Biblio Index

Export 234 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
Kroó, A.. (2023). Homogeneous polynomial approximation on convex and star like domains. Dolomites Research Notes on Approximation, 16(1), 1-9. presented at the 01/2023. doi:10.14658/pupj-drna-2023-1-1
PDF icon KrooSurvey2023.pdf (258.72 KB)
Kroó, A.. (2021). Bernstein-Markov type inequalities and discretization of norms. Dolomites Research Notes on Approximation, 14(3), 66-73. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-8
PDF icon Kroó_MB_2021.pdf (258.38 KB)
Kroó, A.. (2017). Schur type inequalities for multivariate polynomials on convex bodies. Dolomites Research Notes on Approximation, 10(1), 15-22. presented at the 06/2017. doi:10.14658/pupj-drna-2017-1-3
PDF icon Kroo_2017_STI.pdf (230.49 KB)
L
Laguardia, A. L., & Russo, M. G.. (2022). Numerical methods for Fredholm integral equations based on Padua points. Dolomites Research Notes on Approximation, 15(5), 39-50. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-4
PDF icon LAGUARDIA_RUSSO.pdf (302.44 KB)
Larsson, E., Mavrič, B., Michael, A., & Pooladi, F.. (2022). A numerical investigation of some RBF-FD error estimates. Dolomites Research Notes on Approximation, 15(5), 78-95. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-8
PDF icon LARSSON_et_al.pdf (7.86 MB)
Larsson, E., & Sundin, U.. (2020). An investigation of global radial basis function collocation methods applied to Helmholtz problems. Dolomites Research Notes on Approximation, 13(1), 65-85. presented at the 12/2020. doi:10.14658/PUPJ-DRNA-2020-1-8
PDF icon LarssonSundin_2020_IGR.pdf (974.09 KB)
Laurita, C. (2022). A Nyström method for integral equations of the second kind with fixed singularities based on a Gauss-Jacobi-Lobatto quadrature rule. Dolomites Research Notes on Approximation, 15(5), 96-112. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-9
PDF icon LAURITA.pdf (277.1 KB)
Leopardi, P., Sommariva, A., & Vianello, M.. (2017). Optimal polynomial meshes and Caratheodory-Tchakaloff submeshes on the sphere. Dolomites Research Notes on Approximation, 10(Special_Issue), 18-24. presented at the 05/2017. doi:10.14658/pupj-drna-2017-Special_Issue-4
PDF icon LeopardiSommarivaVianello_DRNA2017.pdf (485.74 KB)
Leopardi, P. (2013). Discrepancy, separation and Riesz energy of finite point sets on compact connected Riemannian manifolds. Dolomites Research Notes on Approximation, 6(Special_Issue), 120-129. presented at the 09/2013. doi:10.14658/pupj-drna-2013-Special_Issue-12
PDF icon Leopardi-2013-DSR.pdf (202.72 KB)
Levenberg, N. (2012). Ten lectures on weighted pluripotential theory. Dolomites Research Notes on Approximation, 5(Special_Issue), 1-59. presented at the 09/2012. doi:10.14658/pupj-drna-2012-Special_Issue-1
PDF icon Levenberg-2012-WPT.pdf (607.05 KB)
Lovison, A., Comola, F., Teatini, P., Janna, C., Ferronato, M., Putti, M., & Gambolati, G.. (2013). Model calibration of a geomechanical problem with efficient global optimization. Dolomites Research Notes on Approximation, 6(Special_Issue), 140-150. presented at the 09/2013. doi:10.14658/pupj-drna-2013-Special_Issue-14
PDF icon LovisonetAl-2013-MCG.pdf (1.53 MB)
Lubinsky, D. S. (2021). The effect of adding endpoint masspoints on bounds for orthogonal polynomials. Dolomites Research Notes on Approximation. presented at the 06/2021, Padova, IT: Padova University Press. doi:10.14658/pupj-drna-2021-1-5
PDF icon Lubinsky_2021_EAE.pdf (249.15 KB)
Lubinsky, D. S. (2019). A Note on Orthogonal Dirichlet Polynomials with Rational Weight. Dolomites Research Notes on Approximation, 12(Special_Issue), 10-15. presented at the 10/2019. doi:10.14658/pupj-drna-2019-Special_Issue-3
PDF icon AKroo_Lubinsky.pdf (148.2 KB)
M
Mantica, G. (2013). Computing the equilibrium measure of a system of intervals converging to a Cantor set. Dolomites Research Notes on Approximation, 6(Special_Issue), 51-61. presented at the 09/2013. doi:10.14658/pupj-drna-2013-Special_Issue-7
PDF icon Mantica-2013-CEM.pdf (386.69 KB)
Marchetti, F. (2021). Convergence rate in terms of the continuous SSIM (cSSIM) index in RBF interpolation. Dolomites Research Notes on Approximation, 14(1), 27-32. presented at the 01/2021. doi:10.14658/pupj-drna-2021-1-3
PDF icon Marchetti_2021_CRT.pdf (254.18 KB)
PDF icon 01_introduction.pdf (184.42 KB)
Marchetti, F. (2022). A note on the usage of the pinv MATLAB function. Dolomites Research Notes on Approximation, 15(2), 101-108. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-9
PDF icon 09_DRNA_SA2022.pdf (471.78 KB)
März, T., & Weinmann, A.. (2017). Model based reconstruction for magnetic particle imaging in 2D and 3D. Dolomites Research Notes on Approximation, 10(Special_Issue).
PDF icon DRNA2017_Weinman_MBR.pdf (707.86 KB)
Mascarenhas, W., & Camargo, A.. (2014). On the backward stability of the second barycentric formula for interpolation. Dolomites Research Notes on Approximation, 7(1), 1-12. presented at the 09/2014. doi:10.14658/pupj-drna-2014-1-1
PDF icon MascarenhasCamargo-2014-BSB.pdf (330.82 KB)
Ma‘u, S.. (2017). Newton-Okounkov bodies and transfinite diameter. Dolomites Research Notes on Approximation, 10(Special_Issue), 138-160. presented at the 06/2017. doi:10.14658/pupj-drna-2017-Special_Issue-14
PDF icon Mau_DRNA2017.pdf (697.58 KB)
Mejstrik, T. (2022). The finiteness conjecture for 3 × 3 binary matrices. Dolomites Research Notes on Approximation, 15(5), 24-38. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-3
PDF icon MEJSTRIK.pdf (458.84 KB)
Merrien, J. - L., & Sauer, T.. (2021). Extra Regularity of Hermite Subdivision Schemes. Dolomites Research Notes on Approximation, 14(2), 85-94. presented at the 04/2021. doi:10.14658/pupj-drna-2021-2-10
PDF icon SauerMerrienMATA2020.pdf (307.08 KB)
Mezzanotte, D., & Occorsio, D.. (2022). Compounded Product Integration rules on (0, +∞). Dolomites Research Notes on Approximation, 15(3), 78-92. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-8
PDF icon 08_mezzanotte.pdf (299.77 KB)
Milovanović, G. V.. (2017). Computing Integrals of Highly Oscillatory Special Functions Using Complex Integration Methods and Gaussian Quadratures. Dolomites Research Notes on Approximation, 10(Special_Issue), 79-96. presented at the 06/2017. doi:10.14658/pupj-drna-2017-Special_Issue-10
PDF icon Milovanovic_DRNA2017.pdf (559.58 KB)
Mudiyanselage, N. D. K., Blazejewski, J., Ong, B., & Piret, C.. (2022). A Radial Basis Function - Finite Difference and Parareal Framework for Solving Time Dependent Partial Differential Equations. Dolomites Research Notes on Approximation, 15(5), 8-23. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-2
PDF icon MUDIYANSELAGE_et_al.pdf (3.36 MB)

Pages