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Abstract

In this paper we consider the problem of approximating vector-valued functions over a domain Ω. For
this purpose, we use matrix-valued reproducing kernels, which can be related to Reproducing kernel
Hilbert spaces of vectorial functions and which can be viewed as an extension of the scalar-valued case.
These spaces seem promising, when modelling correlations between the target function components,
as the components are not learned independently of each other. We focus on the interpolation with
such matrix-valued kernels. We derive error bounds for the interpolation error in terms of a generalized
power-function and we introduce a subclass of matrix-valued kernels whose power-functions can be
traced back to the power-function of scalar-valued reproducing kernels. Finally, we apply these kind
of kernels to some artificial data to illustrate the benefit of interpolation with matrix-valued kernels in
comparison to a componentwise approach.

1 Introduction
Kernel methods are useful tools for dealing with a wide variety of different tasks ranging from machine learning e.g. via Support
Vector Machines (SVMs) ([4, 23, 27]), function approximation from scattered data ([8, 14]) and many more. Especially the
approximation aspect can be employed for generating surrogate models to speed up expensive function evaluation, see [30].
In cases where the given output data or the desired target function is vector-valued, simple approaches which build individual
models for each function component can still be very costly, if the output is high dimensional and the component models rely
on independent data sets such that the union of those results in overly large sets. Additionally, approximating a vectorial
function componentwise with identical ansatz spaces might be the wrong choice, e.g. in case of different frequencies. We thus
propose the use of matrix-valued kernels which lead to surrogates that can deal with correlations between function components,
respective structural properties of the target function, and therefore provide a more suitable model. For divergence-free kernels,
matrix-valued kernel approximations have already been succesfully applied, see e.g. ([7, 13, 20, 9]).

This paper is structured as follows: In Section 2 we begin with an introduction to matrix-valued kernels and extend well-known
properties from the scalar-valued case including error estimation. We then introduce a new subclass of matrix-valued kernels and
study its properties in relation to the power-function which enables us to perform a-priori interpolation error estimation in Section
3. A numerical example in Section 4 illustrates the benefits of the matrix-valued ansatz when compared to the scalar-valued case.
Finally, we conclude with some remarks and an outlook.

2 Reproducing kernel Hilbert spaces for matrix-valued kernels
In this section we want to give a short overview over the theory of matrix-valued kernels and their application in interpolation.
As matrix-valued kernels are an extension of the well studied scalar-valued kernels, many of the following notions, properties and
concepts are again suitable extensions of their scalar-valued counterparts. For a more extensive overview with regards to this
topic and other approximation schemes involving matrix-valued kernels such as regression, we refer to literature, e.g. [1, 16, 21].
Definition 2.1 (Matrix-valued kernel). Let Ω be a non empty set. We call a function k : Ω×Ω→ Rm×m a matrix-valued kernel if

k(x , y) = k(y, x)T ∀ x , y ∈ Ω.

Definition 2.2 (Reproducing kernel Hilbert space (RKHS)). Let H denote a Hilbert space of Rm-valued functions over a domain
Ω with inner product 〈·, ·〉H and induced norm ‖·‖H. We call H an Rm-reproducing kernel Hilbert space (Rm-RKHS), if for all
x ∈ Ω and α ∈ Rm the directional point evaluation functional δαx : H→ R defined by

δαx ( f ) := f (x)Tα. (1)

is bounded, i.e.

‖δαx‖H′ := sup
f ∈H\{0}

δαx ( f )

‖ f ‖H
<∞.

Here H′ denotes the space of all linear bounded functionals mapping from H into R.
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Similar to the scalar-valued case, see for example [2], there exists a one-to-one correspondence between RKHS of vector-valued
functions and positive definite matrix-valued kernels. A necessary concept for this is the notion of positive definiteness which is a
straightforward extension from the scalar-valued case and is given as follows:

Definition 2.3 (Definiteness). Let Ω be non empty and k : Ω × Ω → Rm×m be a matrix-valued kernel. For a finite set X :=
{x1, . . . , xn} ⊂ Ω, n ∈ N, we define the Gramian matrix K ∈ Rmn×mn as the block matrix given by

K := k(X , X ) := (k(x i , x j))
n
i, j=1 =





k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)



 . (2)

The kernel k is denoted as positive definite (p. d.), if for all n ∈ N and X = {x1, . . . , xn} ⊂ Ω the Gramian matrix K is positive
semi-definite, i.e. it holds

αT Kα≥ 0 ∀α ∈ Rmn. (3)

The kernel is called strictly positive definite (s.p.d.) if for all n ∈ N and pairwise distinct X = {x1, . . . , xn} ⊂ Ω the Gramian matrix
K is positive definite, i.e. it holds

αT Kα > 0 ∀α ∈ Rnm \ {0}. (4)

Furthermore, we will introduce the abbreviation

k(X , x)T := k(x , X ) := (k(x , x i))
n
i=1 =

�

k(x , x1) · · · k(x , xn)
�

∈ Rm×mn (5)

as it will be useful later on.

Going forward, for A, B symmetric matrices, we will use the notation A� B if A− B is positive semi-definite and A� B if A− B
is positive definite.

As mentioned before, every RKHS corresponds to a positive definite matrix-valued kernel and vice versa. We state this in
the following theorem. A proof for operator-valued kernels, which include the finite dimensional matrix-case, can be found for
example in [12].

Theorem 2.1 (One-to-one correspondence). Let H be an Rm-RKHS. Then there exists a unique positive definite matrix-valued
kernel k : Ω×Ω→ Rm×m such that for all x ∈ Ω, α ∈ Rm and f ∈H

k(·, x)α ∈H and 〈 f , k(·, x)α〉H = f (x)Tα. (6)

Conversely, if k : Ω×Ω→ Rm×m is a positive definite matrix-valued kernel, then there exists a unique Hilbert space H of Rm-valued
functions on Ω such that (6) holds.

In the scalar-valued case, there is an alternative characterization by means of feature maps, i.e. for a p.d. kernel there exists a
mapping Φ : Ω→ V , where V is some Hilbert space, such that the reproducing kernel is given by

k(x , y) = 〈Φ(x),Φ(y)〉V , ∀ x , y ∈ Ω.

In the matrix-valued case this is no longer possible, as inner products are scalar-valued. Nonetheless, the concept can be adapted
by allowing mappings Φ : Ω×Rm→ V such that

αT k(x , y)β = 〈Φ(x ,α),Φ(y,β)〉V , ∀ x , y ∈ Ω, α,β ∈ Rm.

For further details we refer to [5, 15].

Lemma 2.2 (Closed subspaces are RKHS). Let H be an Rm-RKHS. If N ⊂ H is a closed subspace then N is also an Rm-RKHS.
Furthermore, if N is finite dimensional with orthonormal basis (vn)dimN

n=1 , then the reproducing kernel kN : Ω×Ω→ Rm×m of N is
given by

kN (x , y) =
dimN
∑

n=1

vn(x)vn(y)
T . (7)

Proof. By Definition 2.2 it is sufficient to show that the directional point evaluation functionals δαx : N → R are bounded:

‖δαx‖N ′ = sup
f ∈N\{0}

δαx ( f )

‖ f ‖N
≤ sup

f ∈H\{0}

δαx ( f )

‖ f ‖H
= ‖δαx‖H′ <∞.

We now show that kN as defined in (7) satisfies the reproducing property (6): Let α ∈ Rm, it holds

kN (·, x)α=
dimN
∑

n=1

vn(·) vn(x)
Tα

︸ ︷︷ ︸

∈R

∈N

and for vi with i = 1, . . . , dimN

〈vi , kN (·, x)α〉H =
dimN
∑

n=1

〈vi , vn〉H
︸ ︷︷ ︸

=δin

vn(x)
Tα= vi(x)

Tα.

Due to the linearity of the inner product 〈 f , kN (·, x)α〉H = f (x)Tα holds for all f ∈N .
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In general we are interested in finite dimensional subspaces of H which are spanned by kernel evaluations k(·, x i)α for
different centers x i ∈ X = {x1, . . . , xn} ⊂ Ω and directions α ∈ Rm, i.e. we are considering subspaces N (X ) ⊂H of the form

N (X ) := span {k(·, x i)α| x i ∈ X , α ∈ Rm} . (8)

Due to the reproducing property (6) the orthogonal projection operator ΠN (X ) : H→N (X ), which is characterized by



f −ΠN (X )( f ), g
�

H = 0, ∀ g ∈N (X ), (9)

coincides with the interpolation operator IN (X ) : H→N (X ) which interpolates a given function f ∈H on the set X by a function
IN (X )( f ) ∈N (X ), i.e.

f (x i) = IN (X )( f )(x i), ∀ x i ∈ X .

Indeed, using g = k(·, x i)α ∈N (X ) in (9) results in
�

f (x i)−ΠN (X )( f )(x i)
�T
α= 0, ∀ x i ∈ X , ∀α ∈ Rm,

and therefore
f (x i) = ΠN (X )( f )(x i), ∀x i ∈ X .

In summary, this means that the interpolant

ΠN (X )( f ) =
N
∑

i=1

k(·, x i)αi (10)

is characterized by solutions of the linear system

k(X , X )α :=





k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)









α1
...
αn



=





f (x1)
...

f (xn)



=: f (X ). (11)

If the kernel k is strictly positive definite, system (11) admits a unique solution as the system matrix k(X , X ) is invertible.
Therefore, an interpolant is always well defined even if the right hand side in (11) does not stem from the evaluation of a function
f ∈H on the set of centers X . In cases where the kernel is only positive definite, i.e. k(X , X ) is positive semi-definite, the system
has in general no unique solution for arbitrary right hand sides. However, a solution still exists when f ∈H:

Lemma 2.3. Let k : Ω×Ω→ Rm×m be a matrix-valued positive definite kernel, X = {x1, . . . , xn} ⊂ Ω, f ∈H. Furthermore, let

ΠN (X )( f ) =
n
∑

i=1

k(·, x i)αi

be the orthogonal projection of f onto N (X ), where α :=
�

αT
1 · · · αT

n

�T
∈ Rmn. Then it holds

α ∈ k(X , X )+ f (X ) + null(k(X , X )). (12)

Here k(X , X )+ denotes the Moore-Penrose pseudo inverse of k(X , X ) and null(k(X , X )) denotes the null space of the matrix k(X , X )
consisting of all vectors which are mapped to the zero vector, i.e. null(k(X , X )) = span{α ∈ Rm|k(X , X )α= 0}.

Proof. Let e1, . . . , em denote the standard basis of Rm. By (9) the interpolant satisfies

f (x l)
T e j =




ΠN (X )( f ), k(·, x l)e j

�

H =



k(·, x l)e j ,ΠN (X )( f )
�

H

=



k(·, x l)e j , k(·, X )α
�

H

= eT
j k(X , x l)

Tα

= eT
j k(x l , X )α.

Since this holds for all l = 1, . . . , n and j = 1, . . . , m we conclude

k(X , X )α= f (X ), (13)

i.e. α solves (11). Let α∗ := k(X , X )+ f (X ) and by use of (13) we get

k(X , X )α∗ = k(X , X )k(X , X )+ f (X ) = k(X , X )k(X , X )+k(X , X )α= k(X , X )α= f (X )

and therefore α∗ also solves (11) which implies α−α∗ ∈ null(k(X , X )).

Following the above property it seems reasonable to define an approximation to a given function f in the subspace N (X ) by

g(x) := k(x , X )k(X , X )+ f (X )≈ f (x)

even if f /∈ H. In this case the interpolation property at the centers X can no longer be guaranteed as in the strictly positive
definite case, as the linear system (13) might not have a solution.

Before we further investigate how the error between a function f ∈H and its interpolant ΠN (X )( f ) can be quantified, we will
present a direct corollary in which we derive an alternative representation of the reproducing kernel on N (X ):
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Corollary 2.4 (Reproducing kernel of N (X )). It holds

kN (X )(x , y) = k(x , X )k(X , X )+k(X , y).

Proof. By Lemma 2.3 we have
ΠN (X )k(·, x)α= k(·, X )k(X , X )+k(X , x)α.

It is therefore sufficient to show that for any α ∈ Rm

ΠN (X )k(·, x)α= kN (X )(·, x)α.

To this end, we first show that ΠN : H→N (X ) is self-adjoint. For this purpose, let f , g ∈H, then it holds

〈ΠN (X )( f ), g〉= 〈ΠN (X )( f ), g −ΠN (X )(g)〉
︸ ︷︷ ︸

=0

+〈ΠN (X )( f ),ΠN (X )(g)〉

= −〈 f −ΠN (X )( f ),ΠN (X )(g)〉
︸ ︷︷ ︸

=0

+〈 f ,ΠN (X )(g)〉

= 〈 f ,ΠN (X )(g)〉.

By definition of the projection operator ΠN (X )k(·, x)α ∈N (X ) and by the above it holds for any f ∈N (X ):



f ,ΠN (X )k(·, x)α
�

H =



ΠN (X )( f ), k(·, x)α
�

H = 〈 f , k(·, x)α〉H = f (x)Tα.

The above corollary extends a well known result for scalar-valued kernels, see [19], which states that the reproducing kernel
on a closed subspace is equal to the projection of the reproducing kernel on the entire space with regard to either argument.
However, in the matrix-valued case this does not carry over immediately, as the kernel has to be weighted with a direction, since
the kernel itself is not an element of the RKHS.

As a tool to measure the error between f and its interpolant we want to present the so called power-function, which for
example was used in [22] for scalar-valued kernels:

Definition 2.4 (Power-function). Let H be an Rm-RKHS and N ⊂H be a closed subspace. Furthermore, let ΠN : H→N denote
the orthogonal projection onto N . We define the power-function PN : H′→ R by

PN (λ) := sup
f ∈H\{0}

|λ( f )−λ(ΠN ( f ))|
‖ f ‖H

for λ ∈H′. (14)

In the case where λ= δαx , we might also use the notation

PαN (x) := PN (δ
α
x ).

In other words, the power-function maps a linear operator λ to the norm of the composition of λ with the orthogonal
projection onto N⊥:

PN (λ) = sup
f ∈H\{0}

|λ( f )−λ(ΠN ( f ))|
‖ f ‖H

= sup
f ∈H\{0}

|λ ◦ (id−ΠN )( f )|
‖ f ‖H

= sup
f ∈H\{0}

|λ ◦ΠN⊥( f ))|
‖ f ‖H

= ‖λ ◦ΠN⊥‖H′ (15)

We want to remark that the above definition of the power-function is, in contrast to the power-function introduced in [25],
independent of the function f and can be utilized to derive a-priori error bounds which we show in Corollary 2.7.
It is easy to see that for a nested sequence of closed subspaces N1 ⊂ N2 ⊂ . . . the power-function is non-increasing, i.e.
PN1
(λ)≥ PN2

(λ)≥ . . . . For general λ ∈H′ the evaluation of PN (λ) is nontrivial, however, using the Riesz representer vλ ∈H of
λ we obtain an alternative representation of PN (λ):

Corollary 2.5 (Alternative representation of the power-function). Let H be an Rm-RKHS and N ⊂ H be a closed subspace.
Furthermore, let ΠN : H→N denote the orthogonal projection onto N and PN : H′→ R the power-function. For any λ ∈H′ let
vλ ∈H denote its Riesz representer. Then it holds

PN (λ) = ‖vλ −ΠN (vλ)‖H = ‖ΠN⊥(vλ)‖H.

Dolomites Research Notes on Approximation ISSN 2035-6803



Wittwar · Santin · Haasdonk 27

Proof. It follows from the definition of the power-function (14)

PN (λ) = sup
f ∈H\{0}

〈vλ, f −ΠN ( f )〉H
‖ f ‖H

.

Since both ΠN and id−ΠN are orthogonal projections by assumption and therefore self-adjoint, the Cauchy-Schwarz inequality
yields

PN (λ) = sup
f ∈H\{0}

〈vλ −ΠN (vλ), f 〉H
‖ f ‖H

≤ ‖vλ −ΠN (vλ)‖H,

and equality is reached for f = vλ −ΠN (vλ).

For the directional point evaluation functional δαx the Riesz representer is given by the reproducing kernel k(·, x)α. Therefore,
we can easily compute the power-function using the reproducing property of k on H and kN on N :

Corollary 2.6. For any x ∈ Ω and α ∈ Rm it holds

PαN (x)
2 = αT (k(x , x)− kN (x , x))α= αT kN⊥(x , x)α.

Proof. By Corollary 2.5 it holds

PαN (x)
2 = ‖k(·, x)α−ΠN (k(·, x)α)‖2

H

= ‖k(·, x)α− kN (·, x)α‖2
H

= 〈k(·, x)α− kN (·, x)α, k(·, x)α− kN (·, x)α〉H
= 〈k(·, x)α, k(·, x)α〉H − 2 〈k(·, x)α, kN (·, x)α〉H + 〈kN (·, x)α, kN (·, x)α〉H
= αT k(x , x)α− 2αT kN (x , x)α+αT kN (x , x)α

= αT (k(x , x)− kN (x , x))α

= αT kN⊥(x , x)α.

Here the identity αT (k(x , x)− kN (x , x))α= αT kN⊥α follows from Corollary 2.4 as ΠN⊥ = id−ΠN .

Corollary 2.7 (Bound on the interpolation error). Let H be an Rm-RKHS with reproducing kernel k, let N ⊂H be a closed subspace
with reproducing kernel kN and ΠN : H→N the orthogonal projection onto N . Then it holds for any f ∈H and α ∈ Rm

�

�( f (x)− (ΠN ( f ))(x))
T α
�

�≤ PαN (x)‖ f −ΠN ( f )‖H ≤ PαN (x)‖ f ‖H, ∀ x ∈ Ω (16)

and

‖ f (x)− (ΠN ( f ))(x)‖2 ≤ ‖k(x , x)− kN (x , x)‖1/2
2 ‖ f −ΠN ( f )‖H,

‖ f (x)− (ΠN ( f ))(x)‖∞ ≤ max
i=1,...,m

|k(x , x)ii − kN (x , x)ii |1/2‖ f −ΠN ( f )‖H,

‖ f (x)− (ΠN ( f ))(x)‖1 ≤
p

m‖k(x , x)− kN (x , x)‖1/2
2 ‖ f −ΠN ( f )‖H.

Here ‖ · ‖2 denotes the spectral norm on Rm×m.

Proof. It holds
�

�( f (x)− (ΠN ( f ))(x))
T α
�

�=
�

�〈 f −ΠN ( f ), k(·, x)α〉H
�

�

=
�

�〈(id−ΠN )( f ), k(·, x)α〉H
�

�

=
�

�




(id−ΠN )
2( f ), k(·, x)α

�

H

�

�

=
�

�〈(id−ΠN )( f ), (id−ΠN )(k(·, x)α)〉H
�

� (17)

≤ ‖ f −ΠN ( f )‖H‖k(·, x)α− kN (·, x)α‖H
= ‖ f −ΠN ( f )‖HPαN (x).

Choosing α= f (x)− (ΠN ( f ))(x) and applying Corollary 2.6 we get

‖ f (x)− (ΠN ( f ))(x)‖2
2 ≤

�

αT (k(x , x)− kN (x , x))α
�1/2
‖ f −ΠN ( f )‖H

≤ ‖α‖2‖(k(x , x)− kN (x , x)‖1/2
2 ‖ f −ΠN ( f )‖H

and after dividing by ‖α‖= ‖ f (x)− (ΠN ( f ))(x)‖2

‖ f (x)− (ΠN ( f ))(x)‖2 ≤ ‖k(x , x)− kN (x , x)‖1/2
2 ‖ f −ΠN ( f )‖H

Choosing α= ei results in

| f (x)i − (ΠN ( f )(x))i | ≤ ‖ f ‖HP ei
N (x)≤ |k(x , x)ii − kN (x , x)ii |1/2‖ f −ΠN ( f )‖H

Maximization over i ∈ {1, . . . , m} gives the desired bound.
The last inequality follows directly from the first inequality and the inequality ‖ · ‖1 ≤

p
m‖ · ‖2 on Rm.
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3 Separable matrix-valued kernels
In order to practically solve interpolation problems, we need to take a look at how matrix-valued kernels can be constructed.
To this end, we consider matrix-valued kernels which stem from scalar-valued kernels. In particular, we focus on the notion of
separable kernels, see [1], and we introduce a new subtype for which error estimation via the power-function can be traced back
to the power-functions of the scalar-valued kernels that were used to generate the matrix-valued kernel. For further details and
different construction methods we refer to previous works, e.g. [3, 18, 6], in this field.

Definition 3.1 (Separable Kernels). Let k : Ω×Ω→ Rm×m be a matrix-valued kernel, let Q1, . . . ,Qp ∈ Rm×m be a collection of
symmetric matrices and k1, . . . , kp : Ω×Ω→ R a collection of scalar-valued kernels, such that

k(x , y) =
p
∑

i=1

ki(x , y)Q i , for all x , y ∈ Ω. (18)

We call (ki ,Q i)
p
i=1 a decomposition of k and p its length. If p is minimal then the kernel k is called separable of order p.

To guarantee the (strict) positive definiteness of the kernel k further assumptions on the scalar-valued kernels ki and symmetric
matrices Q i have to be made. Taking a closer look at the Gramian matrix k(X , X ) for some set X = {x1, . . . , xn} ⊂ Ω it is easy to
see that the identity

k(X , X ) =
p
∑

i=1

ki(X , X )⊗Q i (19)

holds, where ki(X , X )⊗Q i denotes the Kronecker product. Since sums and Kronecker products of positive (semi-)definite matrices
are positive (semi-)definite, we can conclude that the positive definiteness of ki and positive (semi-)definiteness of Q i is sufficient
to guarantee that the kernel k is positive definite. In order to guarantee strict positive definiteness of k further assumptions on ki
and Q i have to be made:

Lemma 3.1 (Separable kernel is s.p.d). Let k : Ω×Ω→ Rm×m be a separable kernel of order p with decomposition (ki ,Q i)
p
i=1. If

the kernels k1, . . . , kp are s.p.d. and the matrices Q1, . . . ,Qp are positive semi-definite, such that
∑p

i=1 Q i is positive definite, then k is
s.p.d.

Proof. Let X = {x1, . . . xn} ⊂ Ω be a set of pairwise distinct points. Furthermore, let Ki := ki(X , X ) ∈ Rn×n and K := k(X , X ) ∈
Rmn×mn. It holds

K =
p
∑

i=1

Ki ⊗Q i .

Since the kernels ki , i = 1, . . . , p are s.p.d the matrices K1, . . . , Kp are positive definite which implies Ki � λIn, where

λ=min
�

λ′|λ′ is an eigenvalue of Ki for some i ∈ {1, . . . , p}
	

> 0.

Therefore,

K =
p
∑

i=1

Ki ⊗Q i �
p
∑

i=1

λIn ⊗Q i = λIn ⊗

� p
∑

i=1

Q i

�

� 0.

It is worthwhile to mention that the assumption
∑p

i=1 Q i � 0 also guarantees that the kernel k is universal, c.f [26, 17], if the
scalar-valued kernels ki are universal. This means that for every compact subset Ωc ⊂ Ω the space

span {k(·, x)α| x ∈ Ωc , α ∈ Rm}

is dense in the set of continuous function C(Ωc) over Ωc . For a proof we refer to [5].
In the above case of Definition 3.1 we call p minimal if any other decomposition of k has at least length p. This minimality

can be directly related to the linear independency of the set of scalar-valued kernels {ki}
p
i=1 and symmetric matrices {Q i}

p
i=1:

Lemma 3.2 (Sufficient and necessary minimality condition). Let k be a separable kernel such that there exists a decomposition of
length p. Then the following properties are equivalent

i) p is minimal.

ii) For any decomposition (ki ,Q i)
p
i=1 of length p the sets

�

k1, . . . , kp

	

and
�

Q1, . . . ,Qp

	

are linearly independent, respectively.

Proof. “⇒” Let (ki ,Q i)
p
i=1 be a decomposition of length p. Assume that either

�

k1, . . . , kp

	

or
�

Q1, . . . ,Qp

	

is linearly dependent.
Without loss of generality (w.l.o.g.) we can assume that either

k1 =
p
∑

i=2

αi ki or Q1 =
p
∑

i=2

βiQ i .

Therefore,

k =
p
∑

i=1

kiQ i =
p
∑

i=2

ki(Q i +αiQ1) or k =
p
∑

i=2

(ki + βi k1)Q i .
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In either case we found a smaller decomposition which contradicts the minimality of p since Q i +αiQ1 is still symmetric and
ki + βi k1 is still a matrix-valued kernel.
“⇐” Let (ki ,Q i)

p
i=1 be a decomposition of length p such that

�

k1, . . . , kp

	

and
�

Q1, . . . ,Qp

	

are linearly independent. Assume there

exists a decomposition (k̂i , Q̂ i)
q
i=1 of length q < p. Let vec : Rm×m→ Rm2

denote the vectorization operator. We have

p
∑

i=1

kiQ i = k =
q
∑

j=1

k̂ jQ̂ j

and thus
p
∑

i=1

vec(Q i)ki =
q
∑

j=1

vec(Q̂ j)k̂ j .

Setting Q := [vec(Q1) . . . vec(Qp)] ∈ Rm2×p, Q̂ := [vec(Q̂1) . . . vec(Q̂q)] ∈ Rm2×q we get

Q





k1
...

kp



= Q̂







k̂1
...

k̂q






. (20)

Since
�

Q1, . . . ,Qp

	

is linearly indendent it holds rank(Q) = p and, therefore, there exists a left inverse A∈ Rp×m2
, i.e. AQ = Ip.

Multiplying both sides in (20) with A from the left, we get





k1
...

kp



= AQ̂







k̂1
...

k̂q






= Â







k̂1
...

k̂q







with Â := AQ̂ ∈ Rp×q. Ultimately, we get span
�

k1, . . . , kp

	

⊂ span
�

k̂1, . . . , k̂q

	

which contradicts the linear independency of
�

k1, . . . , kp

	

.

It is clear that k given by (18) is a matrix-valued kernel with regards to Definition 2.1, as

k(x , y)T =

� p
∑

i=1

ki(x , y)Q i

�T

=
p
∑

i=1

ki(x , y)QT
i =

p
∑

i=1

ki(y, x)Q i = k(y, x).

However, the minimality of p by no means implies the uniqueness of the decomposition in the sense that for decompositions
(ki ,Q i)

p
i=1 and (k̂i , Q̂ i)

p
i=1 there exists a permutation ι of {1, . . . , p} such that

kiQ i = k̂ι(i)Q̂ι(i).

This is illustrated by the following example:

Example 3.1. Let k1, k2 : Ω×Ω→ R denote two linearly independent scalar-valued kernels. Then k : Ω×Ω→ R2 given by

k(x , y) :=
�

k1(x , y) 0
0 k1(x , y) + k2(x , y)

�

denotes a matrix-valued-kernel which has infinitely many minimal decompositions. Let λ ∈ R, then

k(x , y) = k1(x , y)Q1(λ) + ((1−λ)k1 + k2)(x , y)Q2,

where

Q1(λ) =
�

1 0
0 λ

�

, Q2 =
�

0 0
0 1

�

.

We note that there exists only one decomposition for which the spaces spanned by the columns of Q1(λ) and Q2 have zero
intersection. This leads us to the definition of a subclass of separable kernels:

Definition 3.2 (Uncoupled separable kernels). Let k : Ω×Ω→ Rm×m be a separable matrix-valued kernel and (ki ,Q i)
p
i=1 be a

decomposition. The decomposition is called uncoupled if

rank

� p
∑

i=1

Q i

�

=
p
∑

i=1

rank(Q i). (21)

If there exists at least one uncoupled decomposition, the kernel is also called uncoupled.

Using the abbreviation Q :=
p
∑

i=1
Q i , the rank condition (21) is equivalent to the assumption that the range R(Q) :=

span {Qα|α ∈ Rm} is equal to the direct sum of the ranges R(Q i) of the individual matrices. We will state this in the following
Lemma:
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Lemma 3.3. Let Q1. . . . ,Qp ∈ Rm×m be symmetric matrices. Then the following statements are equivalent

i) rank

�

p
∑

i=1
Q i

�

=
p
∑

i=1
rank(Q i)

ii) R

�

p
∑

i=1
Q i

�

=
p
⊕

i=1
R(Q i).

Proof. “⇒” We first show that the sum is direct. It is sufficient to show that R(Q i)∩ R(Q j) = {0} for i 6= j. W.l.o.g. we assume
i = 1 and j = 2 and R(Q1)∩ R(Q2) 6= {0}. It follows dim(R(Q1)∩ R(Q1))≥ 1 and thus

rank

� p
∑

i=1

Q i

�

= dim R

� p
∑

i=1

Q i

�

≤ dim R(Q1) + dim R(Q2)− dim(R(Q1)∩ R(Q2)) + dim R

� p
∑

i=3

Q i

�

<

p
∑

i=1

dim R(Q i) =
p
∑

i=1

rank(Q i),

which contradicts i). It is obvious that R

�

p
∑

i=1
Q i

�

⊂
p
⊕

i=1
R(Q i) and by i) the vector spaces have the same dimension and are

therefore equal.
“⇐” Since the sum is direct it holds

rank

� p
∑

i=1

Q i

�

= dim R

� p
∑

i=1

Q i

�

= dim

� p
⊕

i=1

R(Q i)

�

=
p
∑

i=1

dim R(Q i) =
p
∑

i=1

rank(Q i).

With the notion of uncoupledness we can now impose a sufficient condition for the uniqueness of a minimal decomposition
up to permutations and scalings:

Theorem 3.4 (Uniqueness of uncoupled decompositions). Let k be a separable matrix-valued kernel with uncoupled decomposition
(ki ,Q i)

p
i=1. If p is minimal, then the decomposition is unique, up to permutations and scalings.

Proof. Since the decomposition is uncoupled we have R(Q1)∩R(Q2 + · · ·+Qp) = {0} and R(Q1 +Q2 + · · ·+Qp) = R(Q1)+R(Q2 +
· · ·+Qp). Therefore, there exists a c ∈ Rm such that Q1c 6= 0 and Q2c, . . . ,Qpc = 0. We get

k1 Q1c
︸︷︷︸

6=0

= k1Q1c + k2Q2c + · · ·+ kpQpc

= k̂1Q̂1c + . . . k̂pQ̂pc.

Thus, k1 can be written as a linear combination of k̂1, . . . , k̂p such that

k1 =
p
∑

i=1

k̂i a1i .

Similarly, the same holds for k2, . . . , kp and therefore there exists a matrix A= (ai j)
p
i, j=1 such that





k1
...

kp



= A







k̂1
...

k̂p






.

Furthermore, it holds for i = 1, . . . , p:

Q̂ j =
p
∑

i=1

ai, jQ i

and therefore

R(Q̂ j) =
p
⊕

i=1

ai, jR(Q i).

Since (k̂ j , Q̂ j)
p
j=1 is uncoupled it holds for j 6= j′:

R(Q̂ j)∩ R(Q̂ j′) = {0} ,
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from which we conclude that ai, j or ai, j′ is equal to 0. Thus, for every i there is exactly one j = j(i) such that ai, j(i) 6= 0 and the
mapping i 7→ j(i) is bijective and it holds

ki =
p
∑

j=1

ai, j k̂ j = ai, j(i) k̂ j(i).

Since both (ki ,Q i)
p
i=1 and (k̂ j , Q̂ j)

p
j=1 are decompositions of k we get

0= k− k =
p
∑

i=1

kiQ i −
p
∑

j=1

k̂ jQ̂ j

=
p
∑

i=1

kiQ i −
p
∑

i=1

k̂ j(i)Q̂ j(i)

=
p
∑

i=1

k̂ j(i)(ai, j(i)Q i − Q̂ j(i)).

Since the kernels k1, . . . , kp and k̂1, . . . , k̂p are linearly independent by Lemma 3.2, respectively, we conclude that

ai, j(i)Q i = Q̂ j(i)

which results in
kiQ i = k̂ j(i)ai, j(i)Q i = k̂ j(i)Q̂ j(i).

In general the existence of an uncoupled or even minimal uncoupled decomposition cannot be guaranteed, as (21) necessitates
that the length of any uncoupled decomposition is at most m. Therefore, any separable kernel of order m+ 1 possesses no
uncoupled decomposition. In the following we want to present a sufficient criterion for the existence of a minimal uncoupled
decomposition. This is motivated by trying to extend the well known fact for scalar-valued kernels that the product of two
positive definite kernels is again a positive definite kernel, see [24]. This result does not extend to the matrix-valued case, since
the kernels additionally have to commute for every pair of input parameters, i.e. for k1, k2 : Ω×Ω→ Rm×m it must hold

k1(x , y)k2(x , y) = k2(x , y)k1(x , y), ∀ (x , y) ∈ Ω×Ω (22)

to have that k := k1 · k2 is a matrix-valued kernel. However, even if (22) is satisfied and both k1, k2 are positive definite the kernel
k can be indefinite, as the following example shows:

Example 3.2. Let k1, k2 : R×R→ R be given by

k1(x , y) := e−
1

10 (x−y)2 and k2(x , y) := e−(x−y)2

and let Q1,Q2 ∈ R2×2 be the symmetric matrices

Q1 =
�

1 1
1 1

�

and Q2 =
�

0 0
0 1

�

.

Furthermore, let k : Ω×Ω→ R2×2 denote the matrix-valued kernel with decomposition (ki ,Q i)2i=1 and X = {0,1}. By Lemma 3.1
k is a positive definite kernel, but k2 is not, as

k2(X , X ) =









5 3 2e−
1
5 + 2e−

11
10 + e−2 2e−

1
5 + e−

11
10

3 2 2e−
1
5 + e−

11
10 2e−

1
5

2e−
1
5 + 2e−

11
10 + e−2 2e−

1
5 + e−

11
10 5 3

2e−
1
5 + e−

11
10 2e−

1
5 3 2









has a negative eigenvalue λ≈ −0.044.

Taking a closer look, the matrix k2(X , X ) can be written as a block-Hadamard product

k2(X , X ) = k(X , X )� k(X , X ) := (k(x i , x j)k(x i , x j))i, j .

As it was shown in [10], the block-Hadamard product of two positive (semi-)definite block matrices A= (Ai j)i, j , B = (Bi j)i, j is
positive (semi-)definite if each block of A commutes with each block of B. If this restriction is applied to every possible Gramian
matrix of a matrix-valued kernel, this leads to the condition

k(x , y)k( x̃ , ỹ) = k( x̃ , ỹ)k(x , y), ∀ x , y, x̃ , ỹ ∈ Ω.

In this case, the kernel k can be characterized as follows:

Theorem 3.5. Let k : Ω×Ω → Rm×m be matrix-valued kernel such that k(x , y) = k(y, x) for all x , y ∈ Ω. Then the following
statements are equivalent

i) k(x , y)k( x̃ , ỹ) = k( x̃ , ỹ)k(x , y) for all x , x̃ , y, ỹ ∈ Ω
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ii) There exists an orthogonal matrix P ∈ Rm×m such that PT k(x , y)P is diagonal for all x , y ∈ Ω.

iii) k is separable and there exists an uncoupled decomposition (ki ,Q i)
p
i=1 with length p ≤ m and for which Q iQ j = 0 for i 6= j.

Proof. “i)⇒ ii)” Let A1, . . . , Ad denote a basis of span {k(x , y)|x , y ∈ Ω}. Then the Ai are symmetric, commute with one other and
therefore are simultaneously diagonalizable, i.e. there exists an orthogonal matrix P such that PT Ai P is diagonal for i = 1, . . . , m.
It follows, that k(x , y) ∈ span {A1, . . .Ad} is diagonalizable for any x , y ∈ Ω
“ii)⇒ iii)” By assumption it holds

PT k(x , y)P = diag(k1(x , y), . . . , kd(x , y))

and ki : Ω×Ω→ R, i = 1, . . . , d are scalar-valued kernels. For i = 1, . . . , d let J(i) :=
�

j : ki = αi, j k j for some αi, j ∈ R
	

. Then
there exist i1, . . . , ip with minimal p such that

p
⋃

l=1

J(il) = {1, . . . , d} and J(i)∩ J(i′) = ; for i 6= i′.

It holds

k =
m
∑

i=1

ki(Pei)(Pei)
T =

m
∑

l=1

kil

∑

j∈J(il )

αil , j(Pe j)(Pe j)
T

︸ ︷︷ ︸

=:Qil

=
m
∑

l=1

kil Q il .

Furthermore,
Q iQ i′ =

∑

j∈J(i)

∑

j′∈J(i′)

αi, jαi′ , j′(Pe j) (Pe j)
T (Pe j′)

︸ ︷︷ ︸

=0

(Pe j′)
T = 0

“iii)⇒ i)” It holds

k(x , y)k( x̃ , ỹ) =

� p
∑

i=1

ki(x , y)Q i

�� p
∑

j=1

k j( x̃ , ỹ)Q j

�

=
p
∑

i=1

p
∑

j=1

ki(x , y)k j( x̃ , ỹ)Q iQ j =
p
∑

i=1

ki(x , y)ki( x̃ , ỹ)Q2
i

=
p
∑

i=1

ki( x̃ , ỹ)ki(x , y)Q2
i =

p
∑

i=1

p
∑

j=1

k j( x̃ , ỹ)ki(x , y)Q jQ i

=

� p
∑

j=1

k j( x̃ , ỹ)Q j

�� p
∑

i=1

ki(x , y)Q i

�

= k( x̃ , ỹ)k(x , y).

We conclude this subsection with a direct corollary:

Corollary 3.6. Let k : Ω×Ω→ Rm×m be a positive definite matrix-valued kernel that satisfies k(x , y) = k(y, x) for all x , y ∈ Ω. If
one of the conditions in Theorem 3.5 is met, then kn is a positive definite matrix-valued kernel for any n ∈ N0.

Proof. By Theorem 3.5 k can be decomposed as

k(x , y) =
p
∑

l=1

klQ l

with positive-definite scalar-valued kernels kl and positive semi-definite matrices Q l satisfying Q lQ l′ = 0 for l 6= l ′. Therefore, for
any set X = {x1, . . . , xn} of p.w. distinct points

kn(X , X ) =
p
∑

l=1

kn
l (X , X )
︸ ︷︷ ︸

�0

⊗ Q l
︸︷︷︸

�0
︸ ︷︷ ︸

�0

� 0.
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3.1 RKHS for separable kernels

As we want to consider approximations in the RKHS of separable kernels, we will show how the RKHS of the matrix-valued
kernel k relates to the RKHS of the scalar-valued kernels ki and matrices Q i which form a decomposition of k. We start with
decompositions of order 1:

Lemma 3.7 (RKHS of separable kernels of order 1). Let ks be a scalar-valued p.d. kernel and Q ∈ Rm×m a positive semi-definite
matrix. Then k := ks ·Q is a p.d. matrix-valued kernel and it holds

Hk =Hks
e1 ⊕ · · · ⊕Hks

ep. (23)

Here {ei}
p
i=1 denotes a basis of the range of Q.

Proof. We first show that the sum is direct. Let fi ∈Hks
ei , i = 1, .., p. Assume that

f1 + · · ·+ fp = 0

and there is at least one j ∈ {1, . . . , p} such that f j 6= 0. It follows

span
�

e j

	

3 f j(x) = −
p
∑

i=1,i 6= j

fi(x) ∈ span
�

e1, . . . , e j−1, e j+1, . . . , ep

	

, ∀ x ∈ Ω

and therefore
f j(x) ∈ span

�

e j

	

∩ span
�

e1, . . . , e j−1, e j+1, . . . , ep

	

= {0} , ∀ x ∈ Ω,

i.e. f j = 0. Iteratively we get fi = 0 for i = 1, . . . , p and the sum is direct. We now show that the right hand side of (23) is a
subspace of the left hand side. Therefore, let fi ∈Hks

ei , i = 1, .., p. Then there exist sequences (α(i)n )n∈N ⊂ R and (x (i)n )n∈N ⊂ Ω
such that

fi =

�∞
∑

n=1

ks(·, x (i)n )α
(i)
n

�

ei

=
∞
∑

n=1

k(·, x (i)n )α
(i)
n vi ,

where vi ∈ Rm satisfies Qvi = ei . We conclude that fi ∈Hk for i = 1, . . . , p and thus

f1 + · · ·+ fp ∈Hk.

Assume that Hk 6=Hks
e1 ⊕ · · · ⊕Hks

ep. Then for any f ∈
�

Hks
e1 ⊕ · · · ⊕Hks

ep.
�⊥

it holds

〈 f , ks(·, x)ei〉H = 0 ∀ x ∈ Ω, i = 1, . . . , p.

Due to the linearity of the inner products it also holds

f (x)Tα= 〈 f , k(·, x)α〉H = 0 ∀ x ∈ Ω

and thus f = 0.

Remark 1. In the special case of Q = Im, which where for example considered in [11, 29] this leads to the RKHS Hk =
m
⊗

i=1
Hks

with the inner product given by

〈 f , g〉Hk
= 〈( f1, . . . , fm), (g1, . . . , gm)〉=

m
∑

i=1

〈 fi , gi〉Hks
.

We have seen, c.f. Corollary 2.7 that the power-function is a valuable tool to provide error estimators to the pointwise
error between a function f in H and its interpolant in a subspace N . For scalar-valued kernels bounds on the decay of the
power-functions are known for a wide variety of kernels, see [28] for more details. We want to make use of these bounds, to
derive similar bound for the matrix-valued case. Again, we restrict ourself to the separable kernels of order 1 at first:

Lemma 3.8 (Power-function of separable kernels of order 1). Let k : Ω × Ω → Rm×m be a separable kernel of order 1 with
decomposition (k1,Q1), where k1 is a p.d. kernel and Q1 is positive semi-definite. Let Xn = {x1, . . . , xn} ⊂ Ω be a set of pairwise
distinct points. Furthermore, let N :=Nk(Xn), N̂ := span

�

k1(·, x j)| x j ∈ Xn

	

and let PN̂ denote the power function of the scalar-
valued kernel k1. Then it holds

�

PαN (x)
�2
= PN̂ (x)

2αTQ1α. (24)

Proof. Since k = k1Q1 and due to Corollary 2.6 it is sufficient to show that kN = k1,N̂Q1. Let K1 := k1(Xn, Xn). It is easy to see
that k(x , Xn) = k1(x , Xn)⊗Q1 ∈ Rmn×m and K = k(Xn, Xn) = K1 ⊗Q1 and therefore by applying Corollary 2.4 we get

kN (x , y) = k(x , Xn)
T K+k(y, Xn)

= (k1(x , Xn)⊗Q1)
T (K1 ⊗Q1)

+ k1(y, Xn)⊗ (Q)

=
�

k1(x , Xn)
T K+1 k1(y, Xn)

�

⊗
�

Q1Q+1 Q1

�

= k1,N̂ (x , y)⊗Q1 = k1,N̂ (x , y)Q1.

Dolomites Research Notes on Approximation ISSN 2035-6803



Wittwar · Santin · Haasdonk 34

We now extend this result to separable kernels of higher order. It is easy to see that for k with decomposition (ki ,Q i)
p
i=1 it

holds
H =H1 + · · ·+Hp (25)

where Hi denotes the RKHS of the separable kernel kiQ i of order 1. By Lemma 3.7 we know that Hi can be written as a direct
sum. However, in (25) the sum does no longer need to be direct which causes issues when trying to determine the power-function
of k in terms of the power-function of the kernels ki . This can be traced back to the fact that for a set X = {x1, . . . , xn} ⊂ Ω the
space spanned by the functions k(·, x)α for x ∈ X and α ∈ Rm is not equal to the sum of the individual subspaces spanned by
ki(·, x)Q iα.

Lemma 3.9 (Power-function bound of separable kernel of order p). Let k : Ω×Ω→ Rm×m be a separable matrix-valued kernel
with decomposition (ki ,Q i)

p
i=1 and X = {x1, . . . , xn} ⊂ Ω. Furthermore, let k̂i := kiQ i with Hi as its respective RKHS and

Ni := span
�

k̂i(·, x)α| x ∈ X , α ∈ Rm
	

, i = 1, . . . N ,

N := span {k(·, x)α| x ∈ X , α ∈ Rm}
Then it holds for all x ∈ Ω and α ∈ Rm:

p
∑

i=1

�

PαNi
(x)
�2
≤ PαN (x)

2. (26)

Proof. Ni ⊂Hi is a closed subspace with reproducing kernel k̂i,Ni
and by Corollary 2.6 it holds

PαNi
(x)2 = αT

�

k̂i(x , x)− k̂i,Ni
(x , x)

�

α. (27)

We make use of the fact that the sum M :=N1 + · · ·+Np is an RKHS with reproducing kernel kM = k̂1,N1
+ · · ·+ k̂p,Np

and norm
given by

‖ f ‖M =min

¨ p
∑

i=1

‖ fi‖2
Ni
| f =

p
∑

i=1

fi , fi ∈Ni

«

.

A proof for this assertion for the scalar-valued case can be found in [2]. The proof for the matrix-valued case only involves minor
modifications. For the sake of completeness it is shown in the appendix.

It now holds

‖ f ‖M =min

¨ p
∑

i=1

‖ fi‖2
Ni
| f =

p
∑

i=1

fi , fi ∈Ni

«

=min

¨ p
∑

i=1

‖ fi‖2
Hi
| f =

p
∑

i=1

fi , fi ∈Ni

«

= ‖ f ‖H
and therefore kM is the reproducing kernel of the subspace M ⊂H. Using (27) and Corollary 2.6 we conclude that

PαM(x)
2 = αT

� p
∑

i=1

k̂i(x , x)−
p
∑

i=1

k̂i,Ni
(x , x)

�

α

=
p
∑

i=1

αT
�

k̂i(x , x)− k̂i,Ni
(x , x)

�

α

=
p
∑

i=1

PαNi
(x)2. (28)

Since N ⊂M is a subspace the orthogonal complements satisfy M⊥ ⊂N⊥ and by applying Corollary 2.5 it follows
p
∑

i=1

PαNi
(x)2 = PαM(x)

2 = ‖ΠM⊥k(·, x)α‖H ≤ ‖ΠN⊥k(·, x)α‖H = PαN (x)
2.

We see that in general equality cannot be guaranteed. It only holds if the space M is equal to N . This is equivalent to the fact
that all k̂i(·, x)α with x ∈ X lie in N . We will see in the following that this can be achieved when the decomposition is uncoupled:

Lemma 3.10 (Power-function of uncoupled separable kernels of order p). Let k : Ω×Ω→ Rm×m be a separable matrix-valued
kernel with uncoupled decomposition (ki ,Q i)

p
i=1 and X = {x1, . . . , xn} ⊂ Ω. Furthermore, let k̂i := kiQ i with Hi as its respective

RKHS and

Ni := span
�

k̂i(·, x)α| x ∈ X , α ∈ Rm
	

, i = 1, . . . N ,

N := span {k(·, x)α| x ∈ X , α ∈ Rm}
Then it holds for all x ∈ Ω and α ∈ Rm:

p
∑

i=1

�

PαNi
(x)
�2
= PαN (x)

2. (29)
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Proof. As mentioned before, it is sufficient to show that k̂i(·, x)α ∈ N for all x ∈ X , α ∈ Rm and i = 1, . . . , p. Because the
decomposition is uncoupled it holds with Lemma 3.3 that

R

� p
∑

i=1

Q i

�

=
p
⊕

i=1

R(Q i).

Therefore, for every α ∈ Rm there exists a β ∈ Rm such that Q iα = (Q1 + · · ·+Qp)β . Since the sum is direct it holds that Q jβ = 0
for j 6= i and therefore

k̂i(·, x)α= ki(·, x)Q iα=
p
∑

i=1

ki(·, x)Q iβ = k(·, x)β ∈N .

Lastly, we want to remark that while a lower bound in terms of the sum of the power-functions for the matrix-valued kernels
of order 1 can be achieved, as seen in Lemma 3.9, an upper bound of this kind is not available in general as the following example
shows.

Example 3.3. Let Ω ⊂ Rd and k1, k2 : Ω×Ω→ R be the polynomial kernels given by

k1(x , y) = x T y and k2(x , y) = (x T y)2,

respectively, then the RKHS H1 is equal to the space of multivariate polynomials of degree 1 and H2 to the space of multivariate
polynomials of degree 2. In particular, dim(H1) = d and dim(H2) = d(d + 1)/2 and therefore by choosing X = {x i}

d(d+1)/2
i=1 such

that {k2(·, x i)}
d(d+1)/2
i=1 is linearly independent, the power-functions PN1(X ) and PN2(X ) vanish. However, the RKHS for k := k1 + k2

is given by the space of multivariate polynomials of degree 1 or 2 for which dim(H) = d(d+3)/2 holds. Consequently, N (X ) 6=H
and PN (X ) does not vanish.

4 Numerical Examples

4.1 Example 1

We now investigate the approximation quality of interpolation with matrix-valued kernels compared to a scalar-valued, i.e.
componentwise approach. For this, we consider the target function f : Ω := [−2, 2]→ R3 given by

f (x) :=





1p
3

1p
3

1p
3

0 1p
2
− 1p

2

−
p

2p
3

1p
6

1p
6









e−2.5(x−0.5)2 + e−2.0(x+0.5)2

e−3.5(x−0.7)2

1





and the uncoupled separable kernels k1, . . . , k4 : Ω×Ω→ R3×3 of order 1, 3, 2 and 3, respectively, given by

k1(x , y) := e−ε11(x−y)2 I3

k2(x , y) := e−ε21(x−y)2 e1eT
1 + e−ε22(x−y)2 e2eT

2 + e−ε23(x−y)2 e3eT
3

k3(x , y) := e−ε31(x−y)2 v1vT
1 + e−ε32(x−y)2

�

v2vT
2 + v3vT

3

�

k4(x , y) := e−ε41(x−y)2 v1vT
1 + e−ε42(x−y)2 v2vT

2 + e−ε43(x−y)2 v3vT
3 ,

with shape parameters ε11, . . . ,ε43 ∈ (0,∞). Here ei denotes the i-th standard basis vector of R3 and v1, v2, v3 are an orthonormal
basis of eigenvectors of the covariance matrix C of f , which is computed by taking 401 random evaluations of f and setting

C :=
1

400

401
∑

i=1

( fi −µ)( fi −µ)T ,

where µ ∈ R3 contains the componentwise mean given by

µ=
1

400

401
∑

i=1

fi .

The kernels k1 and k2 handle the data componentwise that is, for the kernel k1 the same scalar-valued kernel is used
for every component, while for k2 each component is treated by a different scalar-valued kernel. However, for the kernels
k3 and k4 this is not the case. The shape parameters are determined by minimizing the maximum pointwise interpolation
error eki

(x) := ‖ f (x) − ski
(x)‖2 evaluated on a validation set ΩV of 40 randomly chosen points in Ω for 50 logarithmically

equidistantly distributed parameters in M := [0.1,100], where ski
is the interpolant on the set of 35 equidistantly distributed

centers X :=
�

−2+ 4
34 i|i = 0, . . . , 34

	

belonging to the RKHS that corresponds to ki . The resulting parameters are listed in Table
1.
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Parameter ε11 ε21 ε22 ε23 ε31 ε32 ε41 ε42 ε43

Value 1.931 1.931 1.931 1.600 0.244 3.393 0.244 3.393 3.393

Table 1: Results of the parameter selection for the different kernels.

We note that for the kernels k1 and k2 the selected shape parameters only differ in the third component, where a smaller
parameter and therefore wider Gaussian was choosen for k2. For the kernels k3 and k4 the selected parameters result in the same
matrix-valued kernel. This can be explained by the fact that the eigenvectors v2 and v3 of the covariance matrix C were a-priori
grouped together based on the fact that their corresponding eigenvalues λ2 = 0.112 and λ3 = 0.206 are of similar magnitude.
This is reasonable as the eigenvalues are precisely the standard deviation of the data along the directions v2 and v3 and therefore
the same Gaussian might be used for both directions.

Using the above parameters we compute the maximum pointwise interpolation error eki
(XN ) on a test set ΩT ⊂ Ω of 400

equidistantly distributed points for an increasing number of equidistant training centers, i.e. XN :=
�

−2+ 4
N−1 i|i = 0, . . . , N − 1

	

.
The results for N = 1, . . . , 35 are plotted in Figure 1.

We can see that for a small number of centers, the difference in the approximation quality between the scalar-valued and
matrix-valued approach is negligible. However, as the number of centers N increases, the kernel k3 = k4 begins to outperform the
componentwise kernel k1 and k2. On the one hand, this leads to a higher accuracy for a fixed number of centers, i.e. a difference
of almost three orders of magnitude for N = 21. On the other hand, this allows for a smaller expansion size while maintaining
the same order of accuracy and therefore leads to a sparser approximant. The improved approximation quality for the kernel
k3 = k4 can be traced back to the incorporation of given data in the construction of the kernel.

5 10 15 20 25 30 35
10−9

10−6

10−3

100

Number of centers

M
ax

im
um

po
in

tw
is

e
er

ro
r
e(
X

N
)

k1
k2
k3
k4

Figure 1: Maximum pointwise error measured in the Euclidean norm for the kernels k1 to k4 and for increasing number of centers N .

4.2 Example 2

We now want to verify the validity of the error bounds stated in Corollary 2.7. To this end we consider the domain Ω := [−1, 1]2

and the separable kernel k with decomposition (k1,Q1)3i=1 given by ki = e−i‖x−y‖2 and

Q1 =







1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1






,Q2 =







1 0 0 0
0 1 0 0
0 0 1 −1
0 0 −1 1






and Q3 =







0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1






.

We consider the target function f ∈H given by

f (x) =
5
∑

i=1

k(x , yi)αi ,

where y1, . . . , y5 ∈ Ω and α1, . . . ,α5 ∈ R4 were randomly chosen. We further select X = {x1, . . . , x100} random points and for
X i := {x1, . . . , x i} compute the error in the Euclidean-, infinity- and one-norm as well as the error bounds

∆1
2 := ‖kN (X i )⊥(x , x)‖2‖ f −ΠN (X i ) f ‖, ∆2

2 := ‖kN (X i )⊥(x , x)‖2‖ f ‖,

∆1
∞ := max

j=1,...,4
|kN (X i )⊥(x , x) j j |‖ f −ΠN (X i ) f ‖, ∆2

∞ := max
j=1,...,4

|kN (X i )⊥(x , x) j j |‖ f ‖,

∆1
1 := ‖kN (X i )⊥(x , x)‖2‖ f −ΠN (X i ) f ‖, ∆2

1 := ‖kN (X i )⊥(x , x)‖2‖ f ‖.
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The results are plotted in Figures 2 - 4, respectively. We can see that the qualitative behaviour of both the error and the error
bounds is similar for each norm. However, the second bounds, i.e. ∆2

2,∆2
∞ and ∆2

1 overestimate the true error by a large margin
compared to the first bounds ∆1

2,∆1
∞ and ∆1

1 as no information on the residual f −ΠN (X i )( f ) is incorporated into the bounds.
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Figure 2: Maximum pointwise error measured in the Euclidean norm for increasing number of centers.
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Figure 3: Maximum pointwise error measured in the infinity norm for increasing number of centers.

5 Conclusion
In this paper we recalled the concept of matrix-valued kernels and showed how they can be used to compute approximations or
surrogate models for which a-priori error estimate in various norms are available by means of the power-function. Furthermore,
we introduced a new subclass of separable matrix-valued kernels, for which the power-function can be traced back to the
power-functions of scalar-valued kernels. In an artificial example for a low-dimensional output we illustrated how matrix-valued
kernels can be used to encode (linear) correlations between function components which leads to a significant improvement in the
quality of the approximation.

Future work will investigate the selection of suitable centers via Greedy algorithms, where we obtained initial results in [31].

Appendix

Theorem: Let H1, . . . ,Hp be RKHS with reproducing kernels k1, . . . , kp. Then H =
p
⊕

i=1
Hi is a RKHS with reproducing kernel

k =
p
∑

i=1
ki and norm given by

‖ f ‖2
H =min

¨ p
∑

i=1

‖ fi‖2
Hi
| f =

p
∑

i=1

fi , fi ∈Hi

«

Proof. By the principle of induction it is sufficient to consider the case p = 2. Therefore, let M :=H1 ×H2. One easily verifies
that M equipped with the inner product

〈( f1, f2), (g1, g2)〉M = 〈 f1, g1〉H1
+ 〈 f2, g2〉H2
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Figure 4: Maximum pointwise error measured in the one-norm for increasing number of centers.

is an RKHS with reproducing kernel kM = (k1, k2). Furthermore, let S : M→H1 +H2 be given by

S( f1, f2) = f1 + f2

and denote N := S−1({0}) =H1 ∩H2.

Then N is a closed subspace and thus M =N ⊕N⊥. Therefore, T := S|N⊥ : N⊥→H is a bijection and we equip H with the
inner product

〈 f , g〉H = 〈T−1( f ), T−1(g)〉M.

For any arbitrary f ∈H we now have
S−1({ f }) = T−1( f ) +N

and therefore
‖ f ‖2

H = ‖T
−1( f )‖2

M =min{‖ f1‖2
H1
+ ‖ f2‖2

H2
| f1 + f2 = f , f1 ∈H1, f2 ∈H2}.T

It remains to show that k = k1 + k2 satisfies the reproducing property. By definition k(·, x)α ∈ H is clear. Let f ∈ H and let
(g1, g2) = T−1(k(·, x)α). It now holds that (g1 − k1(·, x)α, g2 − k2(·, x)α) ∈N and ( f1, f2) := T−1( f ) ∈N⊥. Therefore,

〈 f , k(·, x)α〉H = 〈T−1( f ), (g1, g2)〉M
= 〈T−1( f ), (g1 − k1(·, x)α, g2 − k2(·, x)α)〉M
+ 〈T−1( f ), (k1(·, x)α, k2(·, x)α)〉M
= 〈( f1, f2), (k1(·, x)α, k2(·, x)α〉M
= 〈 f1, k1(·, x)α〉H1

+ 〈 f2, k2(·, x)α〉H2

= f1(x)
Tα+ f2(x)

Tα

= f (x)Tα.

Therefore, k is the reproducing kernel of H.
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