure 1 for a simple illustration of this procedure). This split and merge procedure leads generally to a considerably lower
computational cost than applying a signal processing scheme on a global scale.
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Figure 1: Schematic illustration of a partition of unity on a graph.

In a previous paper [4], we investigated how a partition of unity can be generated efficiently on graphs and how a PUM
can be combined with a local graph basis function (GBF) approximation in order to obtain a low-cost global interpolation or
approximation scheme. In this manual, we present the MATLAB package GBFPUM that was developed and implemented to test
this new scheme. We give a detailed description of this software package and show how the single routines can be called inside
MATLAB to perform signal processing steps on graphs. In particular, we will describe how the functions of the package can be
used to generate a partition of unity on a graph and how signal approximation and interpolation with GBFs are implemented and
combined with PUMs. This software is free and can be downloaded from the GitHub repository

https://github.com/WolfgangErb/GBFPUM.

The outline of this manual is as follows. In Section 2, we first show how the package is working based on a simple hands-on
interpolation example on the Minnesota graph. We then give a brief overview on the theoretic background of the package, i.e.,
we recapitulate the basic notations (Section 3.1), we give an introduction to kernel-based interpolation (Section 3.2), and we
show how PUMs can be generated on graphs (Section 3.3). The principal algorithm of the combined GBFPUM interpolation
scheme is then summarized in Section 4. Finally, in Section 5, all the routines of the software are presented and explained.

2 How to use the toolbox: a simple example on the Minnesota graph
To see how this MATLAB package works, we apply the toolbox to a simple interpolation problem on the Minnesota graph. In this
example, a graph signal f is interpolated based on a few samples of f on the graph.

*The preface of this special issue to which the article belongs is given in [3].
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cMember of the INdAM Research group GNCS

https://github.com/WolfgangErb/GBFPUM


Cavoretto · De Rossi · Erb 26

2.1 Loading the graph

The Minnesota graph [20] is a road network of the state of Minnesota consisting of n= 2642 vertices and 3304 edges. In the
toolbox, this graph G is stored in the file data_graphminnesota.m. The graph signal f as well as a sequence of sampling
nodes is stored in data_f.m. To load the data we can simply digit the following commands in MATLAB:

1 % Load Minnesota graph, test function and sampling data
2 load data_graphminnesota.mat
3 load data_f.mat

The loaded variable G contains all relevant information of the Minnesota graph and is a structure array with the following fields:

>> G =
struct with fields:

type: ’minnesota’
nodes: [2642x2 double]
edges: [3304x2 double]

A: [2642x2642 double]
N: 2642

deg: [1x2642 double]
L: [2642x2642 double]

Herein, G.nodes contains the real-world coordinates of the graph vertices, G.edges is a list of all the edges of G (stored as an
ordered list of node indices) and G.A is the unweighted adjacency matrix of G. Further G.deg contains the degree of the single
vertices of G and G.L the normalized graph Laplacian of the Minnesota graph.

The test signal f is stored in the variable f. It consists of the sum of the first 10 eigenvectors of the normalized graph
Laplacian of G. The variable idxW in the file data_f.mat contains a preselected list of sampling nodes. We choose the first
N = 200 nodes on this list as sampling nodes and extract the respective interpolation values from the graph signal f.

1 % Choose number of interpolation nodes and sampling data
2 N = 200;
3 idxW = idxW(1:N); y = f(idxW);

2.2 Generating the partition of unity

We next generate a partition of unity (PU) of the Minnesota graph. In our example we split the vertex set of G in J = 6 (JJ=6 in
the script) overlapping subdomains. The size of the overlapping is characterized by an augmentation parameter r = 8 (RR=8 in
the code).

1 % PU parameter selection
2 JJ = 6; % Number of subdomains
3 RR = 8; % Augmentation parameter for subdomains

The generation of the partition of unity itself is done in three steps. In the first step, the vertices of G are split in J parts by a
J -center clustering procedure:

1 % 1a) Calculate J−center clustering of graph in JJ components
2 [idxcluster,idxQ] = GBF_Jcenters_greedy(G.A,JJ,idxW,idxW(1));

As an output we get the center nodes idxQ of the J = 6 clusters as well as the respective clustering idxcluster of the nodes.
We then perform an augmentation procedure

1 % 1b) Augment the clusters to subdomains for PU
2 [idxdomain] = GBF_domainaugment(G.edges,idxcluster,RR);

by augmenting the single clusters with an augmentation radius r = 8. Finally, we get the partition of unity by the command

1 % 1c) Generate PU out of the single domains
2 [phi,idxWdomain,ydomain] = GBF_genPUM(G.edges,idxcluster,idxdomain,idxW,y);

The variable phi contains the calculated PU, while idxWdomain and ydomain encode the interpolation data on the single
subdomains. All three routines GBF_Jcenters_greedy.m, GBF_domainaugment.m and GBF_genPUM.m for the generation
of the PU will be described in more detail in Section 5.

2.3 Calculating the GBFPUM interpolant

For the calculation of the GBFPUM interpolant based on the partition of unity method, we require local interpolants on the
J subdomains. The local interpolation is achieved via a kernel method based on so-called GBF kernels. As a GBF kernel on
the subgraphs, we use in this example a variational spline kernel with the parameters s = 2 and ε= 0.001 (for the details on
this kernel see Section 3.2 below). In our MATLAB example these values are collected in the vector alpha=[-2,0.001], with
a change of sign in the first component. Setting the regularization parameter to lambda=0 guarantees that we will obtain a
GBFPUM interpolant of the data.
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1 % Kernel parameters for local interpolation (variational splines)
2 kertype = ’varspline’;
3 alpha = [−2,0.001];
4 lambda = 0;

The final GBFPUM interpolant is then calculated with the command

1 % 2)3)4) Use PU to calculate global GBFPUM interpolant
2 s = GBF_RLSGBFPUM(G.L,idxdomain,phi,idxWdomain,ydomain,kertype,alpha,lambda);

2.4 Evaluation of the GBFPUM interpolation

Figure 2: PUM interpolation based on local interpolants with the variational spline kernel (ε= 0.001, s = 2) on J = 6 subdomains and N = 200
samples (black ringed nodes). The red ringed nodes denote the centers of the subdomains.

In Figure 2, the resulting PU on the Minnesota graph and the local kernel interpolants (the 6 images on the right), as well as
the global GBFPUM interpolant (the image on the left) are graphically illustrated. We additionally evaluate the accuracy of the
global GBFPUM scheme by computing the relative maximum absolute error (rmaerr) and the relative root mean square error
(rrmserr).

1 % Compute errors
2 rmaerr = norm(s(:)−f,inf)/norm(f,inf); % relative max absolute error
3 rrmserr = norm((s(:)−f))/max(f)/sqrt(length(f)); % relative rms error
4 % Print errors
5 fprintf(’no. points\t rmaerr \t rrmserr \n’)
6 fprintf(’\t%4d\t %.3e\t %.3e\n ’,N,rmaerr,rrmserr);

Using these commands, we get

no. points rmaerr rrmserr
200 3.704e-01 3.912e-02

as a final printed result on the accuracy of the GBFPUM interpolation. The entire example presented in this section is provided in
the MATLAB script example.m of the GBFPUM package.

3 Theoretic background of the package

3.1 Notation

In the next sections, we will recapitulate the theoretical background required to understand the GBFPUM package in a very
schematic form. A complete introduction to graph signal interpolation with GBF kernels is given in [8, 9], while the entire
description for the generation of a partition of unity on graphs is provided in [4]. A general overview on current aspects of the
research field related to graph signal processing can be found in [17, 18, 21, 22]
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In this work, we will consider simple and undirected graphs G as underlying domains, formally given as

G = (V, E,A, d),

where V = {v1, . . . , vn} denotes the n vertices of the graph, E ⊂ V × V the set of undirected edges, and A the symmetric adjacency
matrix A ∈ Rn×n with non-negative entries

�

Ai, j > 0 if (vi , v j) ∈ E,
Ai, j = 0 otherwise.

Further, we need a metric distance d between the graph nodes. A standard choice for the distance d is the length of the shortest
path connecting two nodes. As further auxiliary matrices, we use the diagonal degree matrix D ∈ Rn×n given by

Di, j =

�∑n
j=1 Ai, j if i = j,

0 if i ̸= j,

and the normalized graph Laplacian L ∈ Rn×n defined as

L= In −D−1/2AD−1/2, Li, j :=

�

1 if i = j,
−(D−1/2AD−1/2)i, j if i ̸= j.

The matrix L is symmetric and positive semi-definite and encodes the principal topological information of the graph. The graph
Laplacian L allows to define a Fourier transform on G in terms of its orthonormal eigenvectors {u1, . . . , un}.

In graph signal processing, the main research objects are graph signals. Graph signals are mappings x : V → R (or x : V → C)
on the vertex set V of the graph. As the vertices in V are ordered, we can represent every x as a vector

x = (x(v1), . . . , x(vn))
⊺ ∈ Rn (∈ Cn).

The linear n-dimensional space of all graph signals is denoted by L(G). An example of a graph signal is plotted on the left hand
side of Figure 3.

3.2 Interpolation on graphs

A general interpolation problem on a graph G can be formulated as follows: from the knowledge of the signal x on a subset

W = {w1, . . . ,wN} ⊂ V,

the goal is to reconstruct the signal x on the entire vertex set V based on particular assumptions on the underlying interpolation
space. An example of such a problem is illustrated in Figure 3.
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Figure 3: Interpolation and sampling of a graph signal on a graph with 8 vertices.

Particularly simple interpolation spaces can be generated by kernel functions K : V × V → R on the graph G. The kernel K
allows to introduce a linear operator K : L(G)→ L(G) as

Kx(vi) =
n
∑

j=1

K(vi , v j)x(v j).

This operator can also be expressed as a matrix K ∈ Rn×n given by

K=









K(v1, v1) K(v1, v2) . . . K(v1, vn)
K(v2, v1) K(v2, v2) . . . K(v2, vn)

...
...

. . .
...

K(vn, v1) K(vn, v2) . . . K(vn, vn)









.
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The kernel K is called positive definite, if the respective matrix K is symmetric and positive definite. The positive definiteness of
the kernel K guarantees that the interpolation space

NK ,W =

¨

x ∈ L(G) | x(v) =
N
∑

k=1

ckK(v, wk)

«

contains a unique interpolant IW x such that

IW x(w) = x(w), for all w ∈W.

Further, the coefficients c = (c1, . . . , cN )⊺ of the interpolant can be calculated as








K(w1,w1) K(w1, w2) . . . K(w1, wN )
K(w2,w1) K(w2, w2) . . . K(w2, wN )

...
...

. . .
...

K(wN , w1) K(wN ,w2) . . . K(wN ,wN )









︸ ︷︷ ︸

KW









c1
c2
...

cN









︸ ︷︷ ︸

c

=









x(w1)
x(w2)

...
x(wN )









︸ ︷︷ ︸

x(W )

. (1)

Concrete examples of positive definite kernels can be obtained by calculating matrix functions of the graph Laplacian L as, for
instance, the matrix exponential of L. Such kernels can also be interpreted as generalized translates of a positive definite GBF.
GBFs and the respective kernels were thoroughly studied in [7, 8, 9]. Main examples of GBF kernels are:

• the diffusion kernel [14] based on the eigendecomposition L=
∑n

k=1 λkuku⊺k of the graph Laplacian and given as

K= e−tL =
n
∑

k=1

e−tλk uku⊺k, t ∈ R.

• the variational splines [19, 23] based on the decomposition

K= (εIn + L)−s =
n
∑

k=1

1
(ε+λk)s

uku⊺k, ε > 0, s > 0.

In Algorithm 1, we summarize the procedure to obtain a kernel-based interpolant on a graph. In our GBFPUM package,
the generation of the interpolation matrix and the resolution of the linear system are implemented through the routines
GBF_genGBF.m and GBF_RLSGBF.m.

Algorithm 1 Kernel-based interpolation on graphs

Input: Samples x(w1), . . . , x(wN ) of a graph signal s, and a positive definite kernel K .

Calculate the N kernel columns K(·,w1), . . . , K(·, wN ).

Solve the linear system of equations








K(w1,w1) K(w1, w2) . . . K(w1, wN )
K(w2,w1) K(w2, w2) . . . K(w2, wN )

...
...

. . .
...

K(wN , w1) K(wN ,w2) . . . K(wN ,wN )

















c1
c2
...

cN









=









x(w1)
x(w2)

...
x(wN )









.

Calculate and return the kernel interpolant

IW x(v) =
N
∑

k=1

ckK(v, wk).

We highlight that there are some time-critical parts in the calculation of the interpolant IW x:

1. For graphs (with an irregular structure) the N kernel columns K(·,wk), k ∈ {1, . . . , N}, have to be calculated in a preliminary
step. This might be cost-intensive for large graphs.

2. The resolution of the interpolation problem KW c = x(W ) in (1) might get computationally expensive if the number N of
samples is large.

Regarding item 1, we remark that in general iterative methods can reduce the computational cost for the calculation of the
vectors K(·,wk), in particular if the kernel is a matrix function of the graph Laplacian.
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3.3 Partition of unity on graphs

To reduce the computational complexity of signal interpolation when the sampling sets are large the GBFPUM package uses a
PUM to generate a global interpolant out of local ones. This idea is based on the following observations and experiences:

• On smaller parts of the graph, the computational cost to solve a local kernel-based interpolation problem is much smaller.

• For interpolation and approximation problems in the Euclidean space, the combination of radial basis function (RBF)
interpolation with PUMs yields significantly sparser interpolation matrices, and, therefore, a considerable speed-up of
calculations [5, 2, 1, 6], [10, Chapter 29], [15, 24], [25, Section 15.4]. Similar properties have been observed for meshfree
Galerkin solvers of differential equations [12, 16]. Similar effects can therefore be expected for GBF kernels on graphs.

For this reason, we investigated in the previous paper [4] the idea to calculate local GBF interpolants on small subgraphs of G
and to merge the local interpolants via a partition of unity. As a large number of segmentation algorithms is available on graphs,
one inherent advantage of graph domains is that a partition of unity can be generated in a relatively simple way.

Definition 3.1. Let {Vj}Jj=1 be a cover of the vertex set V . Then, a partition of unity {ϕ( j)}Jj=1 subordinate to this cover is a set of

functions ϕ( j) ∈ L(G), j ∈ {1, . . . , J}, such that

supp(ϕ( j)) ⊆ Vj , ϕ( j) ≥ 0, and
J
∑

j=1

ϕ( j)(v) = 1 for all v ∈ V .

A cover {Vj}Jj=1 of the node set V and a partition of unity {ϕ( j)}Jj=1 subordinate to {Vj}Jj=1 can be generated on a graph G by the
following three operations:

1a) We use a (modified) J -center clustering algorithm to decompose V into J disjoint clusters C j . For this, we use the graph
geodesic as a distance between two nodes.

1b) We augment the clusters C j with neighboring nodes and obtain a cover of overlapping subdomains Vj , j ∈ {1, . . . , J}.

1c) We use Shepard weight functions on the cover {Vj}Jj=1 to obtain a desired partition of unity {ϕ( j)}Jj=1.

The procedure to obtain item 1a) is summarized in Algorithm 2. It corresponds to a modified version of the Gonzalez algorithm
for J -center clustering [11, 13]. In the package GBFPUM it is implemented as MATLAB function GBF_Jcenters_greedy.m.
Regarding the operation in item 1b), i.e., the augmentation procedure, we enlarge the clusters C j to obtain overlapping subdomains
Vj of the node set V . The augmentation procedure consists in adding all vertices to C j that have a graph distance to C j less than
or equal to a distance r ≥ 0. The details of this procedure are described in Algorithm 3 and implemented in the MATLAB routine
GBF_domainaugment.m. We note that, although possible, it is not recommendable to use the disjoint clusters C j , j ∈ {1, . . . , J},
directly as subdomains for the PU, as the topological information of the graph G and therefore also possible smoothness properties
of signals get lost.

Algorithm 2 Greedy J -center clustering based on interpolation nodes

Input: The interpolation nodes W = {w1, . . . ,wN }, a starting center q1 ∈W and the number J of partitions.

For j = 2 to J select a center q j = argmax
w∈W

min
q∈{q1 ,...,q j−1}

d(q,w) farthest away from Q j−1 = {q1, . . . , q j−1}.

Calculate the J clusters

C j =

�

v ∈ V : d(q j , v) = min
q∈{q1 ,...,qJ }

d(q, v)

�

, j ∈ {1, . . . , J}.

Return centers QJ = {q1, . . . , qJ } and clusters {C1, . . . , CJ }.

Algorithm 3 Augmentation of clusters with neighbors of distance r

Input: A cluster C j and an enlargement distance r ≥ 0.

Add all nodes v ∈ V with a graph distance less than r to C j , i.e.,

Vj = C j ∪ {v ∈ V | d(v,w)≤ r, w ∈ C j}.

Return subdomain Vj .

Finally, in item 1c), the generation of the partition of unity with Shepard weights is performed. A simple construction principle
to generate a partition of unity {ϕ( j)}Jj=1 is based on Shepard weights. Ifψ( j), j ∈ {1, . . . , J}, denote nonnegative weight functions

on V with supp(ψ( j)) ⊆ Vj and
∑J

j=1ψ
( j) > 0, then the functions

ϕ( j)(v) =
ψ( j)(v)
∑J

j=1ψ
( j)(v)

, v ∈ V,
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form a partition of unity subordinate to {Vj}Jj=1. As an example, we consider the disjoint clusters C j as subsets of the augmented

domains Vj . Then, choosing ψ( j)(v) = 1C j
(v), the corresponding partition of unity is given as

ϕ( j)(v) =ψ( j)(v) = 1C j
(v).

In our MATLAB package GBFPUM the generation of the partition of unity is implemented in the routine GBF_genPUM.m.

4 GBFPUM interpolation on graphs
Combining GBF interpolation on the local subdomains Vj with a partition of unity on the graph, we obtain a global interpol-
ation method for given sampling information on G. This global GBFPUM interpolation scheme is sketched in Algorithm 4.
In our package, Algorithm 4 is implemented in terms of four routines. The MATLAB functions GBF_Jcenters_greedy.m,
GBF_domainaugment.m and GBF_genPUM.m resolve the parts 1a)b)c) of Algorithm 4, respectively. The fourth routine
GBF_RLSGBFPUM.m performs the final steps 2) 3) and 4) of the interpolation algorithm. Inside GBF_RLSGBFPUM.m, the
subroutines GBF_genGBF.m and GBF_RLSGBF.m are used to solve the local interpolation problems in step 3).

Algorithm 4 GBFPUM interpolation on graphs

Input: (i) Samples x(w1), . . . , x(wN ) ∈ R at the interpolation nodes
W = {w1, . . . ,wN },

(ii) Number J of subdomains.

1.a) Use J -center clustering to decompose V into J disjoint clusters C j .

1.b) Create J subdomains Vj by augmenting the clusters C j into J overlapping subdomains Vj = {v j1 , . . . , v jn j
} with n j elements.

1.c) Generate partition of unity {ϕ( j)}Jj=1 subordinate to the cover {Vj}Jj=1 such that

supp(ϕ( j)) ⊆ Vj , ϕ
( j) ≥ 0, and

J
∑

j=1

ϕ( j)(v) = 1 for all v ∈ V .

2. Extract local graphs and local Laplacians L( j) For all subdomains Vj , j ∈ {1, . . . , J}, generate the subgraphs G j = (Vj , E j), with the node sets
Vj , the edges E j = {(v,w) ∈ E | v,w ∈ Vj} and the local Laplacian

L( j) =







L j1, j1
· · · L j1, jn j

...
. . .

...
L jn j

, j1
· · · L jn j

, jn j






.

If required, calculate the spectral decomposition L( j) = U( j)Mλ( j)U
( j)⊺ to define a local graph Fourier transform on the subgraphs G j .

3.a) Construct a local GBF kernel K( j)(v, w) on the subgraph G j . One possibility is to use the variational spline kernel

K( j) = (εIn j
+ L( j))−s =

n j
∑

k=1

1

(ε+λ( j)k )
s
u( j)k u( j)⊺k , ε > −λ( j)1 , s > 0.

3.b) For the sampling sets Wj =W ∩ Vj with N j ≥ 1 elements solve

K( j)Wj
c( j) = x(Wj).

3.c) Calculate the local GBF interpolants IWj
x on G j :

IWj
x(v) =

N j
∑

i=1

c( j)i K( j)(v, w ji ).

4. Calculate and return the global kernel-PUM interpolant on G given as

IW x(v) =
J
∑

j=1

ϕ( j)(v)IWj
x(v).

5 The routines of the MATLAB package GBFPUM
In this final section, we present the single routines of the MATLAB package GBFPUM developed and implemented for partition of
unity based kernel interpolation. The principle task of these routines is to perform the GBFPUM interpolation method presented in
Algorithm 4. Overall, the package consists of six MATLAB functions, which can be downloaded freely from the GitHub repository

https://github.com/WolfgangErb/GBFPUM.

In this package, the three routines GBF_Jcenters_greedy.m, GBF_domainaugment.m and GBF_genPUM.m are used to
generate the partition of unity on the graph. The routines GBF_genGBF.m and GBF_RLSGBF.m contain the code for the solution
of the local interpolation problems. Finally, GBF_RLSGBFPUM.m calculates the global GBFPUM interpolant.
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For the sake of brevity, we report in the following only the introductory part of the MATLAB functions. These (commented)
explanatory lines contain information regarding the name of the file, the goal of the function, how it is used, and what the input
and the output are.

Listing 1 (GBF_Jcenters_greedy.m) performs a reduced J -center clustering based on a greedy search technique as
described in Algorithm 2. Determining the cluster centers and the cluster assignments is both carried out in an efficient way. This
code recalls internally the function distcenter.m that calculates the graph geodesic distance of the graph nodes to the centers.

1 % File: GBF_Jcenters_greedy.m
2 %
3 % Goal: Performs a reduced J−center clustering based on greedy search:
4 % Finds clusters based on a reduced greedy procedure
5 % on the subset W (given by idxW) of the nodes
6 %
7 % Use: [idxcluster,idxQ] = GBF_Jcenters_greedy(A,J,idxW,idxQin)
8 %
9 % Input:

10 % A = adjacency matrix
11 % J = number of clusters
12 % idxW = indices of subset on which the greedy search is performed
13 % idxQin = predefined input centers (optional)
14 %
15 % Output:
16 % idxcluster = Jx1 cell vector with cluster assignments
17 % idxQ = Jx1 vector of cluster center indices

Listing 1: Implementation of a J -center clustering procedure based on a greedy search.

Listing 2 (GBF_domainaugment.m) is a MATLAB function that allows us to enlarge the graph clusters to obtain overlapping
subdomains of the graph. It is an implementation of Algorithm 3.

1 % File: GBF_domainaugment.m
2 %
3 % Goal: Augments the graph cluster domains
4 %
5 % Use: [idxsub] = GBF_domainaugment(edges,idxsub,RR)
6 %
7 % Input:
8 % edges = edges of the graph
9 % idxsub = JJ subdomains of the graph

10 % RR = extension radius for augmentation
11 %
12 % Output:
13 % idxsub = augmentend subdomains of the graph

Listing 2: Routine that augments the graph clusters to get overlapping subdomains.

Listing 3 (GBF_genPUM.m) generates a partition of unity subordinate to the cover of the graph provided by the previous
routine GBF_domainaugment.m.

1 % File: GBF_genPUM.m
2 %
3 % Goal: Computes PU based on given graph clusters and domains
4 %
5 % Use: [phi,idxWsub,ysub] = GBF_genPUM(edges,cluster,domain,idxW,y)
6 %
7 % Input:
8 % edges = edges of the graph
9 % cluster = JJ clusters of the graph

10 % domain = JJ augmented domains of the graph
11 % idxW = indices of the interpolation nodes
12 % y = interpolation values
13 %
14 % Output:
15 % phi = PU for subdomains
16 % idxWsub = indices of interpolation nodes in subdomains
17 % ysub = interpolation values in the subdomains

Listing 3: Creation of partition of unity for kernel-based interpolation on graphs.
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Listing 4 (GBF_genGBF.m) generates the columns of a GBF kernel required for the GBF interpolation on the subgraphs. The
GBF kernel implemented in this code for interpolation is the variational spline kernel.

1 % File: GBF_genGBF.m
2 %
3 % Goal: Computes K generalized translates of the GBF for the nodes in idxW
4 %
5 % Use: bf = GBF_genGBF(L,idxW,type,alpha)
6 % (reduced implementation: contains only variational splines)
7 %
8 % Input:
9 % L = NxN matrix − the sparse graph Laplacian

10 % idxW = K vector − the indices of the K interpolation nodes
11 % type = type of graph basis function
12 % alpha = additional shape parameter
13 % Output:
14 % bf = NxK matrix with the K basis function vectors

Listing 4: Construction of a local GBF kernel on the subgraph of the partition of unity.

Listing 5 (GBF_RLSGBF.m) calculates a GBF regularized least squares solution for each subdomain of the partition of unity.
By setting the parameter lambda=0, it computes local GBF interpolants on the subdomains.

1 % File: GBF_RLSGBF.m
2 %
3 % Goal: Computes the GBF regularized least squares solution s,
4 % minimizing the functional
5 % 1/K * sum_i (s(i) − y(i)) + lambda * |s|_K,
6 % based on K sampling nodes in idxW.
7 %
8 % Use: [s,c,Kf] = GBF_RLSGBF(bf,idxW,y,lambda)
9 %

10 % Input:
11 % bf = NxK matrix − the K graph basis vectors
12 % idxW = K vector − the indices of the K sampling nodes
13 % y = K vector − the sampling values at the K nodes
14 % lambda = regularization parameter for RLS
15 % Output:
16 % s = N−vector − the RLS−GBF solution
17 % c = K−vector − the coefficients in the basis expansion
18 % Kf = interpolation matrix of the kernel

Listing 5: Solution of the local system and computation of the related GBF approximant on the subgraph.

Listing 6 (GBF_RLSGBFPUM.m) calculates a global GBFPUM approximation of a graph signal using local GBF least squares
approximations and a partition of unity to merge the local approximants. By setting lambda=0, it computes a global GBFPUM
interpolation of a graph signal.

1 % File: GBF_RLSGBFPUM.m
2 %
3 % Goal: Computes a global approximant of the graph signal based on local regularized least squares
4 % GBF approximants and a partition of unity on the graph domain
5 %
6 % Use: s = GBF_RLSGBFPUM(LL,idxdomain,phi,idxWdomain,ydomain,type,alpha,lambda)
7 %
8 % Input:
9 % LL = NxN matrix − graph Laplacian

10 % idxdomain = JJ subdomains of the PU
11 % phi = Partition of Unity
12 % idxWdomain = indices of sampling nodes on subdomains
13 % ydomain = sampling values on subdomains
14 % type = type of kernel for local RLS
15 % alpha = kernel parameters
16 % lambda = regularization parameter for local RLS
17 % Output:
18 % s = N−vector − The RLS−GBFPUM solution

Listing 6: Calculation of the global GBFPUM interpolant based on a local GBF kernel and a partition of unity on the graph.
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