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Overview
Methods currently in use for computational geosciences

Transport equation on the sphere

Global method RBF collocation method

o Numerical examples and comparisons to other methods

RBF finite difference method (RBF-FDM)

o Numerical examples

RBF partition of unity method (RBF-PUM)
o  Numerical examples and comparison to RBF-FDM

Concluding remarks
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Computational geosciences DRWA 2013

Lecture 4

Bottom line for numerical methods:

Need numerical methods that provide high-
resolution and accuracy at low computational
costs to resolve the multi-scale features.



Grids, meshes, nodes, used in large scale models

DRWA 2013
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* Grids/meshes/nodes used used in methods for large-scale applications:
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® Methods used:

o Finite-difference, finite-element, finite-volume, semi-Lagrangian

o Double Fourier, spherical harmonics, spectral elements, discontinuous
Galerikin (DG), and radial basis functions (RBF)




Highlights of some high-order methods in large-scale models  prwa 203
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Double Fourier series:

Strength: Exponential accuracy
Computationally fast because of FFTs

Weakness: No practical option for local mesh refinement

Spherical harmonics:

Strength: Exponential accuracy

Weakness: No practical option for local mesh refinement
Relatively high computational cost
Poor scalability on parallel computer architectures

Spectral elements:

Strength:  Accuracy approaching exponential \
Local refinement is feasible but complex

Weakness: Loss of efficiency due to unphysical element boundaries
(Runge phenomenon - oscillations near boundaries — restrictive time-step)
High algorithmic complexity
High pre-processing cost



(Surface) Div, Grad, Curl, and all that

DRWA 2013
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Spherical Coords.

Cartesian Coords.

Point: (A, 0, 1) ((L‘, Y, Z)
Unit vectors: 1= longitudinal i = z-direction
.l latitudinal JA y-direction
k = radial k = z-direction
1 -y 1 -2z
Unit tangent vectors: i j (= T B= -2y
' Vi—z2 ||’ V1—22 [ _ 2
Unit normal vector: k X = zi+ yj + zk
: R _ 1 9g; 9g: _ _p(99:, 99:, O9;
Gradient of scalar g: uys =V, g= o050 O\ +30‘] “"‘"P(ch)_P(ax +6y +3 k
. 1 Ou,  Ovs
Surface divergence of u: Vs-us = Y + 20 (Ve) ue =V u.—x-V(u. - x)
0 f 1 df;
Curl of a scalar f: u, =k x (Vyf) = ~20' T g I u. =x X (PV.f) =QP(V.f) =Q(V.f)
Surface curl of a vector u: k- (V, x u,) = =V, - (k x u,) x-((PV,.) xu,) =-V.:(Qu.)
1—22 —zy —zz 0 —z vy
Here: P=17T— xxI = —ZY 1— y2 —yz Q — A 0 —T
—zz —yz 1-—2° -y z 0



Shallow water wave equations on a rotating sphere DRWA 2013
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o Model for the nonlinear dynamics of a shallow, hydrostatic, homogeneous,
and inviscid fluid layer.

\
hm
\J Y

e Jdealized test-bed for horizontal dynamics of all 3-D global climate models.

Equations Momentum Transport
Spherical | du, A Ih*
. T T\ S k 4 s V~] - 0 /. * —
coordinates| @t | ¢ Vet S XU+ gVl gr T Ve (W) =0
Singularity at poles!
Cartesian |ou, (11F : Pf Jue + f(x xug) - i+ (P1 Ve)h oh* o e
coordinates | 77 (.- PVo)v.+ f(x xu.)-j (PJ Ve)h En + (PV,) - (h'u.) =

(u, - PV, )w,+ f(x xu,)- k + g(Pk -V, )h

Smooth over entire sphere!



Simpler problem: transport equation on the sphere DRWA 2013
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For this tutorial we focus on the transport
equation for a scalar valued quantity h on
the surface of the unit sphere in an
incompressible velocity field u.

The governing PDE can be written in
Cartesian coordinates as:

P projects arbitrary three-dimensional vectors onto a plane tangent to the
unit sphere at x.

Surface gradient operator:

(1 — 2?) — Ty —xz Oy Pz V
PV=I-xx"VV=| -2y (1-9%) —yz Oy| = |pPy-V
| a2 —yz  (1—-27%)] |0- p.- V|

Goal: Show how to construct good numerical approximations to

Dy=ps-V, Dy=py-V, D,=p, -V



Surface gradient approximation: Global RBF method prwa s
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o Setup: X = {x; }j\le C S? and f‘ samples of a target function.
X

e ¢ is some differentiable PD or CPD(1) kernel on RS.

e RBF interpolant of f‘ + 1s given by
N
s(x) =) cjollx —x;]))
j=1

e The coeflicients c; are determined from:

O(lx1 —xal]) oIk —x2fl) -+ dlllx1 —xn()) ] [ 1
¢(llxz = x1l) o(llx2 —xall) -~ dllx2 = xn ) | |2 f2

(ln — xal) o(lxn — xall)--6(xw —xnlD Lew] v
N —~ P T
A c f

e Discretization of the projected gradient closely follows Flyer & W (2007,2009).



Surface gradient approximation: Global RBF method prwa s
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e Approximate the r-component of the surface gradient using collocation:

Po - V()] =) [P - Vor(llx — xi])] , j=1,...,N

X:Xj

N ’
=S e [y — ] (ask(Xx_ Qf“)

N~
T

7,k

— (A7) f
— ch\fi
e DY, is an N-by-N differentiation matrix (DM) .
e It represents the discrete RBF approximation to p, - V at nodes X.

e DMs D and D53 can similarly be constructed fo (p, - V) and (p. - V).



Global RBF collocation for transport equation DRWA 2013
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e Continuous transport equation for some u = (u, v, w) € TxS*:

e Let h and u = (u,v,w) be sampled at X.

e Scmi-discrete formulation (method-of-lines) of transport equation:

h, = — (diag(u) Dy + diag(v) Dy + diag(w) Dy ) h = —Dnh.

e Advance the system in time using some standard ODE solver.

e This is a purely hyperbolic problem and temporal stability can be an
issue.

— We stabilize the method by including some high-order diffusion operator
Ly (hyperviscosity):

h,=—Dnh+ pLnh

— Ly is a discrete approximation to a high power of the Laplacian: AZ”.



Numerical results: solid body rotation DRWA 2013
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* Solid body rotation of a non-smooth cosine bell
(Williamson et. al. JCP (1992))

Stream Function for flow

w(x) — Cos(a) — Sin(a)y a = /2 (flow over the poles)

Initial condition (non-smooth: jump in second derivative)

_ (U tcos(Bar(x) r(x)<1/3
h(x)—{O Hx) > 1/3 (x) ()

Details:

* Gaussian RBF
At = 30 minutes
* No stabilization

required.

* Minimum energy

. : ' node sets used.
Flow direction Initial condition



Numerical results: solid body rotation DRWA 2013
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Convergence results as number of nodes N increases (Flyer & W, 2007)
Error results are for one complete revolution of the cosine bell.

Cosine bell IC, Gaussian bell IC,
Discontinuous 2" derivative Infinitely smooth

Cosine bell test, t = 12 days Gaussian bell test, ¢t =12 days

_._62 10 ¢

—tt— o,

—— 03

—— {

Normalized error
Normalized error
'S

23 32 45 [y 56 64 20 30 40 50 /N 60
log-log scale log-linear scale

Straight line indicates algebraic accuracy Straight line indicates spectral accuracy



Numerical results: solid body rotation DRWA 2013
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« Comparison to other high order methods (Flyer & W, 2007)

Cost per , Number of Code length Local mesh
Method {5 error Time-step
time-step grid points  (# of lines) refinement
RBF O(N?) 0.006 1/2 hour 4096 < 40 yes
SH O(M?3/2) 0.005 90 seconds 32768 > 500 no
DF O(Nlog N) 0.005 90 seconds 32768 > 100 no
DG O(kNe) 0.005 6 minutes 7776 > 1000 yes

RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier,
DG=discontinuous Galerkin spectral elements

Comments:
« For RBF and DF N = the number of grid points.

* For SH M = total number of spherical harmonics: (85+1)? = 7396.
 For DG N, = total number of nodes per element, and k=number of elements.



Numerical results: solid body rotation DRWA 2013
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« Comparison to other high order methods (Flyer & W, 2007)

Cost per , Number of Code length Local mesh
Method {5 error Time-step
time-step grid points  (# of lines) refinement
RBF O(N?) 0.006 1/2 hour 4096 < 40 yes
SH O(M?3/2) 0.005 90 seconds 32768 > 500 no
DF O(Nlog N) 0.005 90 seconds 32768 > 100 no
DG O(kNe) 0.005 6 minutes 7776 > 1000 yes

RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier,
DG=discontinuous Galerkin spectral elements

Comments:
« For RBF and DF N = the number of grid points.

* For SH M = total number of spherical harmonics: (85+1)? = 7396.
 For DG N, = total number of nodes per element, and k=number of elements.



Numerical results: solid body rotation DRWA 2013
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« Comparison to other high order methods (Flyer & W, 2007)

Cost per . Number of Code length Local mesh
Method {5 error Time-step
time-step grid points  (# of lines) refinement
RBF O(N?) 0.006 1/2 hour 4096 < 40 yes
SH O(M?3/2) 0.005 90 seconds 32768 > 500 no
DF O(NlogN) 0.005 90 seconds 32768 > 100 no
DG O(kNe) 0.005 6 minutes 7776 > 1000 yes

RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier,
DG=discontinuous Galerkin spectral elements

 Need ways to reduce this cost.

e Next two methods we discussed are focused on this



RBF generated finite differences (RBF-FD) DRWA 2013

Lecture 4

o Consider X = {x;}\| C S?, where x; = (x;,y;, 2;):

* Generalization of finite-difference (FD) method to scattered
nodes using RBFs to compute the FD weights.

* References:

W & Fornberg (2006)

Fornberg & Lehto (2011)

Flyer, Lehto, Blaise, W & St-Cyr (2012)

o
o
o
o Bollig, Flyer & Erlebacher (2012)



RBEF' generated finite differences DRWA 2013
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o Consider X = {x;}\| C S?, where x; = (x;,y;, 2;):

Kevy Steps:

1. For each node x;, choose n — 1 of it’s nearest neighbors:
Xj — {Xi ?:1, with X1 = Xj.

2. Approximate p, - Vf ‘X_ using linear a combination of the
J

values of f sampled at X;:

p:cvf

Xj 1=1



RBEF' generated finite differences DRWA 2013
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o Consider X = {x;}\| C S?, where x; = (x;,y;, 2;):

Kevy Steps:

3. Choose the weights ¢; such the approximation is exact for

(% = xkl]) pr=1:

Pz - Vo(llx — xi])]
——
D,

=Y cd(xe —xill), k=1,....n
—X; 1=1

X

Similar to standard FD formulas that use polynomials.



RBEF' generated finite differences DRWA 2013
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o Consider X = {x;}\| C S?, where x; = (x;,y;, 2;):

Kevy Steps:

3. The weights {c;}_; can be computed by solving:

(% —xi]) o(lxs —xall) - o(lxi —xnl)] [l [Dedlx; —xi)
Bz — ) @lllxz —x2l)) - dlllxa —xwl) | [ e2| | Duoll; — e
b(llxy —x1]) d(lxy — xall)- ¢l —xnl)] len] [ Des(llx; — xall).

4. Combine all the weights into a differentiation matrix.



RBEF' generated finite differences DRWA 2013
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* Example differentiation matrix (DM) for N=16384, n=101:

Percent full=0.62

2000

4000 -

6000

8000 -

10000 |-

12000 |-

14000

16000 -

1 1 L 1 Il 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000
nz = 1654784

* Compare to the global RBF method, which results in a dense
differentiation matrix.



RBF-FD method for transport equation DRWA 2013

Lecture 4

e Continuous transport equation for some u = (u, v, w) € TxS*:

e Let h and u = (u,v,w) be sampled at X.

e Semi-discrete formulation (method-of-lines) of transport equation:

h, = — (diag(u) DY, + diag(v) DY, + diag(w) Di) b = —Dyh.

e Advance the system in time using some standard ODE solver.
e This is a purely hyperbolic problem and temporal stability is an issue.

— We stabilize the method by including some high-order diffusion operator
Ln (hyperviscosity):

ht = —Dnh + /JLNE

— Ly is a discrete approximation to a high power of the Laplacian: AZ".



Numerical results: solid body rotation DRWA 2013
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* Solid body rotation of a non-smooth cosine bell
(Williamson et. al. JCP (1992))

Stream Function for flow

w(X) — Cos(a) — Sin(a)y a = /2 (flow over the poles)

Initial condition (non-smooth: jump in second derivative)

_ (U tcos(Bar(x) r(x)<1/3
h(x)—{o Hx) > 1/3 (x) ()

Details:

* Gaussian RBF

e Stabilization
required.

* Minimum energy

node sets used.

Flow direction Initial cndition



Numerical results: solid body rotation DRWA 2013
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« Convergence results as number of nodes N increases (Fornberg & Lehto, 2011)
e FError results are for 10 complete revolution of the cosine bell.

0

10
p
]
0
o 10
Ry
~
@
.E
=
8 407 |
2 <~ n=17 1Global RBF Method
-8 —n=31
-—B— n =50
10-3 —7—n =10
10° 10°

* Errors compare favorably with the global RBF method.
* RBF-FD method much more computationally efficient than global method.



RBFs and partition-of-unity (RBF-PUM) on the sphere  prwa 2013
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* Recent work with my graduate student Kevin Aiton.
G.B. Wright & K. Aiton. A radial basis function partition of unity method for transport
on the sphere. In preparation.

- L] e (]
.............
KA 0.....00...

Background references for interpolation with RBF-PUM

 R. Cavoretto & A. DeRossi, Fast and accurate interpolation of large
scattered data sets on the sphere. J. Comput. Appl. Math. 234
(2010), 1505-1521.

 R. Cavoretto & A. DeRossi, Spherical interpolation using the
partition of unity method: An efficient and flexible algorithm. Appl.
Math. Lett. 25 (2012), 1251-1256.




RBFs and partition-of-unity on the sphere DRWA 2013
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o Consider X = {x;}L, C S?, where x; = (z;,y;,2;):

Key Steps:

1. Generate a set of overlapping patches (spherical caps) 2 =
{Qx}M, that creates a uniform partition of the sphere with
respect to the density of the nodes in X, and each patch
contains roughly n nodes of X.



RBFs and partition-of-unity on the sphere DRWA 2013
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o Consider X = {x;}L, C S?, where x; = (z;,y;,2;):

M total patches
n nodes per patch
&, = center of patch €2,

Key Steps:

1. Generate a set of overlapping patches (spherical caps) 2 =
{Qx}M, that creates a uniform partition of the sphere with
respect to the density of the nodes in X, and each patch
contains roughly n nodes of X.



RBFs and partition-of-unity on the sphere DRWA 2013
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o Consider X = {x;}L, C S?, where x; = (z;,y;,2;):

M total patches
n nodes per patch
&, = center of patches (2,

Key Steps:

2. Letting X denote the set of nodes in patch (), construct
RBEF interpolants s, for k =1,..., M:

n

si(x) = Y cjolllx — x|)

j=1



RBFs and partition-of-unity on the sphere DRWA 2013
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o Consider X = {x;}L, C S?, where x; = (z;,y;,2;):

M total patches

n nodes per patch

&, = center of patches €2,
Key Steps:

3. Define weight functions wy : S - R, kK = 1..., M, with
the properties that each wy, is compactly supported over (2
and the set of all wi form a partition-of-unity over 2:

M
Zwk(x) =1,x€e(
k=1



RBFs and partition-of-unity on the sphere DRWA 2013
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o Consider X = {x;}L, C S?, where x; = (z;,y;,2;):

M total patches

n nodes per patch

&, = center of patches (2,
Key Steps:

3. Define weight functions wy . S? R, £k =1...,M, with
the properties that each wy, is compactly supported over (2
and the set of all wi form a partition-of-unity over 2:

M
Zwk(x) = 17 x € )
k=1



RBFs and partition-of-unity on the sphere DRWA 2013
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o Consider X = {x;}L, C S?, where x; = (z;,y;,2;):

M total patches
n nodes per patch
&, = center of patches (2,

Key Steps:

Weight function details:

ni = (BE8l) 0 a0

pr = radius of patch 2 Z Y (X)

Y has compact support over [0, 1] 1=1




RBFs and partition-of-unity on the sphere DRWA 2013
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o Consider X = {x;}L, C S?, where x; = (z;,y;,2;):

M total patches
n nodes per patch
&, = center of patches (2,

Key Steps:




RBFs and partition-of-unity on the sphere DRWA 2013

Lecture 4

o Consider X = {x;}L, C S?, where x; = (z;,y;,2;):

M total patches

n nodes per patch

&, = center of patches (2,
Key Steps:

5. Apply projected gradient operator D, := p, - V to inter-
polant and evaluate at each node x;:

D,.s(x)

X:Xj X:Xj

k=1
Weights can be generated and stored in a differentiation matrix.



Choosing the nodes and patches DRWA 2013
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Nodes: We use the mazimal determinant (MD) node sets, which are
quasi-uniformly distributed over the sphere. R.S. Womersley & I. Sloan (2001)

Patches: We use minimum energy (ME) points, which are also quasi-
uniformly distributed over the sphere. D.P. Hardin & E.B. Saff (2004)

. .‘ .. .' * .:‘Q‘ PatCh
. co * **, centers

Parameters: Given N nodes, there are 2 parameters to choose for
determining the total number of patches M:

o n = approx. number of nodes in each patch;

o ¢ = measure of the amount the patches overlap.




Choosing the nodes and patches DRWA 2013
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e Using the quasi-uniformity of the nodes and patches, we compute
the radii of the patches using the approximation:

n
~ 24/ —
PN

* The overlap parameter ¢ determines the average number of
patches a node belongs to, and satisfies the relationship:
4t mp? N
M q n



Choosing the nodes and patches DRWA 2013
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e Illustration of the patches for N=4096, n=100, and different ¢:

The computational cost for evaluating a derivative grows at most
linearly with ¢ and n.



Comparison: RBF-FD and RBF-PUM DRWA 2013
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* Example differentiation matrix (DM) for N=16384, n=101:

RBF-F'D

Percent full=0.62

2000 \Ghe

4000}

6000

8000

10000}

120001

14000}

16000

5000 10000 15000
nz = 1654784

2000

4000

6000

80001

10000

12000

14000

16000

RBF-PUM, ¢—4

Percent full = 1.47

0 2000 4000 6000 8000 10000 12000 14000 16000
nz = 3936338

* Recall global RBF-type methods result in dense matrices.



RBF-PUM method for transport equation DRWA 2013
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e Continuous transport equation for some u = (u, v, w) € TxS*:

e Let h and u = (u,v,w) be sampled at X.

e Semi-discrete formulation (method-of-lines) of transport equation:

h, = — (diag(u) Dy + diag(v) Dy + diag(w) D) h = —Dnh.

e Advance the system in time using some standard ODE solver.

e This is a purely hyperbolic problem and temporal stability will be an
issue.

— We stabilize the method by including some high-order diffusion-type op-
erator Ly (hyperviscosity):

— L is a like a discrete approximation to a high power of the Laplacian.



Numerical results: solid body rotation DRWA 2013
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Details for all numerical results:

» We use the Gaussian RBF = QOverlap is set to ¢=4
= Time-step At is not optimized = Weset € =an,VN + b,

e Solid body rotation of a non-smooth cosine bell
(Williamson et. al. JCP (1992))

Stream Function for flow

1h(x) = cos(a)z + sin(a)y « = /2 (flow over the poles)

Initial condition (non-smooth: jump in second derivative)

h(x) = 2 (14 cos(3mr(x))) r(x) <1/3
0 r(x) >1/3

r(x) = arccos(x)



Numerical results: solid body rotation

Plots of the RBF-PUM solution for N=12544, n=100, At=25/1600 :

Initial condition, t=0, with streamlines

Solution after one revolution, t=2x

DRWA 2013
Lecture 4



Numerical results: solid body rotation DRWA 2013
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Plots of the RBF-PUM error for N=12544, n=100, At=27/1600 :

Magnitude of the error after one revolution

15 -3

0.5

-0.5
10.5

-15 -y
-3 2 -1 0 1 2 3

Magnitude ot the error after ten revolutions

1.5

0.5

05 10.5

-15 -y




Numerical results: solid body rotation DRWA 2013
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Comparison of the errors for RBF-FD and RBF-PUM:
Relative £y error vs. v N (logscale)

10 "

10 '
- | =©—FD, n=101

—%— PUM, n=64 T~

—%— PUM, n=100 S o

—%— PUM, n=144 AR

2" order

- - =39 order

10_ I 1 1 1 1 1 1
64 80 96 112 128 144 160

VN

Convergence rates are as expected given smoothness of the initial condition.




Numerical results: deformational ow DRWA 2013

Lecture 4

* Deformational /rotational flow (R.D. Nair and P.H. Lauritzen, JCP (2010))

Non-smooth
initial condition:

Smooth
initial condition:




Numerical results: deformational flow

Simulation for non-smooth IC, N=20736, n=100, At=5/2400

Time = 0.000

1

0.8

10.6

10.4

0.2

DRWA 2013
Lecture 4



Numerical results: deformational flow

DRWA 2013
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Convergence plots for increasing N and n, At=5/2400

e Non-smooth initial condition:

Relative £y error vs. v N (logscale)

—-©—-FD, n=101

—e— PUM, n=64

—»— PUM, n=100
107 | —w—PUM, n=144

: 2" order

- - -39 order
107} -
10_3 1 | | |

64 80 96 112 128 144 160
VN

Convergence rates are as expected given smoothness of the initial condition.
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Numerical results: deformational flow

Convergence plots for increasing N and n, At=5/2400

e Smooth initial condition:

Relative £y error vs. v/ N (linear-scale)
10° | . . . .

—-©—-FD, n=101

—3— PUM, n=64 |]
—3¢— PUM, n=100 |{
—%—PUM, n=144 |

Q
107 :\f\?

10 “F

Relative 5 error

10 'F

10

64

80

96

112
VN

128

144

160



Comparison: Wall clock time vs. error DRWA 2013
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* Test: Deformational /Rotational flow smooth initial condition

Wall-clock time(sec) vs. error

—©—FD, n=101

| =%—PUM, n=64
[| —%—PUM, n=100
| —%—PUM, n=144

—_
o
w

—
o
[N
T
1

Wall-clock time (sec)

1

10 PR T T T R T 1 1 | T T R S R 1 1 | I T S R T 1 1 1 | I S R T 1 1
10° 107 10°° 10°° 107"

Normalized /5 error

« MATLAB R2013a, Intel Xeon 3.1GHz processor




Comparison of Global, RBF-FD, and RBF-PUM methods DRWA 2013
Global RBFs
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RBF-PUM

N total nodes N total nodes N total nodes

n nodes per FD-stencil M total patches

Cost Comparison: n nodes per patch

Derivative approx. | Global RBF |RBF-FD* |RBF-PUM*
Construction: O(N3) O(n?N) O(n*M)

Evaluation: O(N?) O(nN) O(nN)

*Constants for the RBF-PUM are higher than for RBF-FD.



Concluding remarks DRWA 2013
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e The Global RBF collocation method is competitive in terms of accuracy per
degree of freedom.

e It are not competitive in terms of computational complexity.

e The RBF generated finite difference (RBF-FD) method shows great promise
in terms of accuracy and computational cost.
e More comparisons with other state-of-the art methods in the next
lecture.

e Parallelization on multi-GPU has already been implemented (Bollig,
Flyer, & Erlebacher, 2012).

e The RBF Partition of unity method (RBF-PUM) also shows great promise.
e More comparisons are needed between RBF-PUM and RBF-FD in terms
of computational cost to achieve a certain accuracy.
e Parallel implementations also needed.

e More work is needed in developing stable algorithms for “flat” RBFs when
working on patches of the sphere.



