A Vectorial Kernel Orthogonal Greedy Algorithm

Daniel Wirtz ${ }^{a}$. Bernard Haasdonk ${ }^{a}$

Abstract

This work is concerned with derivation and analysis of a modified vectorial kernel orthogonal greedy algorithm (VKOGA) for approximation of nonlinear vectorial functions. The algorithm pursues simultaneous approximation of all vector components over a shared linear subspace of the underlying function Hilbert space in a greedy fashion $[16,37]$ and inherits the selection principle of the f / P-Greedy algorithm [18]. For the considered algorithm we perform a limit analysis of the selection criteria for already included subspace basis functions. We show that the approximation gain is bounded globally and for the multivariate case the limit functions correspond to a directional Hermite interpolation. We further prove algebraic convergence similar to [14], improved by a dimension-dependent factor, and introduce a new a-posteriori error bound. Comparison to related variants of our algorithm are presented. Targeted applications of this algorithm are model reduction of multiscale models [42].

Sparse approximation of nonlinear functions is a challenging task that arises in many different areas of modern computing. A key element to find sparse representations is the concept of m-term approximation [31, 8], which basically is a measure of how well a function from a given function space can be approximated by linearly combining m functions out of a given set from the same space. This set can either be a basis of the considered space or a redundant (dense) system of functions, where the latter is also called a dictionary and is considered in our work. However, direct computation of the best m-term approximation is not possible in practice, as the computation has combinatorial complexity dependent on the number of dictionary elements. Hence, the challenge is to find methods and algorithms that provide near-best m-term approximations. In this work, we will consider a type of approximation method that belongs to the family of greedy algorithms, which have already been proven to yield near-best m-term approximations under various conditions, see e.g. [36, 7, 8, 37]. Their "greedy" nature has its foundation in a greedy step, which determines the next dictionary element to be added to an existing m-term approximant according to certain maximizing criteria, mostly involving residuals. Well known criteria so far roughly distinguish between pure and weak greedy algorithms, where the true or almost true maximum approximation "gain" is considered, respectively. An extensive survey of greedy algorithms can be found in [37], however, greedy approximation methods appear in the literature in different facets like matching pursuit [17, 21, 5] or greedy pursuit [38]. So far, approximation and convergence results have been established for quite general spaces, e.g. Hilbert [8,37] or Banach spaces [13, 14].

Here, we will consider a special kind of approximation Hilbert space, namely reproducing kernel Hilbert spaces (RKHS) induced by kernels, which we introduce in detail in Section 1. RKHS and kernel methods have been applied in many different contexts like pattern recognition [32], machine learning [30] or scattered data approximation [40]. We refer to [10] for a current review of approximation methods with positive definite kernels and [28] for a practical guide on kernel methods and their applications. RKHS have hence been successfully used in various contexts, and, seen as Hilbert spaces of functions, readily allow to apply the greedy approximation theory described above. It is also evident that the selection criteria for subsequent new dictionary elements depends on the way the m-term approximant in any current linear subspace is computed. The most natural approach is to use orthogonal projection with respect to the native RKHS scalar product, which guarantees the best possible approximation in each subspace. We shall regard this approach in our work, however, note that there are more choices e.g. using least squares [39] or orthogonal least squares [2, 4].

[^0]However, greedy algorithms in the context of RKHS have been already formulated [27,18] and some results on convergence have been established. In this work, we will focus on a vectorial variant of orthogonal kernel greedy algorithms, more precisely an extension of the so-called f / P-Greedy algorithm from [18, 3.1.1] in the spirit of [14]. We will investigate the selection criteria more closely and show that an improved error bound and a-posteriori bounds can be obtained for the considered vectorial greedy algorithm. For related work on vectorial greedy algorithms see [16, 15]. A vectorial regression approach can be found in [33] or multioutput orthogonal least squares approximations are discussed in [3].

In our field of research we apply kernel approximation methods in the context of model reduction. Potential applications of this algorithm are projection-based model order reduction of nonlinear dynamical systems [23, 41] and model reduction of multiscale models, where the micro-scale model can often be replaced by approximation of the input-output relation between the involved scales [42].

After establishing the necessary background regarding kernels and the induced Hilbert spaces in Section 1, Section 2 introduces our vectorial greedy algorithm. We shortly discuss computational aspects in Section 3 and present numerical illustrations in Section 4. We conclude with a summarizing discussion in Section 5.

1 Preliminaries

1.1 Kernels and Reproducing Kernel Hilbert Spaces

We start with introducing the basic definitions and concepts used throughout our article. We will indicate matrix- and vectorvalued variables by bold upper- and lower-case Latin letters and scalar values by normal typesetting. Let $\Omega \subset \mathbb{R}^{d}, d \in \mathbb{N}$ be a closed domain for the rest of this work.
Definition 1.1 (Kernels). A function $K: \Omega \times \Omega \rightarrow \mathbb{R}$ is called positive definite kernel if $\forall N \in \mathbb{N}, X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\} \subset \Omega$ and $\alpha \in \mathbb{R}^{N} \backslash\{0\}$ we have

$$
\sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)>0
$$

Further, K is called positive semi-definite if \geq holds instead of $>$.
Definition 1.2 (RKHS). Let $\Omega \subset \mathbb{R}^{d}, K: \Omega \times \Omega \rightarrow \mathbb{R}$ be a symmetric, positive definite kernel and $X \subset \Omega$.
Then we denote by

$$
\mathcal{H}^{X}:=\langle\{K(\boldsymbol{x}, \cdot) \mid \boldsymbol{x} \in X\}\rangle
$$

the \mathbb{R}-vector space spanned by all functions $K(\boldsymbol{x}, \cdot)$, where $\langle\cdot\rangle$ is a shorthand for the span operation. We equip \mathcal{H}^{X} with the scalar product

$$
\langle K(\boldsymbol{x}, \cdot), K(\boldsymbol{y}, \cdot)\rangle_{\mathcal{H}^{x}}:=K(\boldsymbol{x}, \boldsymbol{y}), \quad \boldsymbol{x}, \boldsymbol{y} \in X
$$

which naturally extends to functions from \mathcal{H}^{X}. If $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}$ for $m \in \mathbb{N}, \mathcal{H}^{X}$ is an at most m-dimensional \mathbb{R}-Hilbert space spanned by K over X.

We further denote by

$$
\mathcal{H}=\overline{\mathcal{H}^{\Omega}}=\overline{\langle\{K(x, \cdot) \mid x \in \Omega\}\rangle}
$$

the Hilbert space induced by K over Ω. In fact, for each symmetric, positive definite K there is a unique such space with the reproducing property

$$
\langle f, K(\boldsymbol{x}, \cdot)\rangle_{\mathcal{H}}=f(\boldsymbol{x}) \forall f \in \mathcal{H}, \boldsymbol{x} \in \Omega,
$$

which is why those spaces are also known as reproducing kernel Hilbert spaces (RKHS).
For a more complete characterization of RKHS we refer to [40, 10], for example. For the remainder of this work, let K be a symmetric, positive definite and normalized $(K(x, x)=1 \forall x \in \Omega)$ kernel on Ω with induced Hilbert space \mathcal{H} unless explicitly defined otherwise.
Definition 1.3 (Kernel matrix and vector). For $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\} \subset \Omega$ we denote by

$$
\boldsymbol{K}_{X}:=\left(K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)_{i j}, \quad i, j=1 \ldots m
$$

the kernel matrix of K with respect to X. Then, the positive (semi-)definiteness of a kernel K directly transfers to positive (semi-)definiteness of the corresponding kernel matrix \boldsymbol{K}_{X}. Further we denote for $\boldsymbol{x} \in \Omega$ by

$$
\begin{equation*}
\boldsymbol{k}_{X}(\boldsymbol{x}):=\left(K\left(\boldsymbol{x}_{1}, \boldsymbol{x}\right), \ldots, K\left(\boldsymbol{x}_{N}, \boldsymbol{x}\right)\right)^{T} \in \mathbb{R}^{m} \tag{1.1}
\end{equation*}
$$

the kernel vector of K at \boldsymbol{x} with respect to X. For ease of reading, we will omit the subindices $\boldsymbol{K}_{X}, \boldsymbol{k}_{X}$ whenever it is clear from context.

The following Lemma shows how smoothness of a kernel inherits to the RKHS functions. The proof is along the lines of [40, 10.6] and/or [34, Lemma 4.34].
Lemma 1.1 (Derivatives of RKHS functions). If $K \in C^{2}(\Omega \times \Omega)$, then $\frac{\partial K}{\partial x_{i}}(x, \cdot) \in \mathcal{H} \forall x \in \Omega, i=1 \ldots d$ and we have

$$
\frac{\partial f}{\partial x_{i}}(\boldsymbol{x})=\left\langle f, \frac{\partial K}{\partial x_{i}}(\boldsymbol{x}, \cdot)\right\rangle_{\mathcal{H}} \quad \forall x \in \Omega, i=1 \ldots d .
$$

1.2 Projection and orthogonal remainders

As mentioned at the beginning, we will focus on projection of functions into subspaces to obtain the approximants. Therefore we first introduce the projection operator for linear subspaces.

Definition 1.4 (Orthogonal projection operator). Let $S \subseteq \mathcal{H}$ be a linear subspace of \mathcal{H}. Then the orthogonal projection operator is denoted by

$$
\begin{aligned}
P_{S}: \mathcal{H} & \rightarrow S \\
f & \mapsto P_{S}[f],
\end{aligned}
$$

such that

$$
\begin{equation*}
\left\langle f-P_{S}[f], g\right\rangle_{\mathcal{H}}=0 \forall g \in S . \tag{1.2}
\end{equation*}
$$

Next we will detail some known frequently used properties of projections, whose proofs are elementary calculus.
Lemma 1.2. Let $S \subseteq \mathcal{H}$ be a linear subspace of \mathcal{H}. Then

$$
\left\|\mathcal{P}_{S}[f]\right\|_{\mathcal{H}}^{2}=\left\langle f, \mathcal{P}_{S}[f]\right\rangle_{\mathcal{H}} \quad \forall f \in \mathcal{H} .
$$

If further $S=\mathcal{H}^{X}$ for some $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}$ so that \boldsymbol{K} is non-singular, we have

$$
\begin{equation*}
\mathcal{P}_{S}[f]=\sum_{i=1}^{N} c_{i} K\left(\boldsymbol{x}_{i}, \cdot\right), \quad \boldsymbol{c}=\boldsymbol{K}^{-1} \boldsymbol{f}, \quad \quad f_{i}=f\left(\boldsymbol{x}_{i}\right), i=1 \ldots N . \tag{1.3}
\end{equation*}
$$

Unfortunately, due to a different perspective, there have been developing two different but closely related ways of notation in the context of greedy algorithms. Whilst the classical greedy theory [37] considers scalar products of function residuals and dictionary elements in the greedy step selection criteria, kernel greedy algorithms [27, 18] usually consider point-wise maxima $\max _{x}\left|f(x)-s_{f, X}(x)\right|$ in the greedy step, where $s_{f, X}$ is the interpolant of f on the current $m-t$ point set X. However, their connection will become clearer using the concept of orthogonal remainders, which we will investigate in the following.

Definition 1.5 (Orthogonal/orthonormal remainders). Let $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\} \subseteq \Omega, \boldsymbol{x} \in \Omega$ and define $\Omega_{X}:=\{\boldsymbol{x} \in \Omega \mid K(\boldsymbol{x}, \cdot) \in$ $\left.\mathcal{H}^{X}\right\}$. Then we define the \mathcal{H}^{X}-orthogonal remainder $\tilde{\phi}_{x}$ of $K(\boldsymbol{x}, \cdot)$ as

$$
\tilde{\phi}_{\boldsymbol{x}}:=K(\boldsymbol{x}, \cdot)-\mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)],
$$

and for $\boldsymbol{x} \in \Omega \backslash \Omega_{X}$ the \mathcal{H}^{X}-orthonormal remainder

$$
\phi_{x}:=\tilde{\phi}_{x} /\left\|\tilde{\phi}_{x}\right\|_{\mathcal{H}} .
$$

The next Lemma shows some interesting properties of orthogonal/normal remainders.
Lemma 1.3 (Properties for remainders). Let the conditions of Definition 1.5 hold and let $f \in \mathcal{H}$.
Then

$$
\begin{align*}
\mathcal{P}_{\mathcal{H}^{X} \oplus\left(\phi_{x}\right\rangle_{\mathcal{H}}}[f] & =\mathcal{P}_{\mathcal{H}^{x}}[f]+\mathcal{P}_{\left\langle\phi_{\boldsymbol{x}}\right\rangle_{\mathcal{H}}}[f] \quad \forall f \in \mathcal{H}, \tag{1.4}\\
\left\langle f, \tilde{\phi}_{\boldsymbol{x}}\right\rangle_{\mathcal{H}} & =\left\langle f-\mathcal{P}_{\mathcal{H}^{x}}[f], K(\boldsymbol{x}, \cdot)\right\rangle_{\mathcal{H}}=f(\boldsymbol{x})-\mathcal{P}_{\mathcal{H}^{x}}[f](\boldsymbol{x}) \quad \forall f \in \mathcal{H} . \tag{1.5}
\end{align*}
$$

Furthermore, $\tilde{\phi}_{x}$ is the Riesz-representative of the linear functional $\delta_{x}-\mathcal{P}_{\mathcal{H}^{x}}[\cdot](x): \mathcal{H} \rightarrow \mathbb{R}$.
Proof. The condition (1.4) is a well known property following directly by orthogonality of \mathcal{H}^{X} and $\tilde{\phi}_{x}$ using standard arguments. Equality (1.5) follows straightforwardly from the definitions as both $\left\langle\mathcal{P}_{\mathcal{H}^{x}}[f], \phi_{x}\right\rangle_{\mathcal{H}}=0=\left\langle f-\mathcal{P}_{\mathcal{H}^{x}}[f], \mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)]\right\rangle_{\mathcal{H}}$ by projection properties. The Riesz representation directly follows from (1.5).

So, Lemma 1.3 allows to show the connection between both perspectives, which is established mainly via the reproducing property of the RKHS. In equation (1.5) we see the scalar product of f with a dictionary element $K(\boldsymbol{x}, \cdot)$ in the spirit of general greedy algorithms, but also the point-wise difference $f(\boldsymbol{x})-\mathcal{P}_{\mathcal{H}^{x}}[f](\boldsymbol{x})$, which is the same as $f(\boldsymbol{x})-s_{f, X}(\boldsymbol{x})$ by Lemma 1.2 for non-singular kernel matrices. The expression $\left\langle f, \tilde{\phi}_{x}\right\rangle_{\mathcal{H}}$ is equivalent to both, but isolates the f-dependency nicely by using a modified dictionary element, i.e. the orthogonal remainder of $K(\boldsymbol{x}, \cdot)$.
Remark 1. For any $X \subset \Omega$ and $\boldsymbol{x} \in \Omega \backslash \Omega_{X}$ the orthogonal remainder $\tilde{\phi}_{\boldsymbol{x}}$ actually corresponds to the direct translate $K_{P}(\boldsymbol{x}, \cdot)$ of the Power-Kernel K_{P}, see [19, 20].

1.3 The f / P-Greedy algorithm

In order to establish the link to the formalism of the f / P-Greedy algorithm [18], we show the relation of orthogonal remainders to the concept of power functions.
Proposition 1.4 (Power function and orthogonal remainders). If for $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\} \subset \Omega$ the kernel matrix \boldsymbol{K} is nonsingular, then

$$
\begin{equation*}
\left\|\tilde{\phi}_{x}\right\|_{\mathcal{H}}=P_{K, X}(\boldsymbol{x}), \tag{1.6}
\end{equation*}
$$

where $P_{K, X}(\boldsymbol{x})$ denotes the power function (see [40, 11.2] or [18, 2.2.11]) defined by

$$
P_{K, X}(\boldsymbol{x})^{2}:=K(\boldsymbol{x}, \boldsymbol{x})-2 \sum_{i=1}^{N} u_{i}(\boldsymbol{x}) K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right)+\sum_{i, j}^{N} u_{i}(\boldsymbol{x}) u_{j}(\boldsymbol{x}) K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) .
$$

Here $u_{i}, i=1 \ldots N$ denotes the Lagrange basis of \mathcal{H}^{X} satisfying $u_{i}\left(\boldsymbol{x}_{j}\right)=\delta_{i j}$.
Proof. The Lagrange basis is given by

$$
u_{j}(\boldsymbol{x})=\sum_{i=1}^{N} \beta_{j i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right),
$$

where the condition $u_{i}\left(\boldsymbol{x}_{j}\right)=\delta_{i j}$ is satisfied when $\boldsymbol{K} \boldsymbol{\beta}_{j}=\boldsymbol{e}_{j}$, i.e. $\boldsymbol{\beta}_{j}=\left(\boldsymbol{K}^{-1}\right)_{j}$. Here \boldsymbol{e}_{j} denotes the i-th unit vector in \mathbb{R}^{m} and $\left(\boldsymbol{K}^{-1}\right)_{j}$ the j-th column of \boldsymbol{K}^{-1}. Next, using the kernel column vector shorthand (1.1) and Lemma 1.2 we see that

$$
\begin{aligned}
\mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)] & =\sum_{j=1}^{N}\left(\boldsymbol{K}^{-1}\right)_{j}^{T} \boldsymbol{k}(\boldsymbol{x}) K\left(\boldsymbol{x}_{j}, \cdot\right)=\sum_{j=1}^{N} \sum_{i=1}^{N} \boldsymbol{K}_{i j}^{-1} K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right) K\left(\boldsymbol{x}_{j}, \cdot\right) \\
& =\sum_{i=1}^{N} K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right) \sum_{j=1}^{N} \boldsymbol{K}_{i j}^{-1} K\left(\boldsymbol{x}_{j}, \cdot\right)=\sum_{i=1}^{N} K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right) u_{j} .
\end{aligned}
$$

By definition of $\tilde{\phi}_{x}$ this yields

$$
\begin{aligned}
\left\|\tilde{\phi}_{\boldsymbol{x}}\right\|_{\mathcal{H}}^{2} & =\left\langle\tilde{\phi}_{\boldsymbol{x}}, \tilde{\phi}_{\boldsymbol{x}}\right\rangle_{\mathcal{H}}=\left\langle K(\boldsymbol{x}, \cdot)-\mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)], K(\boldsymbol{x}, \cdot)-\mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)]\right\rangle_{\mathcal{H}} \\
& =\left\langle K(\boldsymbol{x}, \cdot)-\sum_{i=1}^{N} u_{j} K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right), K(\boldsymbol{x}, \cdot)-\sum_{i=1}^{N} u_{j} K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right)\right\rangle_{\mathcal{H}}=P_{K, X}(\boldsymbol{x})^{2},
\end{aligned}
$$

showing (1.6).
For more background on power functions see e.g. [25, 5, 40, 18]. Even though both concepts are closely related, we will use the notion of orthogonal remainders as it will prove useful in our algorithm analysis.

With the necessary background established, we now state the scalar f / P-Greedy algorithm [18, 3.1.1] using the adopted notation in Algorithm 1. The equivalency in (1.7) the can be easily verified using Proposition 1.4 and Lemma 1.3.

2 Vectorial kernel orthogonal greedy algorithm

As mentioned in the introduction, we want to consider approximations of functions from vectorial RKHS. Before we can state our vectorial greedy algorithm, we introduce the vectorial kernel spaces we will be dealing with.
Definition 2.1 (Vectorial Hilbert Spaces). Let $q \in \mathbb{N}$. Then we denote by

$$
\mathcal{H}^{q}:=\left\{f: \Omega \rightarrow \mathbb{R}^{q} \mid f_{j} \in \mathcal{H}, j=1 \ldots q\right\}
$$

```
Algorithm \(1 \mathrm{f} / P\)-Greedy algorithm
Let \(f \in \mathcal{H}\) and define \(X_{0}:=\emptyset, f^{0}:=0\) and for \(m>0\) the sequences
\[
\begin{align*}
\boldsymbol{x}_{m} & :=\arg \max _{\boldsymbol{x} \in \Omega \backslash \Omega_{X_{m-1}}} \frac{\left|f(\boldsymbol{x})-f_{m-1}(\boldsymbol{x})\right|}{P_{K, X_{m-1}}(\boldsymbol{x})}=\arg \max _{\boldsymbol{x} \in \Omega \backslash \Omega_{X_{m-1}}}\left|\left\langle f, \phi_{x}^{m-1}\right\rangle_{\mathcal{H}}\right|,  \tag{1.7}\\
X_{m} & :=X_{m-1} \cup\left\{\boldsymbol{x}_{m}\right\}, \\
f^{m} & :=\mathcal{P}_{\mathcal{H}^{X_{m}}}[f],
\end{align*}
\]
```

where ϕ_{x}^{m} denotes the orthonormal remainder of $K(\boldsymbol{x}, \cdot)$ with respect to X_{m} for any m, \boldsymbol{x}.
the function space of vectorial functions from \mathcal{H} which we equip with the canonical scalar product and norm

$$
\langle f, g\rangle_{\mathcal{H}^{q}}:=\sum_{j=1}^{q}\left\langle f_{j}, g_{j}\right\rangle_{\mathcal{H}}, \quad\|f\|_{\mathcal{H}^{q}}=\sqrt{\langle f, f\rangle_{\mathcal{H}^{q}}}=\sqrt{\sum_{j=1}^{q}| | f_{j} \|_{\mathcal{H}}^{2}} .
$$

For this type of vectorial spaces, it is clear that any scalar greedy approximation strategy can be straightforwardly applied to each component function f_{j} for some $f \in \mathcal{H}^{q}$. But if one does not somehow connect the extension choices over the different component functions, the algorithms will most likely produce different subspaces $\mathcal{H}^{X_{j}}$ for each component f_{j}, leading to q disjoint kernel expansions in the worst case. This will be computationally infeasible, so the first and most obvious choice is to force all component approximations to stem from one global approximation subspace, i.e. $f_{j} \in \mathcal{H}^{X} \forall j$ for some base space \mathcal{H}^{X}. This restriction is given if we use the following vectorial projection operator on \mathcal{H}^{q}.
Definition 2.2 (Vectorial component-wise projection operator). Let $S \subseteq \mathcal{H}$ be a linear subspace and $q \in \mathbb{N}$. Then we define the vectorial orthogonal projection operator

$$
\begin{aligned}
\mathcal{P}_{S}^{q}: \mathcal{H}^{q} & \longrightarrow S^{q} \\
f & \longmapsto\left(\mathcal{P}_{S}\left[f_{j}\right]\right)_{j}, \quad j=1 \ldots q .
\end{aligned}
$$

It is easily verifiable that for this definition we have $\left\langle f-\mathcal{P}_{S}^{q}[f], g\right\rangle_{\mathcal{H}^{q}}=0 \forall g \in S^{q}$ as

$$
S^{q}=\left\langle\left\{e_{i} g \mid i=1 \ldots q, g \in S\right\}\right\rangle,
$$

with \boldsymbol{e}_{i} denoting the i-th unit vector in \mathbb{R}^{q}.
Consequently, Algorithm 1 can be formulated straightforwardly also in the vectorial context, which is done in Algorithm 2.

Algorithm 2 Vectorial f / P-Greedy
Let $q \in \mathbb{N}$ and $\boldsymbol{f} \in \mathcal{H}^{q}$, define $X_{0}:=\emptyset, \boldsymbol{f}^{0}:=0$ and for $m>0$ the sequences

$$
\begin{aligned}
\boldsymbol{x}_{m} & :=\arg \max _{x \in \Omega \backslash \Omega_{X_{m-1}}}\left|\left\langle f, \tilde{\boldsymbol{\phi}}_{x}^{m-1}\right\rangle_{\mathcal{H}^{q}}\right|, \\
X_{m} & :=X_{m-1} \cup\left\{\boldsymbol{x}_{m}\right\}, \\
\boldsymbol{f}^{m} & :=\mathcal{P}_{\mathcal{H}^{X_{m}}}^{q}[\boldsymbol{f}],
\end{aligned}
$$

where $\tilde{\boldsymbol{\phi}}_{x}^{m-1} \in \mathcal{H}^{q}$ denotes the vectorial repetition of $\tilde{\phi}_{x}^{m-1}$, i.e. $\left(\tilde{\boldsymbol{\phi}}_{x}^{m-1}\right)_{i}=\tilde{\phi}_{x}^{m-1}, i=1 \ldots q$.

An important feature of the scalar f / P-Greedy algorithm is that each extension step maximizes the \mathcal{H}-norm of $\mathcal{P}_{\mathcal{H}^{x}}[f]$ (the interpolant in [18, 3.1.4], see also [29, Thm 6.], [6]), which is equivalent to achieving the largest possible "gain" in approximation due to the orthogonality properties $\left\|\mathcal{P}_{\mathcal{H}^{x}}[f]\right\|_{\mathcal{H}}^{2}=\|f\|_{\mathcal{H}}^{2}-\left\|f-\mathcal{P}_{\mathcal{H}^{x}}[f]\right\|_{\mathcal{H}^{*}}^{2}$. This aspect is not taken into account by the vectorial greedy algorithms proposed in [15, 14], which pursue a vectorial greedy search in the fashion of the standard scalar f-Greedy variant [18]. However, it remains to verify that the transferred vectorial selection criteria of Algorithm 2 inherits this property. The concept of a gain function will prove useful in this context.
Definition 2.3 (Gain function). Let $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\} \subseteq \Omega$ and $\boldsymbol{f} \in \mathcal{H}^{q}$. Then we denote the vectorial gain function with
respect to X and f by

$$
\begin{aligned}
G_{X, f}: \Omega \backslash \Omega_{X} & \rightarrow \mathbb{R}, \\
\boldsymbol{x} & \mapsto \sum_{j=1}^{q}\left\langle f_{j}, \phi_{x}\right\rangle_{\mathcal{H}}^{2},
\end{aligned}
$$

where ϕ_{x} denotes the orthonormal remainder of $K(x, \cdot)$ with respect to X.
For our choice of vectorial RKHS, the following Lemma characterizes the \mathcal{H}^{q}-norm maximizing aspect of the f / P-Greedy algorithm using the gain function.
Lemma 2.1 (Locally optimal vectorial subspace extension). Let $f \in \mathcal{H}^{q}, X=\left\{x_{1}, \ldots, x_{m}\right\} \subseteq \Omega, q \in \mathbb{N}$ and $\boldsymbol{x} \in \Omega \backslash \Omega_{X}$. Then

$$
\begin{equation*}
\left\|f-\mathcal{P}_{\mathcal{H}^{X} \oplus(K(x,)\rangle}^{q}[f]\right\|_{\mathcal{H}^{q}}^{2}=\left\|f-\mathcal{P}_{\mathcal{H}^{X}}^{q}[f]\right\|_{\mathcal{H}^{q}}^{2}-G_{X, f}(x) \tag{2.1}
\end{equation*}
$$

Proof. At first we note that in fact $\mathcal{H}^{X} \oplus\langle K(\boldsymbol{x}, \cdot)\rangle=\mathcal{H}^{X} \oplus\left\langle\phi_{x}\right\rangle$, which follows directly from the definition of ϕ_{x} as $\mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)] \in \mathcal{H}^{X}$. Moreover, for an $f \in \mathcal{H}$ we have $\mathcal{P}_{\left\langle\phi_{x}\right\rangle}[f]=\left\langle f, \phi_{x}\right\rangle_{\mathcal{H}} \phi_{x}$ by (1.2). Then using Lemma 1.2 and 1.3 we deduce

$$
\begin{aligned}
\left\|f-\mathcal{P}_{\mathcal{H}^{x} \oplus(K(x,)\rangle}[f]\right\|_{\mathcal{H}}^{2} & =\left\|f-\mathcal{P}_{\mathcal{H}^{x} \oplus\left(\phi_{x}\right\rangle}[f]\right\|_{\mathcal{H}}^{2} \\
& \left.\left.=\| f-\mathcal{P}_{\mathcal{H}^{x}}[f]-\mathcal{P}_{\left\langle\phi_{x}\right\rangle}\right\rangle f\right] \|_{\mathcal{H}}^{2} \\
& =\left\|f-\mathcal{P}_{\mathcal{H}^{x}}[f]\right\|_{\mathcal{H}^{2}}^{2}-2\left\langle f-\mathcal{P}_{\mathcal{H}^{x}}[f], \mathcal{P}_{\left\langle\phi_{x}\right\rangle}[f]\right\rangle_{\mathcal{H}}+\left\|\mathcal{P}_{\left\langle\phi_{x}\right\rangle}[f]\right\|_{\mathcal{H}}^{2} \\
& =\left\|f-\mathcal{P}_{\mathcal{H}^{x}}[f]\right\|_{\mathcal{H}}^{2}-2\left\langle f, \mathcal{P}_{\left\langle\phi_{x}\right\rangle}[f]\right\rangle_{\mathcal{H}} \\
& +2 \underbrace{\left\langle\mathcal{P}_{\mathcal{H}^{x}}[f], \mathcal{P}_{\left\langle\phi_{x}\right\rangle}[f]\right\rangle_{\mathcal{H}}}_{=0}+\left\langle f, \mathcal{P}_{\left\langle\phi_{x}\right\rangle}[f]\right\rangle_{\mathcal{H}} \\
& =\left\|f-\mathcal{P}_{\mathcal{H}^{x}}[f]\right\|_{\mathcal{H}}^{2}-\left\langle f, \phi_{x}\right\rangle_{\mathcal{H}}^{2} .
\end{aligned}
$$

Using the definition of \mathcal{P}^{q} and $G_{X, f}$ we finally obtain

$$
\begin{aligned}
\left\|f-\mathcal{P}_{\mathcal{H}^{x} \oplus(K(x, j)\rangle}^{q}[f]\right\|_{\mathcal{H}^{q}}^{2} & =\sum_{j=1}^{q}\left\|f_{j}-\mathcal{P}_{\left.\mathcal{H}^{x} \oplus(K(x,))\right\rangle}\left[f_{j}\right]\right\|_{\mathcal{H}}^{2} \\
& =\sum_{j=1}^{q}\left\|f_{j}-\mathcal{P}_{\mathcal{H}^{x}}\left[f_{j}\right]\right\|_{\mathcal{H}^{2}}^{2}-\left\langle f_{j}, \phi_{x}\right\rangle_{\mathcal{H}}^{2} \\
& =\left\|\boldsymbol{f}-\mathcal{P}_{\mathcal{H}^{x}}[\boldsymbol{f}]\right\|_{\mathcal{H}^{q}}^{2}-G_{X, f}(\boldsymbol{x}),
\end{aligned}
$$

where $f_{j} \in \mathcal{H}$ denotes the j - th component function of $f \in \mathcal{H}^{q}$.
Since the projection into a linear subspace always gives the best possible approximation in that space, a direct consequence is the following Corollary.
Corollary 2.2. Let the conditions from Lemma 2.1 hold. Then

$$
\inf _{x \in \Omega \backslash \Omega_{X}} \min _{\left.g \in\left(\mathcal{H}^{X} \oplus(K(x,))\right\rangle\right)^{q}}\|f-g\|_{\mathcal{H}^{q}}^{2}=C-\sup _{x \in \Omega \backslash \Omega_{X}} G_{X, f}(x),
$$

with $C:=\left\|f-\mathcal{P}_{\mathcal{H}^{x}}^{q}[f]\right\|_{\mathcal{H}^{q}}^{2}$.
So, in fact, any $\boldsymbol{x} \in \Omega \backslash \Omega_{X}$ that yields the best approximation in $\mathcal{H}^{X \cup\{x\}}$ (or largest possible gain with respect to the \mathcal{H}^{q}-norm) also maximizes $G_{X, f}$. Consequently, we state in Algorithm 3 a modified variant of Algorithm 2, which we will consider for the rest of this work. We note here that in Algorithm 3 is closely related to the vectorial vector greedy algorithm "WSOGA2" introduced in [14, 3, (3.4)], with the difference of having a gain-maximizing extension selection instead of maximizing element selection. We will compare those algorithms in Section 4.

A recursive application of Lemma 2.1 yields the following result on the error decay and a Parseval-type identity.
Corollary 2.3. Then the \mathcal{H}^{q}-approximation error is monotonously decreasing and we have the identity

$$
\left\|\boldsymbol{f}-\boldsymbol{f}^{m}\right\|_{\mathcal{H}^{q}}^{2}=\|\boldsymbol{f}\|_{\mathcal{H}^{q}}^{2}-\sum_{i=1}^{m} \sum_{j=1}^{q}\left\langle f_{j}, \phi_{\boldsymbol{x}_{i}}^{i-1}\right\rangle_{\mathcal{H}}^{2}=\|\boldsymbol{f}\|_{\mathcal{H}^{q}}^{2}-\sum_{i=1}^{m} G_{X_{i-1}, f}\left(\boldsymbol{x}_{i}\right), \quad \forall m>0 .
$$

```
Algorithm 3 Vectorial kernel orthogonal greedy algorithm (VKOGA)
Let \(q \in \mathbb{N}\) and \(\boldsymbol{f} \in \mathcal{H}^{q}\), define \(X_{0}:=\emptyset, \boldsymbol{f}^{0}:=0\) and for \(m>0\) the sequences
\[
\begin{align*}
\boldsymbol{x}_{m} & :=\arg \max _{\boldsymbol{x} \in \Omega \backslash \Omega_{X_{m-1}}} G_{X_{m-1}, f}(\boldsymbol{x})=\arg \max _{\boldsymbol{x} \in \Omega \backslash \Omega_{X_{m-1}}} \sum_{j=1}^{q}\left\langle f_{j}, \phi_{x}^{m-1}\right\rangle_{\mathcal{H}}^{2}  \tag{2.2}\\
X_{m} & :=X_{m-1} \cup\left\{\boldsymbol{x}_{m}\right\}  \tag{2.3}\\
\boldsymbol{f}^{m} & :=\mathcal{P}_{\mathcal{H}^{X_{m}}}^{q}[\boldsymbol{f}] . \tag{2.4}
\end{align*}
\]
```


2.1 Algorithm analysis

Until now we have only considered points $\boldsymbol{x} \in \Omega \backslash \Omega_{X}$ for possible extension of \mathcal{H}^{X} via the induced kernel translate $K(\boldsymbol{x}, \cdot)$. So far in literature, it remains unanswered what happens in the vicinity of points $x \in \Omega_{X}$. In numerical applications, one always works on discrete sets of points and hence this issue is of less importance. However, it is of general analytical interest to determine the behaviour of the selection criteria (2.2) for cases where $\boldsymbol{x} \rightarrow \boldsymbol{y} \in \Omega_{X}$. More precise, in this work we want to put some effort into analyzing the behaviour of $G_{X, f}$ in the neighborhood of Ω_{X}.

The following Theorem yields an explicit expression for the limit functions ϕ_{x} when $x \rightarrow y \in \Omega_{X}$. Under mild assumptions, it turns out that the limits in these cases can be described by orthonormal remainders of directional derivatives of $K(\boldsymbol{x}, \cdot)$.
Theorem 2.4 (Directional limit of orthonormal remainders). Let $K \in C^{1}(\Omega \times \Omega)$ (C^{1} w.r.t. each argument) with existing and bounded second derivatives. Further let $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \Omega$ so that the kernel matrix \boldsymbol{K} is non-singular and choose choose $x \in \Omega_{X}$. Then $\forall v \in \mathbb{R}^{d}$ we have

$$
\begin{equation*}
\lim _{h \rightarrow 0} \phi_{x+h v}=\phi_{x}^{\nabla v} \in \mathcal{H}, \tag{2.5}
\end{equation*}
$$

with

$$
\phi_{x}^{\nabla v}:=\left\{\begin{array}{ll}
\tilde{\phi}_{x}^{\nabla v} /\left\|\tilde{\phi}_{x}^{\nabla v}\right\|_{\mathcal{H}} & , \tilde{\phi}_{x}^{\nabla v} \neq 0 \\
0 & , \text { else }
\end{array}, \quad \tilde{\phi}_{x}^{\nabla v}:=\boldsymbol{v}^{T} \nabla_{1} K(\boldsymbol{x}, \cdot)-\mathcal{P}_{\mathcal{H}^{x}}\left[\boldsymbol{v}^{T} \nabla_{1} K(\boldsymbol{x}, \cdot)\right]\right.
$$

where ∇_{1} denotes the gradient operator w.r.t. the first argument.
Proof. Fix \boldsymbol{v}. By Lemma 1.1 we know that $\boldsymbol{v}^{T} \nabla_{1} K(\boldsymbol{x}, \cdot) \in \mathcal{H}$. Further, as $K(\boldsymbol{x}, \cdot) \in \mathcal{H}^{X}$, Lemma $1.2 /$ (1.3) with $f=K(\boldsymbol{x}, \cdot)$ gives the representation

$$
\begin{equation*}
K(\boldsymbol{x}, \cdot)=\sum_{j=1}^{N}\left(\boldsymbol{K}^{-1}\right)_{j}^{T} \boldsymbol{k}(\boldsymbol{x}) K\left(\boldsymbol{x}_{j}, \cdot\right) . \tag{2.6}
\end{equation*}
$$

Note that for $\boldsymbol{x}=\boldsymbol{x}_{k}, k \in\{1 \ldots N\}$, equation (2.6) simplifies to $\left(\boldsymbol{K}^{-1}\right)_{j}^{T} \boldsymbol{k}\left(\boldsymbol{x}_{k}\right)=\delta_{j k}$ as $\boldsymbol{k}\left(\boldsymbol{x}_{k}\right)=\boldsymbol{K}_{k}$. Now, for $h>0$, the first order multivariate Taylor series of K at \boldsymbol{x} gives

$$
\begin{equation*}
K(\boldsymbol{x}+h \boldsymbol{v}, \cdot)=K(\boldsymbol{x}, \cdot)+h \boldsymbol{v}^{T} \nabla_{1} K(\boldsymbol{x}, \cdot)+h^{2} C_{K}(\xi, \cdot), \tag{2.7}
\end{equation*}
$$

with $\xi \in[\boldsymbol{x}, \boldsymbol{x}+h \nu]$. The h-dependency of $C_{K}(\xi, \cdot)$ can be neglected due to the bounded second derivatives, which is why we will just write $\mathcal{O}\left(h^{2}\right)$ in the following. Next, with the shorthand

$$
\nabla K(\boldsymbol{x})=\left(\nabla_{1} K\left(\boldsymbol{x}, \boldsymbol{x}_{1}\right) \ldots \nabla_{1} K\left(\boldsymbol{x}, \boldsymbol{x}_{N}\right)\right) \in \mathbb{R}^{d \times N},
$$

equation (2.7) directly gives the representation

$$
\boldsymbol{k}(\boldsymbol{x}+h v)=\boldsymbol{k}(\boldsymbol{x})+h \nabla \boldsymbol{K}(\boldsymbol{x})^{T} \boldsymbol{v}+\mathcal{O}\left(h^{2}\right)
$$

and together with (1.3) and (2.6) we see that

$$
\begin{aligned}
\mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}+h \boldsymbol{v}, \cdot)] & =\sum_{j=1}^{N}\left(\boldsymbol{K}^{-1}\right)_{j}^{T} \boldsymbol{k}(\boldsymbol{x}+h \boldsymbol{v}) K\left(\boldsymbol{x}_{j}, \cdot\right) \\
& =\sum_{j=1}^{N}\left(\boldsymbol{K}^{-1}\right)_{j}^{T}\left(\boldsymbol{k}(\boldsymbol{x})+h \nabla \boldsymbol{K}(\boldsymbol{x})^{T} \boldsymbol{v}\right) K\left(\boldsymbol{x}_{j}, \cdot\right)+\mathcal{O}\left(h^{2}\right) \\
& =K(\boldsymbol{x}, \cdot)+h \sum_{j=1}^{N}\left(\boldsymbol{K}^{-1}\right)_{j}^{T} \nabla \boldsymbol{K}(\boldsymbol{x})^{T} \boldsymbol{v} K\left(\boldsymbol{x}_{j}, \cdot\right)+\mathcal{O}\left(h^{2}\right) \\
& =K(\boldsymbol{x}, \cdot)+h \sum_{j=1}^{N}\left(\boldsymbol{K}^{-1}\right)_{j}^{T}\left(\begin{array}{c}
\boldsymbol{v}^{T} \nabla_{1} K\left(\boldsymbol{x}, \boldsymbol{x}_{1}\right) \\
\vdots \\
\boldsymbol{v}^{T} \nabla_{1} K\left(\boldsymbol{x}, \boldsymbol{x}_{N}\right)
\end{array}\right) K\left(\boldsymbol{x}_{j}, \cdot\right)+\mathcal{O}\left(h^{2}\right) \\
& =K(\boldsymbol{x}, \cdot)+h \mathcal{P}_{\mathcal{H}^{x}}\left[\boldsymbol{v}^{T} \nabla_{1} K(\boldsymbol{x}, \cdot)\right]+\mathcal{O}\left(h^{2}\right) .
\end{aligned}
$$

We conclude

$$
\lim _{h \rightarrow 0} \phi_{x+h v}=\lim _{h \rightarrow 0} \frac{\tilde{\phi}_{x+h v}}{\left\|\tilde{\phi}_{x+h v}\right\|_{\mathcal{H}}}=\lim _{h \rightarrow 0} \frac{\tilde{\phi}_{x}^{\nabla v}+\mathcal{O}(h)}{\left\|\tilde{\phi}_{x}^{\nabla v}\right\|_{\mathcal{H}}+\mathcal{O}(h)}=\phi_{x}^{\nabla v},
$$

which shows (2.5) for $\tilde{\phi}_{x}^{\nabla v} \neq 0$.
Now, Theorem 2.4 allows to draw interesting conclusions with regard to the situations where $\boldsymbol{x} \in \Omega_{X}$, i.e. $K(\boldsymbol{x}, \cdot) \in \mathcal{H}^{X}$. At first we see that for any $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}, \boldsymbol{x} \in \Omega_{X}, \boldsymbol{v} \in \mathbb{R}^{d}$ and $\boldsymbol{f} \in \mathcal{H}^{q}$ we have

$$
\lim _{h \rightarrow 0} G_{X, f}(\boldsymbol{x}+h \boldsymbol{v})=\sum_{j=1}^{q}\left\langle f_{j}, \phi_{x}^{\nabla v}\right\rangle_{\mathcal{H}}^{2} .
$$

The resulting limit value depends on the direction v from which the limit is taken, which implies that $G_{X, f}$ cannot be continuously extended to Ω in general. To illustrate the occurring discontinuities, Figure 1 shows the values of $\left\langle f, \phi_{x}\right\rangle_{\mathcal{H}}$ (which corresponds to $G_{X, f}$ in $q=1$ dimensions without the squared scalar product) for the test settings $q=1, \Omega=[-4,4]^{2}, X=$ $\{(0,1),(-0.5,0),(2,-1),(-1,3),(-1.5,-3)\}$ and a suitable $f \in \mathcal{H}$. The discontinuities are clearly recognizable around any point $\boldsymbol{x} \in X$, which are marked by red dots. Furthermore, for each $\boldsymbol{v} \in \mathbb{R}^{d}$ equation (2.1) now reads as

Figure 1: Example of $\left\langle f, \phi_{x}\right\rangle_{\mathcal{H}}$ on $\Omega \backslash \Omega_{X}$. Red dots: X

$$
\lim _{h \rightarrow 0}\left\|f-\mathcal{P}_{\mathcal{H}^{X} \oplus\langle K(x+h v, \cdot)\rangle}^{q}[f]\right\|_{\mathcal{H}^{q}}^{2}=\left\|f-\mathcal{P}_{\mathcal{H}^{X}}^{q}[f]\right\|_{\mathcal{H}^{q}}^{2}-\sum_{j=1}^{q}\left\langle f_{j}, \phi_{x}^{\nabla v}\right\rangle_{\mathcal{H}}^{2}, \quad \forall f \in \mathcal{H}^{q}
$$

Hence, the possible different $\phi_{x}^{\nabla v}$ at any $\boldsymbol{x} \in \Omega_{X}$ imply that the limit of the left hand side also differs with changing v. This raises the question about the projection limit as $h \rightarrow 0$, which is answered satisfactorily by the following corollary.
Corollary 2.5. Let the conditions from Theorem 2.4 hold and let $\boldsymbol{f} \in \mathcal{H}^{q}$. Then we have

$$
\lim _{h \rightarrow 0} \mathcal{P}_{\mathcal{H}^{x} \oplus(K(x+h v,)\rangle}^{q}[f]=\mathcal{P}_{\left.\mathcal{H}^{X} \oplus\left(\boldsymbol{v}^{T} \nabla_{1} K(x,)\right)\right\rangle}^{q}[f] .
$$

Proof. Using the relation (2.8) we obtain for each component function $f_{j}, j=1 \ldots q$ that

$$
\left.\left.\begin{array}{rl}
\mathcal{P}_{\mathcal{H}^{X} \oplus(K(x+h v,)\rangle} & {\left[f_{j}\right]}
\end{array}=\mathcal{P}_{\mathcal{H}^{x}}\left[f_{j}\right]+\mathcal{P}_{\left\langle\tilde{\phi}_{x+h \nu}\right.}\right\rangle f_{j}\right]=\mathcal{P}_{\mathcal{H}^{x}}\left[f_{j}\right]+\frac{\left\langle f_{j}, \tilde{\phi}_{x+h v}\right\rangle_{\mathcal{H}}}{\left\|\tilde{\phi}_{x+h v}\right\|_{\mathcal{H}}^{2}} \tilde{\phi}_{x+h v} .
$$

Taking the limit $h \rightarrow 0$ and recalling the component-wise action of \mathcal{P}^{q} finishes the proof.
Remark 2. The expression $\mathcal{P}_{\left.\mathcal{H}^{X} \oplus\left(v^{T} \nabla_{1} K(x,)\right)\right\rangle}^{q}[f]$ actually corresponds to a simultaneous, component-wise directional Hermite interpolation in \mathcal{H}^{q} since

$$
\left\langle f_{j}, \boldsymbol{v}^{T} \nabla_{1} K(\boldsymbol{x}, \cdot)\right\rangle_{\mathcal{H}}=\boldsymbol{v}^{T} \nabla_{1} f_{j}(\boldsymbol{x}), \quad j=1 \ldots N,
$$

which can be easily verified using Lemma 1.1. Interestingly enough, this means that the closer a considered point approaches an already included one from the direction v, the "direct extension" gain is converging towards the gain that would be achieved adding the directional derivative $\boldsymbol{v}^{T} \nabla_{1} K(\boldsymbol{x}, \cdot)$ to \mathcal{H}^{X}.

We conclude our analysis of $G_{X, f}$ with the following Theorem.
Theorem 2.6 (Gain function characterization). Let $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\} \subseteq \Omega$ and $\boldsymbol{f} \in \mathcal{H}^{q}$. Then $G_{X, f}$ is continuous on $\Omega \backslash \Omega_{X}$ and $\forall \boldsymbol{x} \in \Omega_{X}$ exists a neighborhood of \boldsymbol{x} on which $G_{X, f}$ is bounded.

Proof. Let $\boldsymbol{x} \in \Omega \backslash \Omega_{X}$. Then for any $\boldsymbol{v} \in \mathbb{R}^{d}$ a similar argumentation with Taylor series as in the proof of Theorem 2.4 shows that

$$
\lim _{h \rightarrow 0}\left\|\phi_{x}-\phi_{x+h \nu}\right\|_{\mathcal{H}}=0
$$

from which we obtain continuity as $\lim _{y \rightarrow x} G_{X, f}(\boldsymbol{y})=G_{X, f}(\boldsymbol{x})$. Next, for $\boldsymbol{x} \in \Omega_{X}$ and an ϵ with $B_{\epsilon}(\boldsymbol{x}) \subset \Omega$ we see that

$$
\sup _{v \in B_{\epsilon}(0)} \lim _{h \rightarrow 0} G_{X, f}(\boldsymbol{x}+h v)=\sup _{v \in B_{\epsilon}(0)} \sum_{j=1}^{q}\left\langle f_{j}, \phi_{x}^{\nabla v}\right\rangle_{\mathcal{H}}^{2} \leq \sup _{v \in B_{\epsilon}(0)} \sum_{j=1}^{q}\left\|f_{j}\right\|_{\mathcal{H}}^{2}\left\|\phi_{x}^{\nabla v}\right\|_{\mathcal{H}}^{2}=\|f\|_{\mathcal{H}^{q}}^{2}<\infty,
$$

which shows the boundedness.
The most important conclusion from the above analysis for applications is, that the gain function $G_{X, f}$ does not have any poles. This boundedness allows to actually obtain an analytic maximum in (2.2), presuming a suitable extension of $G_{X, f}$ onto Ω. Furthermore, should it occur that the maximum of $G_{X, f}$ is achieved at some $x \in \Omega_{X}$ for a $v \in \mathbb{R}^{d}$, this means that the extension of \mathcal{H}^{X} with $\boldsymbol{v}^{T} \nabla_{1} K(\boldsymbol{x}, \cdot)$ yields a better improvement than inclusion of any direct kernel translate $K(\boldsymbol{x}, \cdot)$. However, in practical applications of this algorithm we yet consider only direct kernel translates for inclusion. This is why we will assume for the remainder of this work to extend $G_{X, f}$ onto Ω by setting $G_{X, f}(x):=0 \forall x \in \Omega_{X}$.
Remark 3. If in the context of Theorem $2.4 K$ is actually induced by a radial basis function ϕ via $K(x, y)=\phi(\|x-y\|)$, we directly obtain

$$
\boldsymbol{g}_{x}:=\phi^{\prime}(\|x-\cdot\|)\left\langle v, \frac{x-\cdot}{\|x-\cdot\|}\right\rangle-\sum_{j=1}^{N} K\left(x_{j}, \cdot\right) \sum_{i=1}^{N} K_{i j}^{-1} \phi^{\prime}\left(\left\|x-x_{i}\right\|\right)\left\langle v, \frac{x-x_{i}}{\left\|x-x_{i}\right\|}\right\rangle,
$$

with $K_{i j}^{-1}$ denoting the $i j$-th entry of \boldsymbol{K}^{-1}. It is interesting to see that, for all directions that are free of any part towards the other centers (i.e. $\boldsymbol{v} \perp \boldsymbol{x}-\boldsymbol{x}_{\boldsymbol{i}}$ for all i), the contribution of the projection vanishes completely.
Remark 4. If we assume $d=1$ in the context of Proposition 2.6, then the limit of ϕ_{x} for $x \rightarrow \tilde{x} \in \Omega_{X}$ is unique and $G_{X, f}$ is continuous on $\Omega \forall f \in \mathcal{H}$.

2.2 Convergence analysis

In this Section we want to investigate the convergence behaviour of Algorithm 3, where we will prove a slightly improved convergence bound similar to the one established in [14] with a yet simplified proof. Note that this type of convergence rate stems from the more general theory of greedy algorithms in vectorial Hilbert/Banach spaces [16, 14]. On the other hand, there are various results for greedy algorithm convergence/approximation error bounds in the scalar setting for RKHS, which usually involve the concept of a fill distance, see [40, 18, 24] to name a few. Due to their generality, the foremost mentioned Temlyakov-style error bounds are often too conservative, while the fill distance-related bounds provide excellent convergence rates in many situations. However, the latter also suffer from the condition that a sufficiently small fill distance is hard to achieve in practice. Hence, it remains an open question if this "gap" can be closed in the future, as the practical convergence rates of kernel greedy algorithms are mostly much faster than the Temlyakov-bounds.

The following lemma is a key ingredient for the convergence results and was stated first in [35, 3.1] with proof in [7, Lemma 3.4]. However, as the referred proof is for a slightly different case we state it here for completeness.
Lemma 2.7 (Lemma 3.1 from [35]). Let $M>0, t_{m}, a_{m} \geq 0$ be non-negative sequences satisfying $a_{0} \leq M, a_{m+1} \leq a_{m}(1-$ $t_{m+1} \frac{a_{m}}{M}$. Then

$$
\begin{equation*}
a_{m} \leq M\left(1+\sum_{k=1}^{m} t_{k}\right)^{-1} \quad \forall m \geq 0 \tag{2.9}
\end{equation*}
$$

Proof. If we have $a_{m_{0}}=0$ for an $m_{0} \geq 0$ we have $a_{m}=0 \forall m \geq m_{0}$ and thus (2.9) holds trivially. So assume $a_{m} \neq 0$ for all $m \geq 0$ and we continue by induction. Then for $m=0$ equation (2.9) is given by prerequisite. The induction step $m \rightarrow m+1$ follows via

$$
\begin{aligned}
a_{m+1}^{-1} & \geq a_{m}^{-1}\left(1-t_{m+1} \frac{a_{m}}{M}\right)^{-1} \geq a_{m}^{-1}\left(1+t_{m+1} \frac{a_{m}}{M}\right) \\
& =a_{m}^{-1}+\frac{t_{m+1}}{M} \geq \frac{1}{M}\left(1+\sum_{k=1}^{m} t_{k}\right)+\frac{t_{m+1}}{M}=\frac{1}{M}\left(1+\sum_{k=1}^{m+1} t_{k}\right),
\end{aligned}
$$

using the third binomial formula $(1-b)(1+b)=1-b^{2} \leq 1$ and the prerequisites.
A further key aspect of the Temlyakov-type estimations is to consider a certain subclass of functions

$$
\mathcal{H}_{M}^{q}:=\left\{f \in \mathcal{H}^{q}\left|f_{j}=\sum_{k=0}^{\infty} \alpha_{k}^{j} K\left(\boldsymbol{x}_{k}, \cdot\right), \sum_{k=0}^{\infty}\right| \alpha_{k}^{j} \mid \leq M, j=1 \ldots q\right\}
$$

for $M>0$. It is easy to see that especially $\|f\|_{\mathcal{H}^{q}} \leq M \forall f \in \mathcal{H}_{M}^{q}$. For more background on this methodology we refer to [7, 3].
Theorem 2.8 (Convergence rates of the VKOGA algorithm). Let the conditions of Algorithm 3 hold and let $M>0$. Then for any $f \in \mathcal{H}_{M}^{q}$, f^{m} converges to f no slower than

$$
\begin{equation*}
\left\|\boldsymbol{f}-\boldsymbol{f}^{m}\right\|_{\mathcal{H}^{q}} \leq \sqrt{q} M\left(1+\frac{m}{q}\right)^{-\frac{1}{2}}, \quad m \geq 0 . \tag{2.10}
\end{equation*}
$$

Further, with the definition

$$
c_{m}:=\max _{\boldsymbol{x} \in \Omega} \tilde{\phi}_{x}^{m-1}(\boldsymbol{x})=\max _{\boldsymbol{x} \in \Omega}\left\|\tilde{\phi}_{x}^{m-1}\right\|_{\mathcal{H}}^{2}, \quad m>0,
$$

we obtain the a-posteriori convergence bound

$$
\begin{equation*}
\left\|f-\boldsymbol{f}^{m}\right\|_{\mathcal{H}^{q}} \leq \sqrt{q} M\left(1+\frac{1}{q} \sum_{k=1}^{m} \frac{1}{c_{k}}\right)^{-\frac{1}{2}}, \quad m \geq 0 . \tag{2.11}
\end{equation*}
$$

Proof. Since $c_{m} \leq 1 \forall m>0$ by Lemma 1.3 we obtain the a-priori bound (2.10) from (2.11) by setting $c_{m}:=1 \forall m>0$, which leaves us to prove (2.11). First, using Lemma 1.3 we see for $j=1 \ldots q$ that

$$
\begin{aligned}
\left\|f_{j}-f_{j}^{m-1}\right\|_{\mathcal{H}}^{2} & =\left\langle f_{j}-f_{j}^{m-1}, f_{j}-f_{j}^{m-1}\right\rangle_{\mathcal{H}}=\left\langle f_{j}, f_{j}-f_{j}^{m-1}\right\rangle_{\mathcal{H}} \\
& =\sum_{k=1}^{\infty} \alpha_{k}^{j}\left\langle K\left(x_{k}, \cdot\right), f_{j}-f_{j}^{m-1}\right\rangle_{\mathcal{H}} \\
& \leq \sum_{k=1}^{\infty}\left|\alpha_{k}^{j}\right|\left|\left\langle f_{j}, \tilde{\phi}_{x_{k}}^{m-1}\right\rangle_{\mathcal{H}}\right| \\
& \leq \sum_{k=1}^{\infty}\left|\alpha_{k}^{j}\right| \max _{x \in \Omega}\left|\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}\right| \\
& \leq M \max _{x \in \Omega}\left|\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}\right| .
\end{aligned}
$$

Now, Lemma 1.2 gives

$$
\left\|\tilde{\phi}_{\boldsymbol{x}}\right\|_{\mathcal{H}}^{2}=\left\|K(\boldsymbol{x}, \cdot)-\mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)]\right\|_{\mathcal{H}}^{2}=1-\left\langle K(\boldsymbol{x}, \cdot), \mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)]\right\rangle_{\mathcal{H}} \leq 1,
$$

and together with Chebyshev's inequality [1, 3.2.7] (twice) we estimate the vectorial gain term as

$$
\begin{aligned}
G_{X_{m-1}, f}\left(\boldsymbol{x}_{m}\right) & =\max _{x \in \Omega} G_{X_{m-1}, f}(\boldsymbol{x})=\max _{x \in \Omega \backslash \Omega_{X_{m-1}}} G_{X_{m-1}, f}(\boldsymbol{x}) \\
& =\max _{x \in \Omega \backslash \Omega_{X_{m-1}}} \sum_{j=1}^{q} \frac{1}{\left\|\tilde{\phi}_{x}^{m-1}\right\|_{\mathcal{H}}^{2}}\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}^{2} \geq \max _{x \in \Omega \backslash \Omega_{x_{m-1}}} \frac{1}{c_{m}} \sum_{j=1}^{q}\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}^{2} \\
& \geq \frac{1}{c_{m}} \max _{x \in \Omega \backslash \Omega_{X_{m-1}}} \max _{j=1 \ldots q}\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}^{2}=\frac{1}{c_{m}} \max _{j=1 \ldots q} \max _{x \in \Omega \backslash \Omega_{X_{m-1}}}\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}^{2} \\
& =\frac{1}{\sqrt{q} c_{m}}\left(q \max _{j=1 \ldots q} \max _{x \in \Omega \backslash \Omega_{X_{m-1}}}\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}^{4}\right)^{\frac{1}{2}} \\
& \geq \frac{1}{\sqrt{q} c_{m}}\left(\sum_{j=1}^{q} \max _{x \in \Omega \backslash \Omega_{X_{m-1}}}\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}^{4}\right)^{\frac{1}{2}} \\
& \geq \frac{1}{\sqrt{q} c_{m}}\left(\frac{1}{q}\left(\sum_{j=1}^{q} \max _{x \in \Omega \backslash \Omega_{X_{m-1}}}\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}^{2}\right)^{2}\right)^{\frac{1}{2}} \\
& =\frac{1}{q c_{m}} \sum_{j=1}^{q} \max _{x \in \Omega \backslash \Omega_{X_{m-1}}}\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}^{2} \geq \frac{1}{q c_{m}} \sum_{j=1}^{q} \frac{\left\|f_{j}-f_{j}^{m-1}\right\|_{\mathcal{H}}^{4}}{M^{2}} \\
& \geq \frac{1}{q M^{2} c_{m}} \frac{1}{q}\left(\sum_{j=1}^{q}\left\|f_{j}-f_{j}^{m-1}\right\|_{\mathcal{H}}^{2}\right)^{2}=\frac{1}{q^{2} M^{2} c_{m}}\left\|f-f^{m-1}\right\|_{\mathcal{H}^{q}}^{4} .
\end{aligned}
$$

Using Lemma 2.1, we see that

$$
\begin{aligned}
\left\|f-\boldsymbol{f}^{m}\right\|_{\mathcal{H}^{q}}^{2} & =\left\|\boldsymbol{f}-\boldsymbol{f}^{m-1}\right\|_{\mathcal{H}^{q}}^{2}-G_{X_{m-1}, f}\left(\boldsymbol{x}_{m}\right) \\
& \leq\left\|\boldsymbol{f}-\boldsymbol{f}^{m-1}\right\|_{\mathcal{H}^{q}}^{2}-\frac{1}{q^{2} M^{2} c_{m}}\left\|\boldsymbol{f}-\boldsymbol{f}^{m-1}\right\|_{\mathcal{H}^{q}}^{4} \\
& =\left\|\boldsymbol{f}-\boldsymbol{f}^{m-1}\right\|_{\mathcal{H}^{q}}^{2}\left(1-\frac{\frac{1}{q c_{m}}\left\|\boldsymbol{f}-\boldsymbol{f}^{m-1}\right\|_{\mathcal{H}^{q}}^{2}}{q M^{2}}\right) .
\end{aligned}
$$

Further, with $f_{j} \in \mathcal{H}^{M}$ we have

$$
\left\|f-\boldsymbol{f}^{0}\right\|_{\mathcal{H}^{q}}^{2}=\|f\|_{\mathcal{H}^{q}}^{2}=\sum_{j=1}^{q}\left\|f_{j}\right\|_{\mathcal{H}}^{2} \leq \sum_{j=1}^{q} M^{2}=q M^{2} .
$$

Finally, applying Lemma 2.7 with $a_{m}=\left\|f-\boldsymbol{f}^{m}\right\|_{\mathcal{H}^{q}}^{2}, a_{0} \leq q M^{2}$ and $t_{m}:=\frac{1}{q c_{m}}$ gives

$$
\left\|f-\boldsymbol{f}^{m}\right\|_{\mathcal{H}^{q}}^{2} \leq q M^{2}\left(1+\sum_{k=1}^{m} \frac{1}{q c_{k}}\right)^{-1} \forall m \in \mathbb{N}
$$

and hence (2.11).

3 Computational aspects

Before we present some numerical experiments we make some remarks on computational aspects of the VKOGA algorithm. The straightforward approach is, for any given set of points X, to use the standard basis of translates $\left\{\boldsymbol{K}\left(\boldsymbol{x}_{1}, \cdot\right), \ldots, \boldsymbol{K}\left(\boldsymbol{x}_{N}, \cdot\right)\right\}$ of \mathcal{H}^{X} to obtain the projection via solving the system $\boldsymbol{K c}=\boldsymbol{f}_{\mid X}$. However, it is well known that this "RBF-Direct" method suffers from ill conditioned kernel matrices \boldsymbol{K}, especially for point distributions with small distances. In order to alleviate those problems, several approaches [26, 12, 11, 9] for various settings have been developed, to name a few. However, in this work we will use the Newton basis formulated recently in [22], as it is a fairly general and has a close connection to the orthonormal remainders.
Definition 3.1 (Newton basis of \mathcal{H}^{X}). Let $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\} \subseteq \Omega$ so that \mathcal{H}^{X} is m-dimensional. Then the Newton basis N_{1}, \ldots, N_{m} of \mathcal{H}^{X} is given by the recursion

$$
N_{1}:=\frac{K\left(\boldsymbol{x}_{1}, \cdot\right)}{\sqrt{K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right)}}, \quad \quad \tilde{N}_{j}=K\left(\boldsymbol{x}_{j}, \cdot\right)-\sum_{i=1}^{j-1} N_{i}\left(\boldsymbol{x}_{i}\right) N_{i}, \quad \quad N_{j}=\frac{\tilde{N}_{j}}{\left\|\tilde{N}_{j}\right\|_{\mathcal{H}}}, \quad j=2 \ldots m .
$$

and satisfies

$$
\begin{equation*}
\left\langle N_{i}, N_{j}\right\rangle_{\mathcal{H}}=\delta_{i j} . \tag{3.1}
\end{equation*}
$$

Condition (3.1) is easily verified by induction. With this basis a stable computation of the projection at each greedy step is possible, without having to touch any previously computed coefficients again. Next we state the representations of the involved quantities with respect to the Newton basis and refer to [22] for more details on this approach.
Lemma 3.1 (Newton basis representations). Let N_{1}, \ldots, N_{m} be the Newton basis of \mathcal{H}^{X} and $f \in \mathcal{H}$. Then

$$
\begin{align*}
\mathcal{P}_{\mathcal{H}^{x}}[f] & =\sum_{i=1}^{m}\left\langle f, N_{i}\right\rangle_{\mathcal{H}} N_{i}, \tag{3.2}\\
\mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)] & =\sum_{i=1}^{m} N_{i}(\boldsymbol{x}) N_{i}, \tag{3.3}\\
\left\|\tilde{\phi}_{\boldsymbol{x}}\right\|_{\mathcal{H}}^{2} & =K(\boldsymbol{x}, \boldsymbol{x})-\sum_{i=1}^{m} N_{i}^{2}(\boldsymbol{x}) \tag{3.4}
\end{align*}
$$

Proof. From the projection conditions (1.2) and (3.1) we immediately obtain (3.2). Equation (3.3) is a special case of (3.2) for $f=K(\boldsymbol{x}, \cdot)$. Using (3.3) and Lemma 1.2 gives (3.4) via

$$
\begin{aligned}
\left\|\tilde{\phi}_{\boldsymbol{x}}\right\|_{\mathcal{H}}^{2} & =K(\boldsymbol{x}, \boldsymbol{x})-2 \mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)](\boldsymbol{x})+\left\|\mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)]\right\|_{\mathcal{H}}^{2} \\
& =K(\boldsymbol{x}, \boldsymbol{x})-\mathcal{P}_{\mathcal{H}^{x}}[K(\boldsymbol{x}, \cdot)](\boldsymbol{x})=K(\boldsymbol{x}, \boldsymbol{x})-\sum_{i=1}^{m} N_{i}^{2}(\boldsymbol{x}) .
\end{aligned}
$$

Note here that the first two results are in principle well-known, and equation (3.4) has already been shown in [22] using the power function notation. Finally, the following Proposition states how the VKOGA Algorithm can be computed efficiently using the Newton basis.
Proposition 3.2 (Computation of VKOGA with Newton basis). For $m=1$ set

$$
\begin{aligned}
& \boldsymbol{x}_{1}:=\arg \max _{\boldsymbol{x} \in \Omega} G_{\emptyset, f}(\boldsymbol{x})=\arg \max _{x \in \Omega} \sum_{j=1}^{q} f_{j}(\boldsymbol{x})^{2}, \\
& \boldsymbol{c}_{1}:=\left(\left\langle f_{1}, N_{1}\right\rangle_{\mathcal{H}}, \ldots,\left\langle f_{q}, N_{1}\right\rangle_{\mathcal{H}}\right)^{T}={\sqrt{K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right)}}^{-1}\left(f_{1}(\boldsymbol{x}), \ldots, f_{q}(\boldsymbol{x})\right)^{T} \in \mathbb{R}^{q} .
\end{aligned}
$$

Then, at the m-th iteration ($m>1$) with given $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m-1}, \boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{m-1}$ we define

$$
\begin{align*}
& \boldsymbol{x}_{m}:=\arg \max _{\boldsymbol{x} \in \Omega \backslash \Omega X_{m-1}}\left\|\boldsymbol{f}(\boldsymbol{x})-\sum_{i=1}^{m-1} \boldsymbol{c}_{i} N_{i}(\boldsymbol{x})\right\|_{2}^{2}\left(K(\boldsymbol{x}, \boldsymbol{x})-\sum_{i=1}^{m-1} N_{i}^{2}(\boldsymbol{x})\right)^{-1}, \tag{3.5}\\
& \boldsymbol{c}_{m}:=\left(\begin{array}{c}
\left\langle f_{1}, N_{m}\right\rangle_{\mathcal{H}} \\
\vdots \\
\left\langle f_{q}, N_{m}\right\rangle_{\mathcal{H}}
\end{array}\right)=\frac{\boldsymbol{f}\left(\boldsymbol{x}_{m}\right)-\sum_{i=1}^{m-1} \boldsymbol{c}_{i} N_{i}\left(\boldsymbol{x}_{m}\right)}{\left(K\left(\boldsymbol{x}_{m}, \boldsymbol{x}_{m}\right)-\sum_{i=1}^{m-1} N_{i}^{2}\left(\boldsymbol{x}_{m}\right)\right)^{\frac{1}{2}}} \in \mathbb{R}^{q} . \tag{3.6}
\end{align*}
$$

Proof. With Lemma 3.1 we see (3.5) by

$$
G_{X_{m-1}, f}(\boldsymbol{x})=\frac{\sum_{j=1}^{q}\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}^{2}}{\left\|\tilde{\phi}_{x}^{m-1}\right\|_{\mathcal{H}}^{2}}=\frac{\left\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}^{m-1}(\boldsymbol{x})\right\|_{2}^{2}}{\left\|\tilde{\phi}_{x}^{m-1}\right\|_{\mathcal{H}}^{2}}=\frac{\left\|f(\boldsymbol{x})-\sum_{i=1}^{m-1} \boldsymbol{c}_{i} N_{i}(\boldsymbol{x})\right\|_{2}^{2}}{K(\boldsymbol{x}, \boldsymbol{x})-\sum_{i=1}^{m-1} N_{i}^{2}(\boldsymbol{x})} .
$$

In order to see (3.6) we note that

$$
\begin{aligned}
\left\|\tilde{N}_{m}\right\|_{\mathcal{H}}^{2} & =K\left(\boldsymbol{x}_{m}, \boldsymbol{x}_{m}\right)-\sum_{i=1}^{m-1} N_{i}^{2}\left(\boldsymbol{x}_{m}\right), \\
\left\langle f_{j}, N_{m}\right\rangle_{\mathcal{H}} & =\frac{\left\langle f_{j}, \tilde{N}_{m}\right\rangle_{\mathcal{H}}}{\left\|\tilde{N}_{m}\right\|_{\mathcal{H}}}=\frac{f_{j}\left(\boldsymbol{x}_{m}\right)-\sum_{i=1}^{m-1}\left\langle f_{j}, N_{i}\right\rangle_{\mathcal{H}} N_{i}\left(\boldsymbol{x}_{m}\right)}{\left(K\left(\boldsymbol{x}_{m}, \boldsymbol{x}_{m}\right)-\sum_{i=1}^{m-1} N_{i}^{2}\left(\boldsymbol{x}_{m}\right)\right)^{\frac{1}{2}}} .
\end{aligned}
$$

Note that the final approximant f^{m} will have the structure (3.2). In order to evaluate the expansion using the direct translate basis, the triangular matrix with values of the computed m Newton basis functions at the selected points X_{m} can be used to obtain the corresponding coefficients [22].
Remark 5 (Connection to remainders). In the context of Proposition 3.2 we actually have $\tilde{\phi}_{x_{m}}=\tilde{N}_{m}$ and consequently $\phi_{x_{m}}=N_{m}$. This means that the orthonormal remainders in each step directly state all possible candidates of new Newton basis functions.

4 Numerical illustrations

As mentioned earlier, Algorithm 3 describes an algorithm similar to the vectorial algorithms presented in [14, 3], especially the variant "WSOGA2" at (3.4). We state it here fitted to our RKHS setting.

Algorithm 4 WSOGA2

Let K be a symmetric, positive definite and normalized kernel spanning the RKHS \mathcal{H} on a closed $\Omega \subset \mathbb{R}^{d}$. Further let $\boldsymbol{f} \in \mathcal{H}^{q}$, define $X_{0}:=\emptyset, f^{0}:=0$ and for $m>0$ the sequences

$$
\begin{aligned}
\boldsymbol{x}_{m} & =\arg \max _{\boldsymbol{x} \in \Omega} \sum_{j=1}^{q}\left\langle f_{j}-f_{j}^{m-1}, K(\boldsymbol{x}, \cdot)\right\rangle_{\mathcal{H}}^{2}, \\
X_{m} & :=X_{m-1} \cup\left\{\boldsymbol{x}_{m}\right\}, \\
\boldsymbol{f}^{m} & :=\mathcal{P}_{\mathcal{H}^{x_{m}}}^{q}[\boldsymbol{f}] .
\end{aligned}
$$

Remark 6. In the context of Algorithm 4 we have monotonicity of \mathcal{H}^{q} error decay and the same a-priori convergence rate as for Algorithm 3 can be shown to apply. Note here that the proof of convergence rates of the WSOGA2-Algorithm has already been performed (in a more general setting) in [14], albeit using a different technique and obtaining a convergence rate which is a factor of \sqrt{q} slower. Furthermore, \boldsymbol{x}_{m} is chosen using the maximum local L^{2} point-wise approximation error in the sense of

$$
\begin{equation*}
x_{m}=\arg \max _{x \in \Omega}\left\|f(x)-f^{m}(x)\right\|_{2}^{2} . \tag{4.1}
\end{equation*}
$$

4.1 Analytical comparison of VKOGA and WSOGA2

Before we present some illustrating experimental results, we perform an analytical comparison and show how this can be interpreted. Let $X \subset \Omega$ be given and denote by $\boldsymbol{x}^{c}, \boldsymbol{x}^{c}$ the subspace extension choices of the Algorithms 3 and 4, respectively. Then we see that

$$
\begin{aligned}
\sum_{j=1}^{q}\left\langle f_{j}-f_{j}^{m-1}, K\left(\boldsymbol{x}^{c}, \cdot\right)\right\rangle_{\mathcal{H}}^{2} & =\sum_{j=1}^{q}\left\langle f_{j}, \tilde{\phi}_{x^{c}}\right\rangle_{\mathcal{H}}^{2} \leq \sum_{j=1}^{q}\left\langle f_{j}, \phi_{x^{c}}\right\rangle_{\mathcal{H}}^{2} \\
& \leq \max _{x \in \Omega} \sum_{j=1}^{q}\left\langle f_{j}, \phi_{x}\right\rangle_{\mathcal{H}}^{2}=G_{X, f}\left(\boldsymbol{x}^{o}\right) .
\end{aligned}
$$

by the selection criteria definitions. This means the VKOGA algorithm will locally always make as good a choice as the WSOGA2 algorithm. Unfortunately, as the successive spaces constructed by both algorithms will in general be different, it remains an open question to us if we can and how to compare the performance of both variants directly at some given subspace size $m>0$. However, with the help of Lemma 1.3, the VKOGA extension choice criteria can also be written as

$$
\max _{x \in \Omega} \sum_{j=1}^{q}\left\langle f_{j}, \phi_{x}^{m-1}\right\rangle_{\mathcal{H}}^{2}=\max _{x \in \Omega \backslash \Omega_{X_{m-1}}} \frac{\left\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}^{m}(\boldsymbol{x})\right\|_{2}^{2}}{\left\|K(\boldsymbol{x}, \cdot)-\mathcal{P}_{\mathcal{H}^{x_{m-1}}}[K(\boldsymbol{x}, \cdot)]\right\|_{\mathcal{H}}^{2}} .
$$

Since the numerator equals the WSOGA2 choice (4.1), which basically considers any maximizing point \boldsymbol{x} to be equally good for extension, the VKOGA choice scales inversely with how well the associated dictionary element $K(\boldsymbol{x}, \cdot)$ is already approximated by \mathcal{H}^{X}. This way, identical point-wise approximation errors closer to the points whose dictionary elements span \mathcal{H}^{X} are considered to be worse than others. Moreover, as the norm of any orthogonal remainder is independent of the considered $f \in \mathcal{H}^{q}$, this can be interpreted as how well all functions involving the dictionary element $K(\boldsymbol{x}, \cdot)$ in general are already approximated in \mathcal{H}^{q}. This concept is pursued directly by the P-Greedy algorithm mentioned e.g. in [18], which aims to create data-independent approximations of the function space and leads to a very uniform distribution of the selected \boldsymbol{x}_{m}. Figure 2 illustrates this issue using two simple scalar examples, which shows the different extension choices at $m=6$ already given points along with the respective gain functions. The

$$
\begin{array}{ll}
\square & f_{j}(x) \\
- & f_{j}^{m-1}(x) \\
- & \left\langle f_{j}-f_{j}^{m-1}, \Phi(x, \cdot)\right\rangle_{\mathcal{H}} \\
----- & \left\langle f_{j}, \phi_{x}^{m-1}\right\rangle_{\mathcal{H}} \\
----- & \left\|\tilde{\phi}_{x}^{m-1}\right\|-3
\end{array}
$$

Figure 2: Example for different selections of points using VKOGA/WSOGA for a scalar setting
red and blue crosses mark the VKOGA and WSOGA2 selection and the dashed/solid green line the gain functions of the VKOGA/WSOGA2 algorithms, respectively. As test setting $X=\{-7.1,-5.6,-2.1,1.9,5.9,8.4\}$ and a Gaussian with $\gamma^{2}=2.1715$ has been used, whose induced RKHS serves as native space for both dictionary and test function f. The expansion coefficients of f_{1} on the left, f_{2} on the right hand side are $\boldsymbol{\alpha}_{1}=(-2.0465,2.3066,-0.2428,0.6805,-2.1213,-1.4411)$
and $\boldsymbol{\alpha}_{2}=(1.1702,-0.2113,-0.7158,-0.5346,-1.1990,-1.1459)$ Note that it is clear to see that the gain function of the VKOGA algorithm is indeed continuous as mentioned earlier in Remark 4.

For both cases we see that the VKOGA choice selects spatially very different extension points, even though the gain of both algorithms is not very different. While in the case of f_{1} (left) the extension points are selected "well away" from any existing point, the VKOGA extension selects x_{7} very close to the existing center at -7.1 . There it is evident that, even though the absolute approximation error is bigger elsewhere, the error weighted by the orthogonal remainder norm causes this location to be considered most worth improving. One the downside, especially because this choice involves a functionindependent but RKHS-specific part, the choice of VKOGA can be ill-suited if the considered function does not stem from the same RKHS as the dictionary elements. In this situation, adding more points near the same location does not yield an excellent local convergence rate of the nominator as predicted by any fill-distance based approaches. However, as this is the case for the denominator, the rapid decay of the denominator causes even more points to be added in the same area. This effect can also be seen in e.g. [18, 6.1]. In our opinion, instead of considering the f / P-VKOGA variant a bad choice when the origin of the target function is unknown, we think this effect might be actively used to formulate an indicator for the foremost mentioned situation. If a considered function is "detected" not to belong to the currently chosen RKHS, one can proceed with another choice of RKHS, e.g. a different hyper-parameter for the RKHS inducing kernel.
Remark 7. We would like to note that both algorithms can be continuously transferred over to each other by thresholding the orthogonal remainder norms at a certain value. This opens up a large variety of algorithms and the version most suitable for the current situation can be selected.

4.2 Experimental comparison of VKOGA and WSOGA2

Finally we want to pursue some numerical experiments for the truly vectorial case. We use $d=q=5$, the test domain $\Omega=[-5,5]^{d}$ and a Gaussian kernel with $\gamma=9.8935$, which is chosen so that $K(x, y)<0.6 \forall\|x-y\| \geq \sqrt{d \cdot \operatorname{diam}(\Omega)}=$ $\sqrt{50}$, i.e. a certain locality of the kernel expansions is ensured. The test functions to approximate are of the structure

$$
\boldsymbol{f}(\boldsymbol{x}):=\sum_{k=1}^{N} \boldsymbol{c}_{k} K\left(\boldsymbol{x}_{k}, \boldsymbol{x}\right) \in \mathcal{H}^{q},
$$

with $N=20$ random centers within Ω and random expansion coefficients $\boldsymbol{c} \in[0,15]^{q}$. Experiments showed that it does not make a considerable difference in performance if we used $f \in \mathcal{H}^{q}$ (i.e. independent expansions for each dimension) or $f \in\left(\mathcal{H}^{X}\right)^{q}$ (a common center set $X \subseteq \Omega$ for each component function), as either way the actual centers are generally not detected/chosen as centers by the greedy algorithms.

For training we use 2500 training points in Ω and we use a validation set of size 1000 . The algorithm terminates if the $L^{\infty}\left(L^{2}\left(\mathbb{R}^{d}\right) ; \mathbb{R}^{2500}\right)$ relative error on training set is $\leq 10^{-4}$ or the expansion size exceeds $N=200$. In order to avoid numerical issues we used $\sqrt{e p s}=2.2 \times 10^{-8}$ as minimum allowed value for any $\left\|\tilde{\phi}_{x}^{m}\right\|_{\mathcal{H}}$. Figure 3 compares the results for the VKOGA and WSOGA2 algorithms.

Now we run 50 tests for random test functions $f \in \mathcal{H}^{q}$ and extracted some features of the results, which are displayed in Figures 4 and 5. Figure 4 shows that in average the VKOGA algorithm outperforms the WSOGA2 variant on both the training and validation sets. Also, the maximum relative error on the validation set is smaller than one for each run of the VKOGA, while this is rarely the case for WSOGA2. Figure 5 shows the expansion sizes on the left and the \mathcal{H}-norm errors incl. bounds on the right at a reached relative L^{2}-error of 10^{-3} on the training data.
Remark 8. For higher dimensions the a-priori estimation assumptions can cause some problems. Running a test with $d=20$, Figure 6 shows that even though we have an exponential convergence with N, the \mathcal{H}-norm convergence rate is worse than predicted. This is due to the following estimation in the first step of the convergence rate proof in Theorem 2.8:

$$
\sum_{k=1}^{\infty}\left|\alpha_{k}^{j}\right|\left|\left\langle f_{j}, \tilde{\phi}_{x_{k}}^{m-1}\right\rangle_{\mathcal{H}}\right| \leq \sum_{k=1}^{\infty}\left|\alpha_{k}^{j}\right| \max _{x \in \Omega}\left|\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}\right|
$$

This estimation holds in theory, but since Ω is replaced by a discrete training set $\Xi \subseteq \Omega$ we might not have

$$
\left|\left\langle f_{j}, \tilde{\phi}_{x_{k}}^{m-1}\right\rangle_{\mathcal{H}}\right| \leq \max _{x \in \Xi}\left|\left\langle f_{j}, \tilde{\phi}_{x}^{m-1}\right\rangle_{\mathcal{H}}\right| \forall \boldsymbol{x}_{k} .
$$

5 Conclusion \& Perspectives

In this work we considered a extension of the f / P-Greedy algorithm [18] to the vectorial case in the spirit of [14]. The question about the behaviour of the gain function close to already included points has been answered satisfactorily and

Figure 3: Left: Relative errors on training set against expansion size. Right: Decay of $\left\|f-f^{m}\right\|_{\mathcal{H}^{q}}$ over iterations. Dashed lines: Upper bounds on convergence rates, WSOGA2 (2.10)/ VKOGA a-posteriori (2.11)

Figure 4: $L^{\infty}-L^{2}$-errors after termination on training and validation sets. L : absolute, R : relative
it turned out to be directly related to Hermite interpolation at the repetitively considered points. Moreover, the established Temlyakov-type convergence rates for vectorial greedy algorithms from e.g. [7, 16] could be verified and improved. However, as mentioned already in the convergence analysis, it remains an open question if the discrepancy between the observed and predicted convergence rates can be reduced in future work. The obtained convergence rates for RKHS using fill distances [40, 18] promise room for improvement, standing against some results on lower bounds for the convergence rates [16]. We pursued a comparison of the proposed algorithm to a related existing one and discussed both advantages and disadvantages and their possible remedies.

Even though our conducted experiments have been of a synthetic nature, we are currently also investigating applications of the proposed algorithm and related ones in practical applications [42].

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions, volume 10 of Applied Mathematics Series. National Bureau of Standards, 1972.

Figure 5: L: Expansion sizes after termination, R: $\left\|f-f^{m}\right\|_{\mathcal{H}^{q}}$-errors and bounds

Figure 6: Plots for $d=20$ and 25000 training points
[2] S. Chen, C. Cowan, and P. Grant. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks, 2(2):302-309, mar 1991.
[3] S. Chen, P. Grant, and C. Cowan. Orthogonal least-squares algorithm for training multioutput radial basis function networks. IEE Proc. F, 139(6):378-384, dec 1992.
[4] S. Chen and J. Wigger. Fast orthogonal least squares algorithm for efficient subset model selection. IEEE Trans. Signal Processing, 43(7):1713-1715, jul 1995.
[5] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. Constr. Approx., 13:57-98, 1997.
[6] S. De Marchi, R. Schaback, and H. Wendland. Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math., 23:317-330, 2005.
[7] R. DeVore and V. Temlyakov. Some remarks on greedy algorithms. Adv. Comput. Math., 5:173-187, 1996.
[8] R. A. DeVore. Nonlinear approximation. Acta Numer., 7:51-150, 1998.
[9] G. Fasshauer and M. McCourt. Stable evaluation of gaussian radial basis function interpolants. SIAM J. Sci. Comput., 34(2):A737A762, 2012.
[10] G. E. Fasshauer. Positive definite kernels: Past, present and future. In M. Buhmann, S. D. Marchi, and Plonka-Hoch, editors, Kernel Functions and Meshless Methods, volume 4 of Dolomites Research Notes on Approximation, pages 21-63, 2011. Special Issue.
[11] B. Fornberg, E. Larsson, and N. Flyer. Stable computations with gaussian radial basis functions. SIAM J. Sci. Comput., 33(2):869-892, April 2011.
[12] B. Fornberg and C. Piret. A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput., 30(1):60-80, Oct 2007.
[13] S. Konyagin and V. Temlyakov. Greedy approximation with regard to bases and general minimal systems. Serdica Mathematical Journal, 28(4):305-328, 2002. ISSN: 1310-6600.
[14] D. Leviatan and V. Temlyakov. Simultaneous greedy approximation in Banach spaces. J. Complexity, 21(3):275-293, 2005.
[15] D. Leviatan and V. Temlyakov. Simultaneous approximation by greedy algorithms. Adv. Comput. Math., 25:73-90, 2006.
[16] A. Lutoborski and V. N. Temlyakov. Vector greedy algorithms. J. Complexity, 19(4):458-473, 2003.
[17] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Processing, 41(12):3397-3415, dec 1993.
[18] S. Mller. Complexity and Stability of Kernel-based Reconstructions. Dissertation, Georg-August-Universitttingen, Institut fr Numerische und Angewandte Mathematik, Lotzestrasse 16-18, D-37083 Gttingen, Jan 2009. Gttinger Online Klassifikation: EDDF 050.
[19] M. Mouattamid. Theory of Power Kernels. Dissertation, Georg-August-Universitttingen, 2005.
[20] M. Mouattamid and R. Schaback. Recursive kernels. Anal. Theory Appl., 25(4):301-316, 2009.
[21] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, volume 1, pages 40-44, Nov 1993.
[22] M. Pazouki and R. Schaback. Bases for kernel-based spaces. J. Comp. Appl. Math., 236(4):575-588, 2011. International Workshop on Multivariate Approximation and Interpolation with Applications (MAIA 2010).
[23] J. Phillips, J. Afonso, A. Oliveira, and L. Silveira. Analog macromodeling using kernel methods. In Proc. of ICCAD 2003, pages 446-453, November 2003.
[24] C. Rieger, R. Schaback, and B. Zwicknagl. Sampling and stability. In Mathematical Methods for Curves and Surfaces, volume 5862 of Lecture Notes in Computer Science, pages 347-369. Springer Berlin Heidelberg, 2010.
[25] R. Schaback. Improved error bounds for scattered data interpolation by radial basis functions. Mathematics of Computation, 68(225):201-216, 1999.
[26] R. Schaback. Limit problems for interpolation by analytic radial basis functions. J. Comp. Appl. Math., 212(2):127-149, 2008.
[27] R. Schaback and H. Wendland. Adaptive greedy techniques for approximate solution of large rbf systems. Numer. Algorithms, 24:239-254, 2000.
[28] R. Schaback and H. Wendland. Kernel techniques: From machine learning to meshless methods. Acta Numer., 15:543-639, May 2006.
[29] R. Schaback and J. Werner. Linearly constrained reconstruction of functions by kernels with applications to machine learning. Adv. Comput. Math., 25:237-258, 2006.
[30] B. Schlkopf and A. J. Smola. Learning with Kernels. Adaptive Computation and Machine Learning. The MIT Press, 2002.
[31] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann., 63:433-476, 1907.
[32] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004. ISBN: 0521813972.
[33] K. Slavakis, P. Bouboulis, and S. Theodoridis. Adaptive multiregression in reproducing kernel hilbert spaces: The multiaccess mimo channel case. IEEE Trans. Neural Netw. Learn. Syst., 23(2):260-276, feb. 2012.
[34] I. Steinwart and A. Christman. Support Vector Machines. Science + Business Media. Springer, 2008.
[35] V. Temlyakov. Weak greedy algorithms. Adv. Comput. Math., 12:213-227, 2000.
[36] V. N. Temlyakov. The best m-term approximation and greedy algorithms. Adv. Comput. Math., 8:249-265, 1998.
[37] V. N. Temlyakov. Greedy approximation. Acta Numer., 17:235-409, 2008.
[38] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Processing, 86(3):572-588, 2006.
[39] P. Vincent and Y. Bengio. Kernel matching pursuit. Mach. Learn., 48:165-187, 2002.
[40] H. Wendland. Scattered data approximation, volume 17 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2005.
[41] D. Wirtz and B. Haasdonk. Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems. Syst. Contr. Lett., 61(1):203-211, 2012.
[42] D. Wirtz, N. Karajan, and B. Haasdonk. Model order reduction of multiscale models using kernel methods. Preprint, University of Stuttgart, SRC SimTech, June 2013. Submitted.

[^0]: ${ }^{a}$ Institute for Applied Analysis and Numerical Simulation (IANS), University of Stuttgart
 Pfaffenwaldring 57, 70569 Stuttgart, Germany, \{daniel.wirtz, bernard.haasdonk\}@mathematik.uni-stuttgart.de
 ${ }^{b}$ The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart and the Baden-Wrttemberg Stiftung gGmbH. We would also like to thank R. Schaback for a fruitful discussion and comments regarding relations to existing work during the DWCAA conference 2012.

