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Overview 

•  Methods currently in use for computational geosciences 

•  Transport equation on the sphere 

•  Global method RBF collocation method 
o  Numerical examples and comparisons to other methods 

•  RBF finite difference method (RBF-FDM) 
o  Numerical examples 
 

•  RBF partition of unity method (RBF-PUM) 
o  Numerical examples and comparison to RBF-FDM 

 
•  Concluding remarks 



DRWA 2013 
Lecture 4 

Computational geosciences 

Need numerical methods that provide high-
resolution and accuracy at low computational 
costs to resolve the multi-scale features. 

Bottom line for numerical methods: 
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Grids, meshes, nodes, used in large scale models 

•  Grids/meshes/nodes used used in methods for large-scale applications: 

tions for the Northern and Southern hemi-
spheres, and a Mercator projection for the
equatorial band, and applied second-order fi-
nite differences to uniform grids on each projec-
tion. Values needed for the approximations at
points not included in the computational grid
of one projection were obtained by interpolation
within the grid of another projection. Figure 2
shows a composite grid consisting of a North
Polar and a South Polar stereographic grid
projected back to the surface of the sphere to
illustrate the overlap. Note, this grid does not
include the equatorial Mercator projection
included by Phillips (1957). Although Phillips
(1962) showed that with careful definition of
the finite-difference scheme and interpolation
procedures the composite mesh approach could
give good results, his approach never gained
popularity. Conservation aspects of composite
meshes were revisited by Stoker and Isaacson
(1975) with the addition of a conserving tech-
nique for the interpolations (Bayliss and Isaac-
son 1975; Sasaki 1976). Again composite
meshes were not adopted for a complete baro-
clinic model, perhaps because of lingering con-
cerns about conservation and noise on the part
of practitioners of that time given the very
large investment needed to develop a complete
baroclinic model.

Sadourny (1972) developed a method to cover
the sphere with several non-conformal projec-
tions which required no interpolations between
meshes. It is based on a regular polyhedron cir-
cumscribed to the sphere. A coordinate system
is derived for each face for a gnomonic or cen-
tral projection. He tested this approach with a
cube for the polyhedron in which case the sides
of the polyhedral faces are coordinate lines and
grid points are common to the two sides defin-
ing the edge. Such a system is illustrated in
Fig. 3. Finite differences were developed at the
boundaries from flux or conservation considera-
tions so no interpolations were necessary to ob-
tain information from adjacent faces. He en-
countered a diffculty with two-grid interval
noise arising from the boundaries where it is
difficult to maintain the accuracy of the interior
scheme.

As mentioned above, the pole problem with
spherical coordinates is primarily and economic
one, not a technical problem. Explicit finite dif-
ference schemes have a restriction on the time
step related to the wind speed and the grid in-
terval. Essentially the time step must be small
enough that the advection or wave propagation
remains within the grid stencil used by the fi-
nite differences. The relation between the wind
speed, grid length and time step is referred to
as the Courant-Fredrich-Levy or CFL condi-
tion, after the mathematicians who first de-

Fig. 2. A composite or overset grid con-
sisting of uniform grids on a North
Polar and a South Polar stereographic
projection. The meshes on the projec-
tions are mapped back to the surface of
the sphere to illustrate the overlap.

Fig. 3. A ‘‘cubed sphere’’ grid obtained by
projecting a Cartesian coordinate sys-
tem on each face of a cube onto the sur-
face of the sphere.
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development into explicit grid-point approxi-
mations dropped dramatically. Spectral trans-
form became the method of choice for both
NWP and climate models and dominated the
field, although they were not universally
adopted and a few notable examples of grid-
point models continued to be applied.

The introduction of the spectral transform
method by Eliasen et al. (1970) and Orszag
(1970) made the spectral method cost effective.
The spectral transform method represents
fields by a series of spherical harmonics. Linear
terms are calculated directly in spectral space
while nonlinear terms are calculated from grid
point values obtained by synthesizing the field
from the spectral coefficients. The results of
the nonlinear calculations are transformed
back to spectral space. Machenhaur (1979) pro-
vides an excellent review of the method.

The spectral transform method calculates
linear advection of a resolved field exactly ex-
cept for time truncation, so there is no compu-
tational dispersion. With triangular spectral

truncation it presents a natural filter for spher-
ical geometry by providing an isotropic repre-
sentation in spectral space even though the
computationally adopted underlying Gaussian
grid does not. Since it is based on an isotropic
representation, short longitudinal structures
near the pole are not present and therefore do
not restrict the time step. Application of a qua-
dratic unaliased transform grid provides a nat-
ural way to eliminate aliasing of quadratic
terms and thus makes the method immune to
nonlinear instability, although that problem
had also been solved in grid point models by
Arakawa (1966) type differences. Unlike grid-
point schemes, the spectral transform method
does not have a number of arbitrary parame-
ters to define it and its application to global
atmospheric models became amazingly stan-
dard following Bourke’s (1974) implementation.
More recently Swarztrauber (1996) compared
the accuracy of nine spectral transform meth-
ods for solving the shallow water equations.
They vary by being based on the shallow water
equations written in different forms. Eight of
the methods compute almost identical results
with standard test cases. For practical pur-
poses the ninth is also comparable to the others.

The spectral transform method became domi-
nant at that time when the modeling issues
consisted primarily of large scale, relative
smooth dynamical motions. It provided a very
elegant solution to sphere problem. It also has
advantages at the relatively low resolution
used for climate modeling at that time: linear
advection is accurate to the truncation limit un-
like grid-point schemes which in general damp
short wave rather severely and in addition can
have significant phase errors. Of course the
spectral transform method could not properly
capture the nonlinear interactions at scales
near the truncation limit, but then no scheme
does.

To indicate the continuing popularity of the
spectral transform method until recently we
compare its use to that of grid point methods
in recent production models. The spectral
transform method is the basis of 11 out of 14 re-
cent operational global NWP systems, the re-
maining 3 are grid point based (WGNE 2005,
Appendix E). Concerning models applied to cli-
mate simulation, in AMIP I, which was carried
out from 1990 to 1996 (Gates 1995; Gates et al.

Fig. 5. A spherical geodesic or icosahe-
dral grid obtained by subdividing the
twenty triangles of an icosahedron into
smaller triangles. The twenty icosahe-
dral triangles are indicated by the
thicker solid lines. Each of these trian-
gles is divided into four smaller trian-
gles indicated by the dashed lines
combined with the thicker solid lines.
These are further divided into four tri-
angles indicated by the thiner solid
lines.
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rable order. With several test cases for the
shallow water equations, they compared it to
the common spectral transform method based
on scalar spherical harmonics and a spectral
transform method based on vector spherical
harmonics. They did not develop a baroclinic

model however. Dudhia and Bresch (2002) cre-
ated a global version of the PSU-NCAR Meso-
scale Model (MM5) by using two stereographic
grids, each centered on one of the two poles
and covering that hemisphere. They used bilin-
ear interpolation. Neither of these approaches
strove to preserve conservation with the inter-
polations. The bilinear interpolation applied in
the later is rather damping and may help pre-
vent noise from forming. The mean precipita-
tion in a long run of latter appeared to be noise
free. However, there remains the concern that
noise will develop in a baroclinic model with
higher order interpolation and with strong pa-
rameterized forcings in the region of overlap.

A very different type of composite mesh has
been proposed recently. Kageyama and Sato
(2004) suggested a quasi-uniform composite
mesh for spherical geometry without singular
points which they named the ‘‘Yin-Yang’’ grid.
A similar grid system was introduced inde-
pendently by Purser (presented at the Work-
shop on the Solution of Partial Differential
Equations on the Sphere, 20–23 July 2004, Yo-
kohama, Japan). The Yin-Yang grid consists of
two notched latitude-longitude grids which are
normal to each other. Each of the two compo-
nents is based on a low-latitude piece of a
latitude-longitude grid on the sphere, with a
gap in longitude. One component, the Yin grid
illustrated in Fig. 6a, is oriented as the tradi-
tional latitude-longitude grid, the other, the
Yang grid illustrated in Fig. 6b, is rotated 90
degrees to fill the gap in the first and to cover
the polar regions left open in the first. The do-
main of the two grids, the Yin-Yang grid illus-
trated in Fig. 6c, looks much like the cover of a
tennis ball or baseball, but with overlap at the
seams. Since the two components are based on

Fig. 6. (a) A Yin grid, a low-latitude
latitude-longitude grid with a gap in
longitude oriented as the traditional
latitude-longitude grid. (b) A Yang
grid, the Yin grid rotated 90 degrees to
fill the gap in the Yin grid and to cover
the polar regions left open in the Yin
grid. The gap is on the back side. (c) A
Yin-Yang grid, the combination of the
Yin and Yang grids showing the overlap
of the two grids.
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Table 3.1 The ratios of largest to smallest grid cells for the N × N circular disk grid mappings.
The ratios for the polar grid were computed analytically. The areas of cells in the ghost
cell region are not included for any grids.

Cell ratios on the disk

N Polar grid Radial proj. Constant curv. Convex combi.

100 199 1.979899 1.966483 3.117242
400 799 1.994994 1.991504 3.158103

1600 3199 1.998750 1.997869 3.168213

Table 3.1 gives the ratios of the largest to the smallest grid cell for several quadri-
lateral grids of the disk described above. For comparison we also give the ratios of
the polar grid.

4. Grids on the Surface of a Sphere. If the mapping of section 3.2 with the
choice (3.4) is used, then the grid shown in Figure 3.2(c) is obtained. If we now set

zp = sqrt(1 - (xp.ˆ2 + yp.ˆ2))

then the points (xp,yp,zp) lie on the upper hemisphere. We can apply a similar
mapping to points in the computational domain [−3,−1]× [−1, 1] to map these points
to the lower hemisphere. The two mappings together map the rectangle [−3, 1]×[−1, 1]
to the surface of the sphere. Figure 4.1(a) shows the resulting grid. This is easily
accomplished in MATLAB by

function [xp,yp] = mapc2p(xc,yc)
ijlower = find(xc<-1); % indices of points on lower hemisphere
xc(ijlower) = -2 - xc(ijlower); % flip across the line x = -1
% compute xp and yp by mapping [-1,1]x[-1,1] to the unit circle
% using the mapping of section 3.2 with (3.4)
zp = sqrt(1 - (xp.ˆ2 + yp.ˆ2));
zp(ijlower) = -zp(ijlower); % negate z in lower hemisphere

Proper communication of data between the hemispheres requires that periodic
boundary conditions be used in the x direction and that appropriate boundary condi-
tions be used along the top and bottom of the rectangular domain where the segment
−3 < x < −1 is connected to the segment −1 < x < 1 at the same boundary. These

(a) (b)

Fig. 4.1 (a) 40 × 20 grid on the surface of the sphere. (b) 40 × 20 × 4 grid in a spherical shell.

●  Methods used:  
o  Finite-difference, finite-element, finite-volume, semi-Lagrangian 
o  Double Fourier, spherical harmonics, spectral elements, discontinuous 

Galerikin (DG), and radial basis functions (RBF) 
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Highlights of some high-order methods in large-scale models  
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(Surface) Div, Grad, Curl, and all that 

Here: 
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Shallow water wave equations on a rotating sphere 
●  Model for the nonlinear dynamics of a shallow, hydrostatic, homogeneous, 

and inviscid fluid layer. 

●  Idealized test-bed for horizontal dynamics of all 3-D global climate models. 
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Simpler problem: transport equation on the sphere 

•  For this tutorial we focus on the transport 
equation for a scalar valued quantity h on 
the surface of the unit sphere in an 
incompressible velocity field u. 

•  The governing PDE can be written in 
Cartesian coordinates as: 

P projects arbitrary three-dimensional vectors onto a plane tangent to the 
unit sphere at x. 

•  Surface gradient operator: 

•   Goal:  Show how to construct good numerical approximations to 
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Surface gradient approximation: Global RBF method 
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Surface gradient approximation: Global RBF method 
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Global RBF collocation for transport equation 



DRWA 2013 
Lecture 4 

Numerical results: solid body rotation 

•  Solid body rotation of a non-smooth cosine bell  
    (Williamson et. al. JCP (1992)) 

Stream Function for flow 

Initial condition (non-smooth: jump in second derivative) 

Flow direction Initial condition 

Details: 
•  Gaussian RBF 
•  Δt = 30 minutes 
•  No stabilization 

required. 
•  Minimum energy 

node sets used. 
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Numerical results: solid body rotation 

•  Convergence results as number of nodes N increases (Flyer & W, 2007) 
•  Error results are for one complete revolution of the cosine bell. 
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Numerical results: solid body rotation 

•  Comparison to other high order methods (Flyer & W, 2007) 

RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier, 
DG=discontinuous Galerkin spectral elements 

Comments: 
•  For RBF and DF N = the number of grid points. 
•  For SH  M = total number of spherical harmonics: (85+1)2 = 7396. 
•  For DG Ne = total number of nodes per element, and k=number of elements. 
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Numerical results: solid body rotation 

•  Comparison to other high order methods (Flyer & W, 2007) 

RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier, 
DG=discontinuous Galerkin spectral elements 

Comments: 
•  For RBF and DF N = the number of grid points. 
•  For SH  M = total number of spherical harmonics: (85+1)2 = 7396. 
•  For DG Ne = total number of nodes per element, and k=number of elements. 
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RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier, 
DG=discontinuous Galerkin spectral elements 

Numerical results: solid body rotation 

•  Comparison to other high order methods (Flyer & W, 2007) 

•  Need ways to reduce this cost. 

•  Next two methods we discussed are focused on this 
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RBF generated finite differences (RBF-FD) 

•  Generalization of finite-difference (FD) method to scattered 
nodes using RBFs to compute the FD weights. 

•  References: 
o  W & Fornberg (2006) 
o  Fornberg & Lehto (2011) 
o  Flyer, Lehto, Blaise, W & St-Cyr (2012) 
o  Bollig, Flyer & Erlebacher (2012) 
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RBF generated finite differences 

Key Steps: 
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RBF generated finite differences 

Key Steps: 
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RBF generated finite differences 

Key Steps: 
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RBF generated finite differences 

•  Example differentiation matrix (DM) for N=16384, n=101: 

•  Compare to the global RBF method, which results in a dense 
differentiation matrix. 
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RBF-FD method for transport equation 
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Numerical results: solid body rotation 

•  Solid body rotation of a non-smooth cosine bell  
    (Williamson et. al. JCP (1992)) 

Stream Function for flow 

Initial condition (non-smooth: jump in second derivative) 

Flow direction Initial condition 

Details: 
•  Gaussian RBF 
•  Stabilization 

required. 
•  Minimum energy 

node sets used. 
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Numerical results: solid body rotation 

•  Convergence results as number of nodes N increases (Fornberg & Lehto, 2011) 
•  Error results are for 10 complete revolution of the cosine bell. 

•  Errors compare favorably with the global RBF method. 
•  RBF-FD method much more computationally efficient than global method. 

Global RBF Method 
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RBFs and partition-of-unity (RBF-PUM) on the sphere 

Background references for interpolation with RBF-PUM 
•  R. Cavoretto & A. DeRossi, Fast and accurate interpolation of large 

scattered data sets on the sphere. J. Comput. Appl. Math. 234 
(2010), 1505–1521. 

•  R. Cavoretto & A. DeRossi, Spherical interpolation using the 
partition of unity method: An efficient and flexible algorithm. Appl. 
Math. Lett. 25 (2012), 1251-1256. 

•  Recent work with my graduate student Kevin Aiton. 
G.B. Wright & K. Aiton. A radial basis function partition of unity method for transport 
on the sphere. In preparation.  
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RBFs and partition-of-unity on the sphere 

Key Steps: 
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RBFs and partition-of-unity on the sphere 

Key Steps: 

M total patches 
n nodes per patch 
ξk = center of patch Ωk 
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ξk = center of patches Ωk 

Key Steps: 
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RBFs and partition-of-unity on the sphere 

M total patches 
n nodes per patch 
ξk = center of patches Ωk 

Key Steps: 

Weight function details: 
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RBFs and partition-of-unity on the sphere 

M total patches 
n nodes per patch 
ξk = center of patches Ωk 

Key Steps: 



DRWA 2013 
Lecture 4 

RBFs and partition-of-unity on the sphere 

M total patches 
n nodes per patch 
ξk = center of patches Ωk 

Key Steps: 
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Choosing the nodes and patches 

Nodes: We use the maximal determinant (MD) node sets, which are 
quasi-uniformly distributed over the sphere. 

Patches: We use minimum energy (ME) points, which are also quasi-
uniformly distributed over the sphere. 

Parameters: Given N nodes, there are 2 parameters to choose for 
determining the total number of patches M: 

o  n = approx. number of nodes in each patch; 
o  q = measure of the amount the patches overlap. 

R.S. Womersley & I. Sloan (2001)	
  

D.P. Hardin & E.B. Saff (2004)	
  

Nodes Patch 
centers 
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Choosing the nodes and patches 

•  Using the quasi-uniformity of the nodes and patches, we compute 
the radii of the patches using the approximation: 

•  The overlap parameter q determines the average number of 
patches a node belongs to, and satisfies the relationship: 
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Choosing the nodes and patches 

•  Illustration of the patches for N=4096, n=100, and different q: 

The computational cost for evaluating a derivative grows at most 
linearly with q and n. 

q=2 q=3 q=4 

M=82 M=123 M=184 
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Comparison: RBF-FD and RBF-PUM 

•  Recall global RBF-type methods result in dense matrices. 

•  Example differentiation matrix (DM) for N=16384, n=101: 
RBF-FD RBF-PUM, q=4 
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RBF-PUM method for transport equation 
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Numerical results: solid body rotation 

Details for all numerical results: 
§  We use the Gaussian RBF 
§  Time-step Δt is not optimized 

§  Overlap is set to q=4 
§  We set  

•  Solid body rotation of a non-smooth cosine bell  
    (Williamson et. al. JCP (1992)) 

Stream Function for flow 

Initial condition (non-smooth: jump in second derivative) 
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Numerical results: solid body rotation 

Initial condition, t=0, with streamlines 

Solution after one revolution, t=2π 

Plots of the RBF-PUM  solution for N=12544, n=100, Δt=2π/1600 : 
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Numerical results: solid body rotation 
Plots of the RBF-PUM error for N=12544, n=100, Δt=2π/1600 : 

Magnitude of the error after ten revolutions 

Magnitude of the error after one revolution 
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Numerical results: solid body rotation 

Comparison of the errors for RBF-FD and RBF-PUM: 

Convergence rates are as expected given smoothness of the initial condition. 
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Numerical results: deformational flow 

•  Deformational/rotational flow (R.D. Nair and P.H. Lauritzen, JCP (2010)) 

Non-smooth 
initial condition: 

Smooth 
initial condition: 



DRWA 2013 
Lecture 4 

Numerical results: deformational flow 

Simulation for non-smooth IC, N=20736, n=100, Δt=5/2400 
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Numerical results: deformational flow 

Convergence plots for increasing N and n, Δt=5/2400  
•  Non-smooth initial condition: 

Convergence rates are as expected given smoothness of the initial condition. 
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Numerical results: deformational flow 

•  Smooth initial condition: 

Convergence plots for increasing N and n, Δt=5/2400 
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Comparison: Wall clock time vs. error 

Wall-clock time(sec) vs. error 

All computations performed using MATLAB 2010a, on a single core of a 2.93 GHz Intel Core i7 processor. 

•  Test: Deformational/Rotational flow smooth initial condition 

•  MATLAB R2013a, Intel Xeon 3.1GHz processor  
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Comparison of Global, RBF-FD, and RBF-PUM methods 

N total nodes 
M total patches 
n nodes per patch 

Derivative approx. Global RBF RBF-FD* RBF-PUM* 
Construction: O(N3) O(n3N) 

 
O(n3M) 
 

Evaluation: O(N2) O(nN) 
 

O(nN) 
 

Cost Comparison: 

*Constants for the RBF-PUM are higher than for RBF-FD. 

N total nodes 
n nodes per FD-stencil 

N total nodes 

Global RBFs RBF-FD RBF-PUM 
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Concluding remarks 
●  The Global RBF collocation method is competitive in terms of accuracy per 

degree of freedom. 

●  It are not competitive in terms of computational complexity. 

●  The RBF generated finite difference (RBF-FD) method shows great promise 
in terms of accuracy and computational cost. 
●  More comparisons with other state-of-the art methods in the next 

lecture. 
●  Parallelization on multi-GPU has already been implemented (Bollig, 

Flyer, & Erlebacher, 2012). 

●  The RBF Partition of unity method (RBF-PUM) also shows great promise. 
●  More comparisons are needed between RBF-PUM and RBF-FD in terms 

of computational cost to achieve a certain accuracy. 
●  Parallel implementations also needed. 

●  More work is needed in developing stable algorithms for “flat” RBFs when 
working on patches of the sphere. 


