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Computation of the regularized incomplete Beta function

Vera Egorova a · Amparo Gil a · Javier Segura b · Nico M. Temme c

Abstract

An algorithm for the computation of the regularized incomplete Beta function is described. This function
has important applications in areas such as Statistics, Physics and Information Theory. The computation
of the function can be carried out through a continued function evaluation supplemented with series and
asymptotic expansions when both parameters are large. Numerical tests demonstrate the accuracy of the
algorithm and show that our algorithm is more accurate than Matlab’s built-in function betainc for a
wide range of parameters.
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1 Introduction

The regularized incomplete Beta function and its complementary function are defined by

Ix (p, q) = 1
B(p, q)

∫ x

0

t p−1(1− t)q−1 d t,

Jx (p, q) = 1
B(p, q)

∫ 1

x

t p−1(1− t)q−1 d t.
(1)

We assume that p and q are positive and 0≤ x ≤ 1. B(p, q) is the Beta function

B(p, q) =
Γ (p)Γ (q)
Γ (p+ q)

. (2)

We notice that from (1) it is easy to check that Jx (p, q) = I1−x (q, p). Also, Ix (p, q) and Jx (p, q) satisfy the relation

Ix (p, q) + Jx (p, q) = 1. (3)

In the algorithm, it is convenient to compute the smallest of the two. The transition point (indicating when to compute
Ix (p, q) or Jx (p, q)) is given by

x t =
p

p+ q
. (4)

When x < x t (x > x t), we have (roughly) Ix (p, q)< Jx (p, q) (Jx (p, q)> Ix (p, q)).
The inversion problem of the regularized incomplete Beta function was treated in [2]. In this paper, we combine different

methods to build an algorithm to compute the regularized incomplete Beta function. A MatLab implementation of the resulting
algorithm is provided. Numerical tests demonstrate the accuracy of the algorithm and show that our algorithm is more accurate
than MatLab’s built-in function betainc for a wide range of parameters.

Earlier information on the methods can be found in [7] and [1, §10.5.2]. Related methods are also used in our paper [4]
for the incomplete gamma function ratios. For other algorithms applied to the computation of the regularized incomplete Beta
function and the incomplete gamma function ratios, see the references given in [6, §8.28].
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2 Methods of computation

2.1 Continued fraction

A continued fraction representation which is useful for computation is given by

Ix (p, q) =
x p(1− x)q

pB(p, q)

�

1
1+

d1

1+
d2

1+
d3

1+
. . .
�

, (5)

where

d2m = m(q−m)x
(p+ 2m− 1)(p+ 2m) ,

d2m+1 = − (p+m)(p+ q+m)x
(p+ 2m)(p+ 2m+ 1) .

(6)

The continued fraction converges rapidly for x < x t , where x t is the transition point given in (4). When 0≤ x ≤ x t we have
Ix (p, q)® Jx (p, q) we will use the continued fraction. However, for large p and q the computation slows down when x is close to
x t , and we need asymptotic methods. For x t ≤ x ≤ 1 (when 1− x ≤ q/(p+q)) more rapid convergence is obtained by computing
the complementary function Jx (p, q) instead, which is smaller than Ix (p, q).

The computation of the front factor in (5) becomes problematic when p and q are large. Therefore we use the expression

given in [8, §11.3.4] to compute x p(1− x)q
B(p, q)

x p(1− x)q

B(p, q)
=
√

√ pq
2π(p+ q)

Γ ∗(p+ q)
Γ ∗(p)Γ ∗(q)

ep(log(1+σ)−σ) + q(log(1+τ)−τ), (7)

where σ = x − x t
x t

, τ= x t − x
1− x t

and Γ ∗(x) is the scaled gamma function which is defined as

Γ ∗(x) =
Γ (x)

p

2π/x x x e−x
, x > 0. (8)

For an algorithm to compute Γ ∗(x) see [3]. For small values of σ we use a Taylor expansion to evaluate log(1+σ)−σ in (7);
similarly to compute log(1+τ)−τ for small values of τ.

2.2 Small or moderate values of p and q, expansions in terms of hypergeometric functions

The regularized incomplete Beta function satisfies the following relations in terms of the Gauss hypergeometric functions (see [6,
§8.17(ii)])

Ix (p, q) = x p

pB(p, q) 2F1

�

p, 1− q
p+ 1

; x

�

= x p(1− x)q−1

pB(p, q) 2F1

�

1, 1− q
p+ 1

; x
x − 1

�

= x p(1− x)q
pB(p, q) 2F1

�

p+ q, 1
p+ 1

; x

�

.

(9)

Using (15.2.1) of [5], the following power series expansions for Ix (p, q) are obtained:

Ix (p, q) =
x p

pB(p, q)

∞
∑

n=0

(1− q)n
p+ n

xn

n!
, |x |< 1, (10)

Ix (p, q) =
x p(1− x)q−1

pB(p, q)

∞
∑

n=0

(1− q)n
(1+ p)n

� x
x − 1

�n
,
�

�

�

x
x − 1

�

�

�< 1, (11)

Ix (p, q) =
x p(1− x)q

pB(p, q)

∞
∑

n=0

(p+ q)n
(1+ p)n

xn, |x |< 1. (12)

Analogous series expansions can be obtained for Jx (p, q).
Denoting the coefficients of the series (10), (11) and (12) by bn/(p+ n), cn and dn respectively, we observe that

bn+1

bn
=

n+ 1− q
n+ 1

x ,
cn+1

cn
=

n+ 1− q
n+ 1+ p

x
(x − 1)

,
dn+1

dn
=

p+ q+ n
p+ 1+ n

x . (13)

The series (10) and (11) terminate when q is a positive integer.
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2.3 Asymptotic expansions

The expansion in (11) can be viewed as an asymptotic expansion for large values of p, with q fixed. The series is convergent for
0≤ x < 1

2 , but we can use it for large values of p when 1
2 ≤ x ≤ 1−δ, where δ is a small positive number.

2.3.1 Large p and q, error function approximation

We consider an expansion that is valid around the transition point x t . The starting point is the representation

Ix (p, q) = 1
2
erfc

�

η
Æ

r/2
�

− Rr(η), (14)

where we write p = r sin2 θ , q = r cos2 θ with 0< θ < π/2 and η is given by

− 1
2
η2 = sin2 θ log

x
sin2 θ

+ cos2 θ log
1− x
cos2 θ

. (15)

After taking the square root for η we take sign(η) = sign(x − sin2 θ ); this means sign(η) = sign(x − p/(p+ q)).
The function Rr(η) in Eq.(14) can be written in the form

Rr(η) =
1

F(p, q)
e−

1
2 rη2

p
2πr

Sr(η), F(p, q) =
Γ ∗(p)Γ ∗(q)
Γ ∗(p+ q)

, (16)

see also (7). The function Sr(η) can be expanded in the form of an asymptotic power series for large values of r, but to avoid the
calculation of a number of coefficients in the series we use the power series

Sr(η) =
∞
∑

k=0

d̃kη
k, |η|< ηc , ηc = 2

p
πmin (sinθ , cosθ ) . (17)

The value ηc follows from the singularities of the relation between η and x . We have from (15)

−η
dη
d x
=

sin2 θ − x
x(1− x)

. (18)

The point x = sin2 θ (corresponding to η = 0) is a regular point, but the derivative dη/d x also vanishes for sin2 θ e±2πi and
cos2 θ e±2πi , which are relevant because of the multivalued logarithms in (15). These singular points determine the domain of
convergence of the series in (17).

Using (1), (14) and (15) we derive the differential equation

ηSr(η)−
1
r

d
dη

Sr(η) = f (η)− F(p, q), (19)

where

f (η) =
η sinθ cosθ

x − sin2 θ
=
∞
∑

k=0

akη
k, (20)

of which the first few ak are given by

a0 = 1, a1 = −
2
3

cot2θ , a2 =
sin4 θ + cos4 θ + 1

6sin2 2θ
. (21)

Substituting the expansion of f (η) into (19), we obtain the recurrence relation

d̃k = ak+1 +
1
r
(k+ 2)d̃k+2, k = 0,1, 2, . . . , (22)

which we use in the backward direction with zero starting values. A special relation is

d̃1 = r
�

F(p, q)− 1
�

=⇒ F(p, q) = 1+
d̃1

r
, (23)

which can be used in (16) to replace F(p, q). This method can be used when |η| is small, say, |η| ≤ 1
2ηc . In [4] a similar method

was used for computing the incomplete gamma function ratios.
To compute first min{Ix (p, q), Jx (p, q)}: if η < 0 then

Ix (p, q) = 1
2
erfc

�

−η
Æ

r/2
�

− Rr(η), Jx (p, q) = 1− Ix (p, q), (24)

and if η≥ 0 then
Jx (p, q) = 1

2
erfc

�

η
Æ

r/2
�

+ Rr(η), Ix (p, q) = 1− Jx (p, q). (25)
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3 Numerical testing and algorithm

For testing the accuracy of the different methods described in Section 2, we use three-term recurrence relations satisfied by the
regularized incomplete Beta function. In particular, we use (8.17.13), (8.17.14) and (8.17.16) of [6] written as

ε1 =

�

�

�

�

1− pIx (p+ 1, q) + qIx (p, q+ 1)
(p+ q)Ix (p, q)

�

�

�

�

,

ε2 =

�

�

�

�

1− xqIx (p− 1, q+ 1) + pIx (p+ 1, q)
(p+ qx)Ix (p, q)

�

�

�

�

,

ε3 =

�

�

�

�

1− pIx (p+ 1, q) +ρx Ix (p− 1, q)
(p+ρx)Ix (p, q)

�

�

�

�

,

(26)

where ρ = p+ q− 1.
The tests are applied when Ix (p, q) is greater than the underflow limit in double precision. To compare the accuracy obtained

with the different methods, we have first generated a mesh of the values p and q, with 500 nodes for each parameter in the
interval (0, 1000) for different (fixed) values of x . For each point, we compare the accuracy obtained when computing (26) with
the different methods: ERF, given in (14); S1, given in (10); S2, given in (11); S3, given in (12) and CF, given in (5). Figure 1
shows some of the results obtained for x = 0.01, 0.25, 0.75, 0.99. The method for which the error is smaller than the others is
shown in the plot with a distinctive colour.

More extensive tests comparing the accuracy of the different methods lead to the algorithm described as Algorithm 1. The
MatLab function implementing the algorithm is called betaincreg 1

Algorithm 1 Computation of the regularized incomplete Beta function Ix (p, q)

Require: 0≤ x ≤ 1, p ≥ 0, q ≥ 0
Ensure: I = Ix (p, q)

Compute the transition point, x t = p/(p+ q).
if p > 50 & q > 50 & p+ q > 700 & |x − x t |< 0.2 then

Use the error function approximation in Section 2.3.1.
else if p > 100 & q < 10 then

if x < 0.85 then
Use the series expansion (10).

else
Use the continued fraction (5).

end if
else

if q > (1− x)p/x then
Use the continued fraction (5).

else
Use the series expansion (11).

end if
end if

The accuracy of our algorithm has been compared against the MatLab built-in function betainc. In Figure 2 we show a
comparison for fixed values of x (x = 0.01, 0.25, 0.75, 0.99) in the (p, q)-plane. The implementation for which the test error
is the smallest, is plotted with a distinctive colour: blue (our algorithm) or yellow (MatLab). As can be seen, our algorithm is
more accurate than MatLab’s built-in function betainc at most points of the (p, q)-plane. In addition, in a more extensive test
considering a large number of points (108) randomly generated in the region (x , p, q) ∈ (0, 1)× (0, 10000)× (0, 10000), the
maximum error obtained when computing (26) using our algorithm was 2.8× 10−12, which was significantly smaller than the
value obtained with the MatLab function (2× 10−10).
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x=0.01 x=0.25

x=0.75 x=0.99

Figure 1: Comparison of methods in the (p, q)-plane to build the algorithm for computing the regularized incomplete Beta function. The p-values
(q-values) are represented in the horizontal (vertical) axis. ERF is given in (14), S1 is given in (10), S2 is given in (11), S3 is given in (12) and
CF is given in (5). The method where the test error (26) is miminum, is plotted. Four different values of x have been considered in the figures.
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x=0.01 x=0.25

x=0.75 x=0.99

Figure 2: Comparison of accuracy between our algorithm and the MatLab built-in function betainc in the (p, q)-plane. The p-values (q-values)
are represented in the horizontal (vertical) axis. Four different values of x have been considered in the figures. The implementation for which the
test error is the smallest, is plotted with a distinctive colour: blue (our algorithm) or yellow (MatLab).
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