Biblio Index

Export 235 results:
Author Title [ Type(Asc)] Year
Journal Article
Smirnov, A., Hamzi, B., & Owhadi, H.. (2022). Mean-field limits of trained weights in deep learning: A dynamical systems perspective. Dolomites Research Notes on Approximation, 15(3), 125-145. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-12
PDF icon 12_smirnov.pdf (1.62 MB)
Bulai, I. Martina, De Bonis, M. C., Laurita, C., & Sagaria, V.. (2022). MatLab Toolbox for the numerical solution of linear Volterra integral equations arising in metastatic tumor growth models. Dolomites Research Notes on Approximation, 15(2), 13-24. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-2
PDF icon 02_DRNA_SA2022.pdf (558.4 KB)
Conte, D., & Frasca-Caccia, G.. (2022). A MATLAB code for the computational solution of a phase field model for pitting corrosion. Dolomites Research Notes on Approximation, 15(2), 47-65. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-5
PDF icon 05_DRNA_SA2022.pdf (583.5 KB)
Beberok, T. (2020). Markov’s inequality on some cuspidal domains in the Lp norm. Dolomites Research Notes on Approximation, 13(1), 12-19. presented at the 03/2020. doi:10.14658/PUPJ-DRNA-2020-1-2
PDF icon Beberok_2020_MIS.pdf (222.22 KB)
Bos, L., De Marchi, S., & Sommariva, A.. (2021). On "marcov" inequalities. Dolomites Research Notes on Approximation, 14(1), 92-100. presented at the 10-2021. doi:10.14658/pupj-drna-2021-1-8
PDF icon birthdayMarco60.pdf (1.24 MB)
Beberok, T. (2021). Lp Markov exponent of certain domains with cusps. Dolomites Research Notes on Approximation, 14(3), 7-15. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-2
PDF icon Beberok_MB_2021.pdf (1.59 MB)
Phung, V. M. (2011). On the limit points of pseudo Leja sequences. Dolomites Research Notes on Approximation, 4(1), 1-7. presented at the 09/2011. doi:10.14658/pupj-drna-2011-1-1
PDF icon Phung-2011-OTL.pdf (165.36 KB)
Bos, L. (2021). On the Limit of Optimal Polynomial Prediction Measures. Dolomites Research Notes on Approximation, 14(3), 27-39. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-4
PDF icon Bos_MB_2021.pdf.pdf (259.1 KB)
Hart, J., & Ma‘u, S.. (2018). Lelong classes of plurisubharmonic functions on an affine variety. Dolomites Research Notes on Approximation, 11(4), 84-102. presented at the 11/2018. doi:10.14658/pupj-drna-2018-4-9
PDF icon Hart_Mau_DRNA2018.pdf (383.28 KB)
Szabados, J. (2019). Lebesgue constants and convergence of barycentric rational interpolation on arbitrary nodes. Dolomites Research Notes on Approximation, 12(Special_Issue), 38-46. presented at the 10/2019. doi:10.14658/pupj-drna-2019-Special_Issue-6
PDF icon AKroo_Szabados.pdf (128.82 KB)
Bandiziol, C., & De Marchi, S.. (2019). On the Lebesgue constant of the trigonometric Floater-Hormann rational interpolant at equally spaced nodes. Dolomites Research Notes on Approximation, 12(1), 51-67. presented at the 06/2019. doi:10.14658/pupj-drna-2019-1-6
PDF icon BandiziolDeMarchi_2019_LCT.pdf (580.6 KB)
Aminian Shahrokhabadi, M., Neisy, A., Perracchione, E., & Polato, M.. (2019). Learning with subsampled kernel-based methods: Environmental and financial applications. Dolomites Research Notes on Approximation, 12(1), 17-27. presented at the 04/2019. doi:10.14658/pupj-drna-2019-1-3
PDF icon Shahrokhabadietal_2019_LSK.pdf (1.58 MB)
Hormann, K. (2012). The Laurent polynomial formalism. Dolomites Research Notes on Approximation, 5(Special_Issue). presented at the 09/2012.
PDF icon Hormann-2012-Lecture2.pdf (315.42 KB)
Carnicer, J., & Godés, C.. (2015). Lagrange polynomials of lower sets. Dolomites Research Notes on Approximation, 8(Special_Issue), 1-10. presented at the 11/2015. doi: 10.14658/pupj-drna-2015-Special_Issue-1
PDF icon CarnicerGodes_10YPDPTS.pdf (367.47 KB)
Campiti, M. (2022). Korovkin-type approximation of set-valued functions with convex graphs. Dolomites Research Notes on Approximation, 15(5), 51-55. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-5
PDF icon CAMPITI.pdf (227.12 KB)
Cavoretto, R., & De Rossi, A.. (2016). Kernel-based Methods and Function Approximation 2016. Dolomites Research Notes on Approximation, 9(Special_Issue), 1-2. presented at the 09/2016. Retrieved from http://drna.padovauniversitypress.it/2016/specialissue/1
PDF icon CavorettoDeRossi_KMFA2016.pdf (629.87 KB)
De Marchi, S., Iske, A., & Sironi, A.. (2016). Kernel-based Image Reconstruction from Scattered Radon Data. Dolomites Research Notes on Approximation, 9(Special_Issue), 19-31. presented at the 09/2016. doi:10.14658/pupj-drna-2016-Special_Issue-4
PDF icon DeMarchiIskeSironi_KMFA2016.pdf (1.48 MB)
Wright, G. (2013). Kernel methods for more general surfaces. Dolomites Research Notes on Approximation, 6 (Special_Issue).
PDF icon Wright-2013-Lecture07.pdf (23.11 MB)
PDF icon Wright-2013-Lecture05and06.pdf (7.28 MB)
Buhmann, M. D., De Marchi, S., & Plonka-Hoch, G.. (2011). Kernel Functions and Meshless Methods. Dolomites Research Notes on Approximation, 4(Special_Issue), 1-63. presented at the 09/2011. doi:10.14658/pupj-drna-2011-Special_Issue-1
PDF icon SpecialIssue-2011-KFA.pdf (8.79 MB)
Wright, G. (2013). Kernel approximation on the sphere with applications to computational geosciences. Dolomites Research Notes on Approximation, 6(Special_Issue).
PDF icon Wright-2013-Lecture01.pdf (28.92 MB)
Kosek, M. (2021). Joukowski and Green, Chebyshev and Julia. Dolomites Research Notes on Approximation, 14(3), 59-65. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-7
PDF icon Kosek_MB_2021.pdf (257.42 KB)
Kherchouche, K., Bellour, A., & Lima, P.. (2021). Iterative Collocation Method for Solving a class of Nonlinear Weakly Singular Volterra Integral Equations. Dolomites Research Notes on Approximation, 14(1), 33-41. presented at the 04/2021. doi:10.14658/pupj-drna-2021-1-4
PDF icon KherchoucheBellourLima_2021_WSV.pdf (152.8 KB)
Larsson, E., & Sundin, U.. (2020). An investigation of global radial basis function collocation methods applied to Helmholtz problems. Dolomites Research Notes on Approximation, 13(1), 65-85. presented at the 12/2020. doi:10.14658/PUPJ-DRNA-2020-1-8
PDF icon LarssonSundin_2020_IGR.pdf (974.09 KB)
Dencker, P., & Erb, W.. (2017). Introduction to Lissajous curves and d-dimensional polynomial interpolation. Dolomites Research Notes on Approximation, 10(Special_Issue).
PDF icon DRNA2017_Erb_ILC.pdf (1.58 MB)

Pages