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A Vectorial Kernel Orthogonal Greedy Algorithm

Daniel Wirtz a · Bernard Haasdonk a

Abstract

This work is concerned with derivation and analysis of a modified vectorial kernel orthogonal greedy
algorithm (VKOGA) for approximation of nonlinear vectorial functions. The algorithm pursues sim-
ultaneous approximation of all vector components over a shared linear subspace of the underly-
ing function Hilbert space in a greedy fashion [16, 37] and inherits the selection principle of the
f /P-Greedy algorithm [18]. For the considered algorithm we perform a limit analysis of the se-
lection criteria for already included subspace basis functions. We show that the approximation
gain is bounded globally and for the multivariate case the limit functions correspond to a direc-
tional Hermite interpolation. We further prove algebraic convergence similar to [14], improved by
a dimension-dependent factor, and introduce a new a-posteriori error bound. Comparison to related
variants of our algorithm are presented. Targeted applications of this algorithm are model reduction
of multiscale models [42].

Sparse approximation of nonlinear functions is a challenging task that arises in many different areas of modern com-
puting. A key element to find sparse representations is the concept of m-term approximation [31, 8], which basically is a
measure of how well a function from a given function space can be approximated by linearly combining m functions out
of a given set from the same space. This set can either be a basis of the considered space or a redundant (dense) system
of functions, where the latter is also called a dictionary and is considered in our work. However, direct computation of the
best m-term approximation is not possible in practice, as the computation has combinatorial complexity dependent on the
number of dictionary elements. Hence, the challenge is to find methods and algorithms that provide near-best m-term ap-
proximations. In this work, we will consider a type of approximation method that belongs to the family of greedy algorithms,
which have already been proven to yield near-best m-term approximations under various conditions, see e.g. [36, 7, 8, 37].
Their “greedy” nature has its foundation in a greedy step, which determines the next dictionary element to be added to an
existing m-term approximant according to certain maximizing criteria, mostly involving residuals. Well known criteria so
far roughly distinguish between pure and weak greedy algorithms, where the true or almost true maximum approximation
“gain” is considered, respectively. An extensive survey of greedy algorithms can be found in [37], however, greedy approx-
imation methods appear in the literature in different facets like matching pursuit [17, 21, 5] or greedy pursuit [38]. So
far, approximation and convergence results have been established for quite general spaces, e.g. Hilbert [8, 37] or Banach
spaces [13, 14].

Here, we will consider a special kind of approximation Hilbert space, namely reproducing kernel Hilbert spaces (RKHS)
induced by kernels, which we introduce in detail in Section 1. RKHS and kernel methods have been applied in many
different contexts like pattern recognition [32], machine learning [30] or scattered data approximation [40]. We refer to
[10] for a current review of approximation methods with positive definite kernels and [28] for a practical guide on kernel
methods and their applications. RKHS have hence been successfully used in various contexts, and, seen as Hilbert spaces
of functions, readily allow to apply the greedy approximation theory described above. It is also evident that the selection
criteria for subsequent new dictionary elements depends on the way the m-term approximant in any current linear subspace
is computed. The most natural approach is to use orthogonal projection with respect to the native RKHS scalar product,
which guarantees the best possible approximation in each subspace. We shall regard this approach in our work, however,
note that there are more choices e.g. using least squares [39] or orthogonal least squares [2, 4].
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However, greedy algorithms in the context of RKHS have been already formulated [27, 18] and some results on con-
vergence have been established. In this work, we will focus on a vectorial variant of orthogonal kernel greedy algorithms,
more precisely an extension of the so-called f /P-Greedy algorithm from [18, 3.1.1] in the spirit of [14]. We will investigate
the selection criteria more closely and show that an improved error bound and a-posteriori bounds can be obtained for the
considered vectorial greedy algorithm. For related work on vectorial greedy algorithms see [16, 15]. A vectorial regression
approach can be found in [33] or multioutput orthogonal least squares approximations are discussed in [3].

In our field of research we apply kernel approximation methods in the context of model reduction. Potential applications
of this algorithm are projection-based model order reduction of nonlinear dynamical systems [23, 41] and model reduction
of multiscale models, where the micro-scale model can often be replaced by approximation of the input-output relation
between the involved scales [42].

After establishing the necessary background regarding kernels and the induced Hilbert spaces in Section 1, Section 2
introduces our vectorial greedy algorithm. We shortly discuss computational aspects in Section 3 and present numerical
illustrations in Section 4. We conclude with a summarizing discussion in Section 5.

1 Preliminaries

1.1 Kernels and Reproducing Kernel Hilbert Spaces

We start with introducing the basic definitions and concepts used throughout our article. We will indicate matrix- and vector-
valued variables by bold upper- and lower-case Latin letters and scalar values by normal typesetting. Let Ω ⊂ Rd , d ∈ N be
a closed domain for the rest of this work.

Definition 1.1 (Kernels). A function K : Ω×Ω→ R is called positive definite kernel if ∀ N ∈ N, X = {x1, . . . , xN} ⊂ Ω and
α ∈ RN\{0} we have

N∑
i, j=1

αiα jK(x i , x j) > 0.

Further, K is called positive semi-definite if ≥ holds instead of >.

Definition 1.2 (RKHS). Let Ω ⊂ Rd , K : Ω×Ω→ R be a symmetric, positive definite kernel and X ⊂ Ω.
Then we denote by

HX := 〈{K(x , ·) | x ∈ X }〉
the R-vector space spanned by all functions K(x , ·), where 〈·〉 is a shorthand for the span operation. We equip HX with the
scalar product 


K(x , ·), K(y , ·)�HX := K(x , y), x , y ∈ X ,

which naturally extends to functions from HX . If X = {x1, . . . , xm} for m ∈ N, HX is an at most m-dimensional R-Hilbert
space spanned by K over X .

We further denote by
H =HΩ = 〈{K(x , ·) | x ∈ Ω}〉

the Hilbert space induced by K over Ω. In fact, for each symmetric, positive definite K there is a unique such space with
the reproducing property 


f , K(x , ·)�H = f (x ) ∀ f ∈H, x ∈ Ω,

which is why those spaces are also known as reproducing kernel Hilbert spaces (RKHS).

For a more complete characterization of RKHS we refer to [40, 10], for example. For the remainder of this work, let K
be a symmetric, positive definite and normalized (K(x , x ) = 1 ∀ x ∈ Ω) kernel on Ω with induced Hilbert space H unless
explicitly defined otherwise.

Definition 1.3 (Kernel matrix and vector). For X = {x1, . . . , xm} ⊂ Ω we denote by

KX :=
�
K(x i , x j)

�
i j

, i, j = 1 . . . m,

the kernel matrix of K with respect to X . Then, the positive (semi-)definiteness of a kernel K directly transfers to positive
(semi-)definiteness of the corresponding kernel matrix KX . Further we denote for x ∈ Ω by

kX (x ) :=
�
K(x1, x ), . . . , K(xN , x )

�T ∈ Rm (1.1)

the kernel vector of K at x with respect to X . For ease of reading, we will omit the subindices KX , kX whenever it is clear
from context.
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The following Lemma shows how smoothness of a kernel inherits to the RKHS functions. The proof is along the lines
of [40, 10.6] and/or [34, Lemma 4.34].

Lemma 1.1 (Derivatives of RKHS functions). If K ∈ C2(Ω×Ω), then ∂ K
∂ xi
(x , ·) ∈H ∀ x ∈ Ω, i = 1 . . . d and we have

∂ f

∂ x i
(x ) =

�
f ,
∂ K

∂ x i
(x , ·)

�
H

∀ x ∈ Ω, i = 1 . . . d.

1.2 Projection and orthogonal remainders

As mentioned at the beginning, we will focus on projection of functions into subspaces to obtain the approximants. There-
fore we first introduce the projection operator for linear subspaces.

Definition 1.4 (Orthogonal projection operator). Let S ⊆ H be a linear subspace of H. Then the orthogonal projection
operator is denoted by

PS : H→ S

f 7→ PS[ f ],

such that 

f − PS[ f ], g

�
H = 0 ∀ g ∈ S. (1.2)

Next we will detail some known frequently used properties of projections, whose proofs are elementary calculus.

Lemma 1.2. Let S ⊆H be a linear subspace of H. Then����PS[ f ]
����2

H =



f ,PS[ f ]
�
H ∀ f ∈H.

If further S =HX for some X = {x1, . . . , xN} so that K is non-singular, we have

PS[ f ] =
N∑

i=1

ciK(x i , ·), c = K−1 f , fi = f (x i), i = 1 . . . N . (1.3)

Unfortunately, due to a different perspective, there have been developing two different but closely related ways of
notation in the context of greedy algorithms. Whilst the classical greedy theory [37] considers scalar products of function
residuals and dictionary elements in the greedy step selection criteria, kernel greedy algorithms [27, 18] usually consider
point-wise maxima maxx | f (x)− s f ,X (x)| in the greedy step, where s f ,X is the interpolant of f on the current m− th point
set X . However, their connection will become clearer using the concept of orthogonal remainders, which we will investigate
in the following.

Definition 1.5 (Orthogonal/orthonormal remainders). Let X = {x1, . . . , xm} ⊆ Ω, x ∈ Ω and defineΩX := {x ∈ Ω | K(x , ·) ∈
HX }. Then we define the HX -orthogonal remainder ϕ̃x of K(x , ·) as

ϕ̃x := K(x , ·)−PHX [K(x , ·)],
and for x ∈ Ω\ΩX the HX -orthonormal remainder

ϕx := ϕ̃x

�����ϕ̃x

����
H .

The next Lemma shows some interesting properties of orthogonal/normal remainders.

Lemma 1.3 (Properties for remainders). Let the conditions of Definition 1.5 hold and let f ∈H.
Then

PHX⊕〈ϕx 〉H[ f ] = PHX [ f ] +P〈ϕx 〉H[ f ] ∀ f ∈H, (1.4)

f , ϕ̃x

�
H =



f −PHX [ f ], K(x , ·)�H = f (x )−PHX [ f ](x ) ∀ f ∈H. (1.5)

Furthermore, ϕ̃x is the Riesz-representative of the linear functional δx −PHX [·](x ) : H→ R.

Proof. The condition (1.4) is a well known property following directly by orthogonality of HX and ϕ̃x using standard argu-
ments. Equality (1.5) follows straightforwardly from the definitions as both



PHX [ f ],ϕx

�
H = 0=



f −PHX [ f ],PHX [K(x , ·)]�H

by projection properties. The Riesz representation directly follows from (1.5).
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So, Lemma 1.3 allows to show the connection between both perspectives, which is established mainly via the reprodu-
cing property of the RKHS. In equation (1.5) we see the scalar product of f with a dictionary element K(x , ·) in the spirit
of general greedy algorithms, but also the point-wise difference f (x )−PHX [ f ](x ), which is the same as f (x )− s f ,X (x ) by
Lemma 1.2 for non-singular kernel matrices. The expression 〈 f , ϕ̃x 〉H is equivalent to both, but isolates the f -dependency
nicely by using a modified dictionary element, i.e. the orthogonal remainder of K(x , ·).
Remark 1. For any X ⊂ Ω and x ∈ Ω\ΩX the orthogonal remainder ϕ̃x actually corresponds to the direct translate KP(x , ·)
of the Power-Kernel KP , see [19, 20].

1.3 The f /P-Greedy algorithm

In order to establish the link to the formalism of the f /P-Greedy algorithm [18], we show the relation of orthogonal
remainders to the concept of power functions.

Proposition 1.4 (Power function and orthogonal remainders). If for X = {x1, . . . , xN} ⊂ Ω the kernel matrix K is non-
singular, then ����ϕ̃x

����
H = PK ,X (x ), (1.6)

where PK ,X (x ) denotes the power function (see [40, 11.2] or [18, 2.2.11]) defined by

PK ,X (x )
2 := K(x , x )− 2

N∑
i=1

ui(x )K(x , x i) +
N∑
i, j

ui(x )u j(x )K(x i , x j).

Here ui , i = 1 . . . N denotes the Lagrange basis of HX satisfying ui(x j) = δi j .

Proof. The Lagrange basis is given by

u j(x ) =
N∑

i=1

β jiK(x i , x ),

where the condition ui(x j) = δi j is satisfied when Kβ j = e j , i.e. β j = (K−1) j . Here e j denotes the i-th unit vector in Rm

and (K−1) j the j-th column of K−1. Next, using the kernel column vector shorthand (1.1) and Lemma 1.2 we see that

PHX [K(x , ·)] =
N∑

j=1

(K−1)Tj k(x )K(x j , ·) =
N∑

j=1

N∑
i=1

K−1
i j K(x , x i)K(x j , ·)

=
N∑

i=1

K(x , x i)
N∑

j=1

K−1
i j K(x j , ·) =

N∑
i=1

K(x , x i)u j .

By definition of ϕ̃x this yields����ϕ̃x

����2
H =



ϕ̃x , ϕ̃x

�
H =



K(x , ·)−PHX [K(x , ·)], K(x , ·)−PHX [K(x , ·)]�H

=

®
K(x , ·)−

N∑
i=1

u jK(x , x i), K(x , ·)−
N∑

i=1

u jK(x , x i)

¸
H

= PK ,X (x )
2,

showing (1.6).

For more background on power functions see e.g. [25, 5, 40, 18]. Even though both concepts are closely related, we
will use the notion of orthogonal remainders as it will prove useful in our algorithm analysis.

With the necessary background established, we now state the scalar f /P-Greedy algorithm [18, 3.1.1] using the adopted
notation in Algorithm 1. The equivalency in (1.7) the can be easily verified using Proposition 1.4 and Lemma 1.3.

2 Vectorial kernel orthogonal greedy algorithm

As mentioned in the introduction, we want to consider approximations of functions from vectorial RKHS. Before we can
state our vectorial greedy algorithm, we introduce the vectorial kernel spaces we will be dealing with.

Definition 2.1 (Vectorial Hilbert Spaces). Let q ∈ N. Then we denote by

Hq := { f : Ω→ Rq | f j ∈H, j = 1 . . . q}
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Algorithm 1 f /P-Greedy algorithm

Let f ∈H and define X0 := ;, f 0 := 0 and for m> 0 the sequences

xm := arg max
x∈Ω\ΩXm−1

| f (x )− fm−1(x )|
PK ,Xm−1

(x )
= arg max

x∈Ω\ΩXm−1

���
 f ,ϕm−1
x

�
H

��� , (1.7)

Xm := Xm−1 ∪ {xm},
f m := PHXm [ f ],

where ϕm
x denotes the orthonormal remainder of K(x , ·) with respect to Xm for any m, x .

the function space of vectorial functions from H which we equip with the canonical scalar product and norm



f , g

�
Hq :=

q∑
j=1



f j , g j

�
H ,

���� f ����Hq =
Ç


f , f
�
Hq =

√√√√ q∑
j=1

���� f j

����2
H.

For this type of vectorial spaces, it is clear that any scalar greedy approximation strategy can be straightforwardly
applied to each component function f j for some f ∈Hq. But if one does not somehow connect the extension choices over
the different component functions, the algorithms will most likely produce different subspaces HX j for each component
f j , leading to q disjoint kernel expansions in the worst case. This will be computationally infeasible, so the first and most
obvious choice is to force all component approximations to stem from one global approximation subspace, i.e. f j ∈HX ∀ j
for some base space HX . This restriction is given if we use the following vectorial projection operator on Hq.

Definition 2.2 (Vectorial component-wise projection operator). Let S ⊆H be a linear subspace and q ∈ N. Then we define
the vectorial orthogonal projection operator

Pq
S : Hq −→ Sq

f 7−→ �
PS[ f j]

�
j
, j = 1 . . . q.

It is easily verifiable that for this definition we have



f −Pq
S [ f ], g

�
Hq = 0 ∀ g ∈ Sq as

Sq =

�

ei g | i = 1 . . . q, g ∈ S
	�

,

with ei denoting the i-th unit vector in Rq.

Consequently, Algorithm 1 can be formulated straightforwardly also in the vectorial context, which is done in Algorithm
2.

Algorithm 2 Vectorial f /P-Greedy

Let q ∈ N and f ∈Hq, define X0 := ;, f 0 := 0 and for m> 0 the sequences

xm := arg max
x∈Ω\ΩXm−1

���
 f , ϕ̃m−1
x

�
Hq

��� ,
Xm := Xm−1 ∪ {xm},
f m := Pq

HXm
[ f ],

where ϕ̃m−1
x ∈Hq denotes the vectorial repetition of ϕ̃m−1

x , i.e. (ϕ̃m−1
x )i = ϕ̃m−1

x , i = 1 . . . q.

An important feature of the scalar f /P-Greedy algorithm is that each extension step maximizes the H-norm of PHX [ f ]
(the interpolant in [18, 3.1.4], see also [29, Thm 6.], [6]), which is equivalent to achieving the largest possible “gain” in
approximation due to the orthogonality properties

����PHX [ f ]
����2

H =
���� f ����2H − ���� f −PHX [ f ]

����2
H. This aspect is not taken into

account by the vectorial greedy algorithms proposed in [15, 14], which pursue a vectorial greedy search in the fashion of
the standard scalar f -Greedy variant [18]. However, it remains to verify that the transferred vectorial selection criteria of
Algorithm 2 inherits this property. The concept of a gain function will prove useful in this context.

Definition 2.3 (Gain function). Let X = {x1, . . . , xm} ⊆ Ω and f ∈ Hq. Then we denote the vectorial gain function with
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respect to X and f by

GX , f : Ω\ΩX → R,

x 7→
q∑

j=1



f j ,ϕx

�2

H ,

where ϕx denotes the orthonormal remainder of K(x , ·) with respect to X .

For our choice of vectorial RKHS, the following Lemma characterizes the Hq-norm maximizing aspect of the f /P-Greedy
algorithm using the gain function.

Lemma 2.1 (Locally optimal vectorial subspace extension). Let f ∈Hq, X = {x1, . . . , xm} ⊆ Ω, q ∈ N and x ∈ Ω\ΩX . Then������ f −Pq
HX⊕〈K(x ,·)〉[ f ]

������2
Hq
=
������ f −Pq

HX [ f ]
������2

Hq
− GX , f (x ). (2.1)

Proof. At first we note that in fact HX ⊕ 〈K(x , ·)〉 = HX ⊕ 〈ϕx 〉, which follows directly from the definition of ϕx as
PHX [K(x , ·)] ∈ HX . Moreover, for an f ∈ H we have P〈ϕx 〉[ f ] =



f ,ϕx

�
Hϕx by (1.2). Then using Lemma 1.2 and

1.3 we deduce ���� f −PHX⊕〈K(x ,·)〉[ f ]
����2

H =
���� f −PHX⊕〈ϕx 〉[ f ]

����2
H

=
���� f −PHX [ f ]−P〈ϕx 〉[ f ]

����2
H

=
���� f −PHX [ f ]

����2
H − 2



f −PHX [ f ],P〈ϕx 〉[ f ]

�
H +

����P〈ϕx 〉[ f ]
����2

H

=
���� f −PHX [ f ]

����2
H − 2



f ,P〈ϕx 〉[ f ]

�
H

+ 2


PHX [ f ],P〈ϕx 〉[ f ]

�
H︸ ︷︷ ︸

=0

+



f ,P〈ϕx 〉[ f ]
�
H

=
���� f −PHX [ f ]

����2
H −



f ,ϕx

�2

H .

Using the definition of Pq and GX , f we finally obtain������ f −Pq
HX⊕〈K(x ,·)〉[ f ]

������2
Hq
=

q∑
j=1

���� f j −PHX⊕〈K(x ,·)〉[ f j]
����2

H

=
q∑

j=1

���� f j −PHX [ f j]
����2

H −



f j ,ϕx

�2

H

=
���� f −PHX [ f ]

����2
Hq − GX , f (x ),

where f j ∈H denotes the j − th component function of f ∈Hq.

Since the projection into a linear subspace always gives the best possible approximation in that space, a direct con-
sequence is the following Corollary.

Corollary 2.2. Let the conditions from Lemma 2.1 hold. Then

inf
x∈Ω\ΩX

min
g∈(HX⊕〈K(x ,·)〉)q

���� f − g
����2

Hq = C − sup
x∈Ω\ΩX

GX , f (x ),

with C :=
������ f −Pq

HX [ f ]
������2

Hq
.

So, in fact, any x ∈ Ω\ΩX that yields the best approximation in HX∪{x} (or largest possible gain with respect to the
Hq-norm) also maximizes GX , f . Consequently, we state in Algorithm 3 a modified variant of Algorithm 2, which we will
consider for the rest of this work. We note here that in Algorithm 3 is closely related to the vectorial vector greedy algorithm
“WSOGA2” introduced in [14, 3, (3.4)], with the difference of having a gain-maximizing extension selection instead of
maximizing element selection. We will compare those algorithms in Section 4.

A recursive application of Lemma 2.1 yields the following result on the error decay and a Parseval-type identity.

Corollary 2.3. Then the Hq-approximation error is monotonously decreasing and we have the identity���� f − f m
����2

Hq =
���� f ����2Hq −

m∑
i=1

q∑
j=1

¬
f j ,ϕ

i−1
x i

¶2

H
=
���� f ����2Hq −

m∑
i=1

GX i−1, f (x i), ∀ m> 0.
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Algorithm 3 Vectorial kernel orthogonal greedy algorithm (VKOGA)

Let q ∈ N and f ∈Hq, define X0 := ;, f 0 := 0 and for m> 0 the sequences

xm := arg max
x∈Ω\ΩXm−1

GXm−1 , f (x ) = arg max
x∈Ω\ΩXm−1

q∑
j=1



f j ,ϕ

m−1
x

�2

H , (2.2)

Xm := Xm−1 ∪ {xm}, (2.3)

f m := Pq
HXm
[ f ]. (2.4)

2.1 Algorithm analysis

Until now we have only considered points x ∈ Ω\ΩX for possible extension of HX via the induced kernel translate K(x , ·).
So far in literature, it remains unanswered what happens in the vicinity of points x ∈ ΩX . In numerical applications, one
always works on discrete sets of points and hence this issue is of less importance. However, it is of general analytical interest
to determine the behaviour of the selection criteria (2.2) for cases where x → y ∈ ΩX . More precise, in this work we want
to put some effort into analyzing the behaviour of GX , f in the neighborhood of ΩX .

The following Theorem yields an explicit expression for the limit functions ϕx when x → y ∈ ΩX . Under mild assump-
tions, it turns out that the limits in these cases can be described by orthonormal remainders of directional derivatives of
K(x , ·).
Theorem 2.4 (Directional limit of orthonormal remainders). Let K ∈ C1(Ω×Ω) (C1 w.r.t. each argument) with existing and
bounded second derivatives. Further let X = {x1, . . . , xn} ⊂ Ω so that the kernel matrix K is non-singular and choose choose
x ∈ ΩX . Then ∀ v ∈ Rd we have

lim
h→0
ϕx+hv = ϕ

∇v
x ∈H, (2.5)

with

ϕ∇v
x :=

(
ϕ̃∇v

x

�����ϕ̃∇v
x

����
H , ϕ̃∇v

x ̸= 0

0 , else
, ϕ̃∇v

x := v T∇1K(x , ·)−PHX [v T∇1K(x , ·)],

where ∇1 denotes the gradient operator w.r.t. the first argument.

Proof. Fix v . By Lemma 1.1 we know that v T∇1K(x , ·) ∈H. Further, as K(x , ·) ∈HX , Lemma 1.2 / (1.3) with f = K(x , ·)
gives the representation

K(x , ·) =
N∑

j=1

(K−1)Tj k(x )K(x j , ·). (2.6)

Note that for x = xk, k ∈ {1 . . . N}, equation (2.6) simplifies to (K−1)Tj k(xk) = δ jk as k(xk) = Kk. Now, for h> 0, the first
order multivariate Taylor series of K at x gives

K(x + hv , ·) = K(x , ·) + hv T∇1K(x , ·) + h2CK(ξ, ·), (2.7)

with ξ ∈ [x , x + hv]. The h-dependency of CK(ξ, ·) can be neglected due to the bounded second derivatives, which is why
we will just write O

�
h2
�

in the following. Next, with the shorthand

∇K(x ) =
�∇1K(x , x1) . . .∇1K(x , xN )

� ∈ Rd×N ,

equation (2.7) directly gives the representation

k(x + hv) = k(x ) + h∇K(x )T v +O
�
h2
�

,
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and together with (1.3) and (2.6) we see that

PHX [K(x + hv , ·)] =
N∑

j=1

(K−1)Tj k(x + hv)K(x j , ·)

=
N∑

j=1

(K−1)Tj
�
k(x ) + h∇K(x )T v

�
K(x j , ·) +O

�
h2
�

= K(x , ·) + h
N∑

j=1

(K−1)Tj ∇K(x )T vK(x j , ·) +O
�
h2
�

= K(x , ·) + h
N∑

j=1

(K−1)Tj

v T∇1K(x , x1)
...

v T∇1K(x , xN )

K(x j , ·) +O
�
h2
�

= K(x , ·) + hPHX [v T∇1K(x , ·)] +O
�
h2
�

.

Using (2.7) again we obtain the representation

ϕ̃x+hv = K(x + hv , ·)−PHX [K(x + hv , ·)] (2.8)

= hv T∇1K(x , ·)−PHX [v T∇1K(x , ·)] +O
�
h2
�

= hϕ̃∇v
x +O

�
h2
�

.

We conclude

lim
h→0
ϕx+hv = lim

h→0

ϕ̃x+hv����ϕ̃x+hv

����
H

= lim
h→0

ϕ̃∇v
x +O (h)����ϕ̃∇v

x

����
H +O (h)

= ϕ∇v
x ,

which shows (2.5) for ϕ̃∇v
x ̸= 0.

Now, Theorem 2.4 allows to draw interesting conclusions with regard to the situations where x ∈ ΩX , i.e. K(x , ·) ∈HX .
At first we see that for any X = {x1, . . . , xN}, x ∈ ΩX , v ∈ Rd and f ∈Hq we have

lim
h→0

GX , f (x + hv) =
q∑

j=1



f j ,ϕ

∇v
x

�2

H .

The resulting limit value depends on the direction v from which the limit is taken, which implies that GX , f cannot be con-
tinuously extended to Ω in general. To illustrate the occurring discontinuities, Figure 1 shows the values of



f ,ϕx

�
H (which

corresponds to GX , f in q = 1 dimensions without the squared scalar product) for the test settings q = 1,Ω = [−4,4]2, X =
{(0,1), (−0.5, 0), (2,−1), (−1,3), (−1.5,−3)} and a suitable f ∈H. The discontinuities are clearly recognizable around any
point x ∈ X , which are marked by red dots. Furthermore, for each v ∈ Rd equation (2.1) now reads as

Figure 1: Example of



f ,ϕx
�
H on Ω\ΩX . Red dots: X
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lim
h→0

������ f −Pq
HX⊕〈K(x+hv ,·)〉[ f ]

������2
Hq
=
������ f −Pq

HX [ f ]
������2

Hq
−

q∑
j=1



f j ,ϕ

∇v
x

�2

H , ∀ f ∈Hq.

Hence, the possible different ϕ∇v
x at any x ∈ ΩX imply that the limit of the left hand side also differs with changing v . This

raises the question about the projection limit as h→ 0, which is answered satisfactorily by the following corollary.

Corollary 2.5. Let the conditions from Theorem 2.4 hold and let f ∈Hq. Then we have

lim
h→0

Pq
HX⊕〈K(x+hv ,·)〉[ f ] = Pq

HX⊕〈v T∇1K(x ,·)〉[ f ].

Proof. Using the relation (2.8) we obtain for each component function f j , j = 1 . . . q that

PHX⊕〈K(x+hv ,·)〉[ f j] = PHX [ f j] +P〈ϕ̃x+hv 〉[ f j] = PHX [ f j] +



f j , ϕ̃x+hv

�
H����ϕ̃x+hv

����2
H

ϕ̃x+hv

= PHX [ f j] +



f j , ϕ̃

∇v
x

�
H����ϕ̃∇v

x

����2
H

ϕ̃∇v
x +O

�
h2
�
= PHX [ f j] +P〈ϕ̃∇v

x 〉[ f j] +O
�
h2
�

= PHX⊕〈v T∇1K(x ,·)〉[ f j] +O
�
h2
�

.

Taking the limit h→ 0 and recalling the component-wise action of Pq finishes the proof.

Remark 2. The expression Pq
HX⊕〈v T∇1K(x ,·)〉[ f ] actually corresponds to a simultaneous, component-wise directional Hermite

interpolation in Hq since 

f j , v T∇1K(x , ·)�H = v T∇1 f j(x ), j = 1 . . . N ,

which can be easily verified using Lemma 1.1. Interestingly enough, this means that the closer a considered point ap-
proaches an already included one from the direction v , the “direct extension" gain is converging towards the gain that
would be achieved adding the directional derivative v T∇1K(x , ·) to HX .

We conclude our analysis of GX , f with the following Theorem.

Theorem 2.6 (Gain function characterization). Let X = {x1, . . . , xm} ⊆ Ω and f ∈ Hq. Then GX , f is continuous on Ω\ΩX

and ∀ x ∈ ΩX exists a neighborhood of x on which GX , f is bounded.

Proof. Let x ∈ Ω\ΩX . Then for any v ∈ Rd a similar argumentation with Taylor series as in the proof of Theorem 2.4 shows
that

lim
h→0

����ϕx −ϕx+hv

����
H = 0,

from which we obtain continuity as limy→x GX , f (y) = GX , f (x ). Next, for x ∈ ΩX and an ε with Bε (x ) ⊂ Ω we see that

sup
v∈Bε(0)

lim
h→0

GX , f (x + hv) = sup
v∈Bε(0)

q∑
j=1



f j ,ϕ

∇v
x

�2

H ≤ sup
v∈Bε(0)

q∑
j=1

���� f j

����2
H

����ϕ∇v
x

����2
H =

���� f ����2Hq <∞,

which shows the boundedness.

The most important conclusion from the above analysis for applications is, that the gain function GX , f does not have
any poles. This boundedness allows to actually obtain an analytic maximum in (2.2), presuming a suitable extension of
GX , f onto Ω. Furthermore, should it occur that the maximum of GX , f is achieved at some x ∈ ΩX for a v ∈ Rd , this means
that the extension of HX with v T∇1K(x , ·) yields a better improvement than inclusion of any direct kernel translate K(x , ·).
However, in practical applications of this algorithm we yet consider only direct kernel translates for inclusion. This is why
we will assume for the remainder of this work to extend GX , f onto Ω by setting GX , f (x ) := 0 ∀ x ∈ ΩX .

Remark 3. If in the context of Theorem 2.4 K is actually induced by a radial basis function ϕ via K(x , y) = ϕ(
����x − y

����),
we directly obtain

gx := ϕ′(||x − ·||)
�

v ,
x − ·
||x − ·||

�
−

N∑
j=1

K(x j , ·)
N∑

i=1

K−1
i j ϕ

′(
����x − x i

����)®v ,
x − x i����x − x i

����
¸

,

with K−1
i j denoting the i j-th entry of K−1. It is interesting to see that, for all directions that are free of any part towards the

other centers (i.e. v ⊥ x − x i for all i), the contribution of the projection vanishes completely.

Remark 4. If we assume d = 1 in the context of Proposition 2.6, then the limit of ϕx for x → x̃ ∈ ΩX is unique and GX , f is
continuous on Ω ∀ f ∈H.
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2.2 Convergence analysis

In this Section we want to investigate the convergence behaviour of Algorithm 3, where we will prove a slightly improved
convergence bound similar to the one established in [14]with a yet simplified proof. Note that this type of convergence rate
stems from the more general theory of greedy algorithms in vectorial Hilbert/Banach spaces [16, 14]. On the other hand,
there are various results for greedy algorithm convergence/approximation error bounds in the scalar setting for RKHS,
which usually involve the concept of a fill distance, see [40, 18, 24] to name a few. Due to their generality, the foremost
mentioned Temlyakov-style error bounds are often too conservative, while the fill distance-related bounds provide excellent
convergence rates in many situations. However, the latter also suffer from the condition that a sufficiently small fill distance
is hard to achieve in practice. Hence, it remains an open question if this “gap” can be closed in the future, as the practical
convergence rates of kernel greedy algorithms are mostly much faster than the Temlyakov-bounds.

The following lemma is a key ingredient for the convergence results and was stated first in [35, 3.1] with proof in [7,
Lemma 3.4]. However, as the referred proof is for a slightly different case we state it here for completeness.

Lemma 2.7 (Lemma 3.1 from [35]). Let M > 0, tm, am ≥ 0 be non-negative sequences satisfying a0 ≤ M , am+1 ≤ am(1 −
tm+1

am
M
). Then

am ≤ M

�
1+

m∑
k=1

tk

�−1

∀ m≥ 0. (2.9)

Proof. If we have am0
= 0 for an m0 ≥ 0 we have am = 0 ∀ m≥ m0 and thus (2.9) holds trivially. So assume am ̸= 0 for all

m≥ 0 and we continue by induction. Then for m= 0 equation (2.9) is given by prerequisite. The induction step m→ m+1
follows via

a−1
m+1 ≥ a−1

m

�
1− tm+1

am

M

�−1 ≥ a−1
m (1+ tm+1

am

M
)

= a−1
m +

tm+1

M
≥ 1

M

�
1+

m∑
k=1

tk

�
+

tm+1

M
=

1

M

�
1+

m+1∑
k=1

tk

�
,

using the third binomial formula (1− b)(1+ b) = 1− b2 ≤ 1 and the prerequisites.

A further key aspect of the Temlyakov-type estimations is to consider a certain subclass of functions

Hq
M :=

(
f ∈Hq

����� f j =
∞∑

k=0

α
j
kK(xk, ·),

∞∑
k=0

|α j
k| ≤ M , j = 1 . . . q

)
for M > 0. It is easy to see that especially

���� f ����Hq ≤ M ∀ f ∈ Hq
M . For more background on this methodology we refer to

[7, 3].

Theorem 2.8 (Convergence rates of the VKOGA algorithm). Let the conditions of Algorithm 3 hold and let M > 0. Then for
any f ∈Hq

M , f m converges to f no slower than

���� f − f m
����

Hq ≤pqM

�
1+

m

q

�− 1
2

, m≥ 0. (2.10)

Further, with the definition

cm :=max
x∈Ω ϕ̃

m−1
x (x ) =max

x∈Ω
����ϕ̃m−1

x

����2
H , m> 0,

we obtain the a-posteriori convergence bound

���� f − f m
����

Hq ≤pqM

�
1+

1

q

m∑
k=1

1

ck

�− 1
2

, m≥ 0. (2.11)
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Proof. Since cm ≤ 1 ∀ m > 0 by Lemma 1.3 we obtain the a-priori bound (2.10) from (2.11) by setting cm := 1 ∀ m > 0,
which leaves us to prove (2.11). First, using Lemma 1.3 we see for j = 1 . . . q that������ f j − f m−1

j

������2
H
=
¬

f j − f m−1
j , f j − f m−1

j

¶
H
=
¬

f j , f j − f m−1
j

¶
H

=
∞∑

k=1

α
j
k

¬
K(xk, ·), f j − f m−1

j

¶
H

≤
∞∑

k=1

|α j
k|
���¬ f j , ϕ̃

m−1
xk

¶
H

���
≤
∞∑

k=1

|α j
k|max

x∈Ω

���
 f j , ϕ̃
m−1
x

�
H

���
≤ M max

x∈Ω

���
 f j , ϕ̃
m−1
x

�
H

��� .
Now, Lemma 1.2 gives ����ϕ̃x

����2
H =

����K(x , ·)−PHX [K(x , ·)]����2H = 1− 
K(x , ·),PHX [K(x , ·)]�H ≤ 1,

and together with Chebyshev’s inequality [1, 3.2.7] (twice) we estimate the vectorial gain term as

GXm−1 , f (xm) =max
x∈Ω GXm−1, f (x ) = max

x∈Ω\ΩXm−1

GXm−1 , f (x )

= max
x∈Ω\ΩXm−1

q∑
j=1

1����ϕ̃m−1
x

����2
H



f j , ϕ̃

m−1
x

�2

H ≥ max
x∈Ω\ΩXm−1

1

cm

q∑
j=1



f j , ϕ̃

m−1
x

�2

H

≥ 1

cm
max

x∈Ω\ΩXm−1

max
j=1...q



f j , ϕ̃

m−1
x

�2

H =
1

cm
max
j=1...q

max
x∈Ω\ΩXm−1



f j , ϕ̃

m−1
x

�2

H

=
1p
qcm

�
q max

j=1...q
max

x∈Ω\ΩXm−1



f j , ϕ̃

m−1
x

�4

H

� 1
2

≥ 1p
qcm

 
q∑

j=1

max
x∈Ω\ΩXm−1



f j , ϕ̃

m−1
x

�4

H

! 1
2

≥ 1p
qcm

1

q

 
q∑

j=1

max
x∈Ω\ΩXm−1



f j , ϕ̃

m−1
x

�2

H

!2


1
2

=
1

qcm

q∑
j=1

max
x∈Ω\ΩXm−1



f j , ϕ̃

m−1
x

�2

H ≥
1

qcm

q∑
j=1

������ f j − f m−1
j

������4
H

M2

≥ 1

qM2cm

1

q

 
q∑

j=1

������ f j − f m−1
j

������2
H

!2

=
1

q2M2cm

���� f − f m−1
����4

Hq .

Using Lemma 2.1, we see that ���� f − f m
����2

Hq =
���� f − f m−1

����2
Hq − GXm−1 , f (xm)

≤ ���� f − f m−1
����2

Hq − 1

q2M2cm

���� f − f m−1
����4

Hq

=
���� f − f m−1

����2
Hq

1−
1

qcm

���� f − f m−1
����2

Hq

qM2

 .

Further, with f j ∈HM we have ���� f − f 0
����2

Hq =
���� f ����2Hq =

q∑
j=1

���� f j

����2
H ≤

q∑
j=1

M2 = qM2.
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Finally, applying Lemma 2.7 with am =
���� f − f m

����2
Hq , a0 ≤ qM2 and tm := 1

qcm
gives

���� f − f m
����2

Hq ≤ qM2

�
1+

m∑
k=1

1

qck

�−1

∀ m ∈ N,

and hence (2.11).

3 Computational aspects

Before we present some numerical experiments we make some remarks on computational aspects of the VKOGA algorithm.
The straightforward approach is, for any given set of points X , to use the standard basis of translates {K(x1, ·), . . . , K(xN , ·)}
of HX to obtain the projection via solving the system Kc = f|X . However, it is well known that this “RBF-Direct” method
suffers from ill conditioned kernel matrices K , especially for point distributions with small distances. In order to alleviate
those problems, several approaches [26, 12, 11, 9] for various settings have been developed, to name a few. However, in
this work we will use the Newton basis formulated recently in [22], as it is a fairly general and has a close connection to
the orthonormal remainders.

Definition 3.1 (Newton basis of HX ). Let X = {x1, . . . , xm} ⊆ Ω so that HX is m-dimensional. Then the Newton basis
N1, . . . , Nm of HX is given by the recursion

N1 :=
K(x1, ·)p
K(x1, x1)

, Ñ j = K(x j , ·)−
j−1∑
i=1

Ni(x i)Ni , N j =
Ñ j����Ñ j

����
H

, j = 2 . . . m.

and satisfies 

Ni , N j

�
H = δi j . (3.1)

Condition (3.1) is easily verified by induction. With this basis a stable computation of the projection at each greedy
step is possible, without having to touch any previously computed coefficients again. Next we state the representations of
the involved quantities with respect to the Newton basis and refer to [22] for more details on this approach.

Lemma 3.1 (Newton basis representations). Let N1, . . . , Nm be the Newton basis of HX and f ∈H. Then

PHX [ f ] =
m∑

i=1



f , Ni

�
H Ni , (3.2)

PHX [K(x , ·)] =
m∑

i=1

Ni(x )Ni , (3.3)

����ϕ̃x

����2
H = K(x , x )−

m∑
i=1

N 2
i (x ) (3.4)

Proof. From the projection conditions (1.2) and (3.1) we immediately obtain (3.2). Equation (3.3) is a special case of (3.2)
for f = K(x , ·). Using (3.3) and Lemma 1.2 gives (3.4) via����ϕ̃x

����2
H = K(x , x )− 2PHX [K(x , ·)](x ) + ����PHX [K(x , ·)]����2H
= K(x , x )−PHX [K(x , ·)](x ) = K(x , x )−

m∑
i=1

N 2
i (x ).

Note here that the first two results are in principle well-known, and equation (3.4) has already been shown in [22]
using the power function notation. Finally, the following Proposition states how the VKOGA Algorithm can be computed
efficiently using the Newton basis.

Proposition 3.2 (Computation of VKOGA with Newton basis). For m= 1 set

x1 := argmax
x∈Ω G;, f (x ) = argmax

x∈Ω

q∑
j=1

f j(x )
2,

c1 := (



f1, N1

�
H , . . . ,



fq, N1

�
H)

T =
Æ

K(x1, x1)
−1
( f1(x ), . . . , fq(x ))

T ∈ Rq.

Dolomites Research Notes on Approximation ISSN 2035-6803



Wirtz · Haasdonk 95

Then, at the m-th iteration (m> 1) with given x1, . . . , xm−1, c1, . . . , cm−1 we define

xm := arg max
x∈Ω\ΩXm−1

�����
����� f (x )− m−1∑

i=1

ciNi(x )

�����
�����
2

2

�
K(x , x )−

m−1∑
i=1

N 2
i (x )

�−1

, (3.5)

cm :=





f1, Nm

�
H

...

fq, Nm

�
H

= f (xm)−∑m−1
i=1 ciNi(xm)�

K(xm, xm)−
m−1∑
i=1

N 2
i (xm)

� 1
2

∈ Rq. (3.6)

Proof. With Lemma 3.1 we see (3.5) by

GXm−1 , f (x ) =

q∑
j=1



f j , ϕ̃

m−1
x

�2

H����ϕ̃m−1
x

����2
H

=

���� f (x )− f m−1(x )
����2

2����ϕ̃m−1
x

����2
H

=

������ f (x )−∑m−1
i=1 ciNi(x )

������2
2

K(x , x )−∑m−1
i=1 N 2

i (x )
.

In order to see (3.6) we note that ����Ñm

����2
H = K(xm, xm)−

m−1∑
i=1

N2
i (xm),



f j , Nm

�
H =



f j , Ñm

�
H����Ñm

����
H

=
f j(xm)−∑m−1

i=1



f j , Ni

�
H Ni(xm)�

K(xm, xm)−
m−1∑
i=1

N 2
i (xm)

� 1
2

.

Note that the final approximant f m will have the structure (3.2). In order to evaluate the expansion using the direct
translate basis, the triangular matrix with values of the computed m Newton basis functions at the selected points Xm can
be used to obtain the corresponding coefficients [22].

Remark 5 (Connection to remainders). In the context of Proposition 3.2 we actually have ϕ̃xm
= Ñm and consequently

ϕxm
= Nm. This means that the orthonormal remainders in each step directly state all possible candidates of new Newton

basis functions.

4 Numerical illustrations

As mentioned earlier, Algorithm 3 describes an algorithm similar to the vectorial algorithms presented in [14, 3], especially
the variant “WSOGA2” at (3.4). We state it here fitted to our RKHS setting.

Algorithm 4 WSOGA2

Let K be a symmetric, positive definite and normalized kernel spanning the RKHS H on a closed Ω ⊂ Rd . Further let f ∈Hq,
define X0 := ;, f 0 := 0 and for m> 0 the sequences

xm = argmax
x∈Ω

q∑
j=1

¬
f j − f m−1

j , K(x , ·)¶2

H
,

Xm := Xm−1 ∪ {xm},
f m := Pq

HXm
[ f ].

Remark 6. In the context of Algorithm 4 we have monotonicity of Hq error decay and the same a-priori convergence rate
as for Algorithm 3 can be shown to apply. Note here that the proof of convergence rates of the WSOGA2-Algorithm has
already been performed (in a more general setting) in [14], albeit using a different technique and obtaining a convergence
rate which is a factor of

p
q slower. Furthermore, xm is chosen using the maximum local L2 point-wise approximation error

in the sense of

xm = argmax
x∈Ω

���� f (x )− f m(x )
����2

2 . (4.1)
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4.1 Analytical comparison of VKOGA and WSOGA2

Before we present some illustrating experimental results, we perform an analytical comparison and show how this can be
interpreted. Let X ⊂ Ω be given and denote by x o, x c the subspace extension choices of the Algorithms 3 and 4, respectively.
Then we see that

q∑
j=1

¬
f j − f m−1

j , K(x c , ·)¶2

H
=

q∑
j=1



f j , ϕ̃x c

�2

H ≤
q∑

j=1



f j ,ϕx c

�2

H

≤max
x∈Ω

q∑
j=1



f j ,ϕx

�2

H = GX , f (x
o).

by the selection criteria definitions. This means the VKOGA algorithm will locally always make as good a choice as the
WSOGA2 algorithm. Unfortunately, as the successive spaces constructed by both algorithms will in general be different,
it remains an open question to us if we can and how to compare the performance of both variants directly at some given
subspace size m> 0. However, with the help of Lemma 1.3, the VKOGA extension choice criteria can also be written as

max
x∈Ω

q∑
j=1



f j ,ϕ

m−1
x

�2

H = max
x∈Ω\ΩXm−1

���� f (x )− f m(x )
����2

2����K(x , ·)−PHXm−1 [K(x , ·)]����2H .

Since the numerator equals the WSOGA2 choice (4.1), which basically considers any maximizing point x to be equally
good for extension, the VKOGA choice scales inversely with how well the associated dictionary element K(x , ·) is already
approximated by HX . This way, identical point-wise approximation errors closer to the points whose dictionary ele-
ments span HX are considered to be worse than others. Moreover, as the norm of any orthogonal remainder is in-
dependent of the considered f ∈ Hq, this can be interpreted as how well all functions involving the dictionary ele-
ment K(x , ·) in general are already approximated in Hq. This concept is pursued directly by the P-Greedy algorithm
mentioned e.g. in [18], which aims to create data-independent approximations of the function space and leads to a
very uniform distribution of the selected xm. Figure 2 illustrates this issue using two simple scalar examples, which
shows the different extension choices at m = 6 already given points along with the respective gain functions. The

fj(x)

fm−1
j (x)

〈fj − fm−1
j ,Φ(x, ·)〉H

〈fj , φ
m−1
x 〉H

||φ̃m−1
x || − 3
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Figure 2: Example for different selections of points using VKOGA/WSOGA for a scalar setting

red and blue crosses mark the VKOGA and WSOGA2 selection and the dashed/solid green line the gain functions of
the VKOGA/WSOGA2 algorithms, respectively. As test setting X = {−7.1,−5.6,−2.1,1.9, 5.9,8.4} and a Gaussian with
γ2 = 2.1715 has been used, whose induced RKHS serves as native space for both dictionary and test function f . The expan-
sion coefficients of f1 on the left, f2 on the right hand side are α1 = (−2.0465,2.3066,−0.2428,0.6805,−2.1213,−1.4411)
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and α2 = (1.1702,−0.2113,−0.7158,−0.5346,−1.1990,−1.1459) Note that it is clear to see that the gain function of the
VKOGA algorithm is indeed continuous as mentioned earlier in Remark 4.

For both cases we see that the VKOGA choice selects spatially very different extension points, even though the gain
of both algorithms is not very different. While in the case of f1 (left) the extension points are selected “well away” from
any existing point, the VKOGA extension selects x7 very close to the existing center at −7.1. There it is evident that, even
though the absolute approximation error is bigger elsewhere, the error weighted by the orthogonal remainder norm causes
this location to be considered most worth improving. One the downside, especially because this choice involves a function-
independent but RKHS-specific part, the choice of VKOGA can be ill-suited if the considered function does not stem from
the same RKHS as the dictionary elements. In this situation, adding more points near the same location does not yield an
excellent local convergence rate of the nominator as predicted by any fill-distance based approaches. However, as this is
the case for the denominator, the rapid decay of the denominator causes even more points to be added in the same area.
This effect can also be seen in e.g. [18, 6.1]. In our opinion, instead of considering the f /P-VKOGA variant a bad choice
when the origin of the target function is unknown, we think this effect might be actively used to formulate an indicator for
the foremost mentioned situation. If a considered function is “detected” not to belong to the currently chosen RKHS, one
can proceed with another choice of RKHS, e.g. a different hyper-parameter for the RKHS inducing kernel.

Remark 7. We would like to note that both algorithms can be continuously transferred over to each other by thresholding
the orthogonal remainder norms at a certain value. This opens up a large variety of algorithms and the version most suitable
for the current situation can be selected.

4.2 Experimental comparison of VKOGA and WSOGA2

Finally we want to pursue some numerical experiments for the truly vectorial case. We use d = q = 5, the test domain
Ω= [−5,5]d and a Gaussian kernel with γ= 9.8935, which is chosen so that K(x , y)< 0.6 ∀ ����x − y

���� ≥pd · diam(Ω) =p
50, i.e. a certain locality of the kernel expansions is ensured. The test functions to approximate are of the structure

f (x ) :=
N∑

k=1

ckK(xk, x ) ∈Hq,

with N = 20 random centers within Ω and random expansion coefficients c ∈ [0,15]q. Experiments showed that it does
not make a considerable difference in performance if we used f ∈Hq (i.e. independent expansions for each dimension) or
f ∈ �HX

�q
(a common center set X ⊆ Ω for each component function), as either way the actual centers are generally not

detected/chosen as centers by the greedy algorithms.
For training we use 2500 training points in Ω and we use a validation set of size 1000. The algorithm terminates if

the L∞(L2(Rd);R2500) relative error on training set is ≤ 10−4 or the expansion size exceeds N = 200. In order to avoid
numerical issues we used

p
eps = 2.2× 10−8 as minimum allowed value for any ∥ϕ̃m

x ∥H. Figure 3 compares the results for
the VKOGA and WSOGA2 algorithms.

Now we run 50 tests for random test functions f ∈Hq and extracted some features of the results, which are displayed
in Figures 4 and 5. Figure 4 shows that in average the VKOGA algorithm outperforms the WSOGA2 variant on both the
training and validation sets. Also, the maximum relative error on the validation set is smaller than one for each run of the
VKOGA, while this is rarely the case for WSOGA2. Figure 5 shows the expansion sizes on the left and the H-norm errors
incl. bounds on the right at a reached relative L2-error of 10−3 on the training data.

Remark 8. For higher dimensions the a-priori estimation assumptions can cause some problems. Running a test with d = 20,
Figure 6 shows that even though we have an exponential convergence with N , the H-norm convergence rate is worse than
predicted. This is due to the following estimation in the first step of the convergence rate proof in Theorem 2.8:

∞∑
k=1

|α j
k|
���¬ f j , ϕ̃

m−1
xk

¶
H

���≤ ∞∑
k=1

|α j
k|max

x∈Ω

���
 f j , ϕ̃
m−1
x

�
H

��� .
This estimation holds in theory, but since Ω is replaced by a discrete training set Ξ ⊆ Ω we might not have���¬ f j , ϕ̃

m−1
xk

¶
H

���≤max
x∈Ξ

���
 f j , ϕ̃
m−1
x

�
H

��� ∀ xk.

5 Conclusion & Perspectives

In this work we considered a extension of the f /P-Greedy algorithm [18] to the vectorial case in the spirit of [14]. The
question about the behaviour of the gain function close to already included points has been answered satisfactorily and
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Figure 4: L∞ − L2-errors after termination on training and validation sets. L: absolute, R: relative

it turned out to be directly related to Hermite interpolation at the repetitively considered points. Moreover, the estab-
lished Temlyakov-type convergence rates for vectorial greedy algorithms from e.g. [7, 16] could be verified and improved.
However, as mentioned already in the convergence analysis, it remains an open question if the discrepancy between the
observed and predicted convergence rates can be reduced in future work. The obtained convergence rates for RKHS using
fill distances [40, 18] promise room for improvement, standing against some results on lower bounds for the convergence
rates [16]. We pursued a comparison of the proposed algorithm to a related existing one and discussed both advantages
and disadvantages and their possible remedies.

Even though our conducted experiments have been of a synthetic nature, we are currently also investigating applications
of the proposed algorithm and related ones in practical applications [42].
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