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Abstract

In this paper, we present a new family of generalized Bernoulli–type polynomials, as well as its numbers.
In addition, we obtain some results such as algebraic and differential properties for this new family
of Bernoulli–type polynomials. Likewise, the generalized Bernoulli–type polynomials matrix R(α)(x)
is introduced. We deduce some product formulae for R(α)(x) and also, the inverse of the Bernoulli–
type matrix R is determined. Furthermore, we establish some explicit expressions for the Bernoulli–
type polynomial matrix R(x), which involve the generalized Pascal matrix and finally we study the
summation formula of Euler–Maclaurin type and the Riemann zeta function applied to these Bernoulli–
type polynomials.
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1 Introduction

The Bernoulli polynomials, as well as the Bernoulli numbers have an important role in number theory and classical analysis.
In particular, the Bernoulli polynomials appear in the integral representation of differentiable periodic functions since they are
employed for approximating such functions in terms of polynomials, (see, [1, 2, 4, 5, 6, 9, 10, 13]). The classical Bernoulli
polynomials Bn(x), are defined by means of the following generating function (see, [9, p. 61])

� z
ez − 1

�

ezx =
∞
∑

n=0

Bn(x)
zn

n!
, |z|< 2π. (1)

For the classical Bernoulli numbers Bn, we readily find from (1) that

Bn := Bn(0) = B(0)n , (n ∈ N0).

Numerous interesting properties involving these polynomials can be found in (for example, [8, 9, 12]).
Let Bn(x) and Bn be the polynomials and numbers of Bernoulli, respectively. Then the following statements hold.

(a) Difference equation. [10, Equation (4)] For every n≥ 0

Bn(x + 1)− Bn(x) = nxn−1.

(b) Multiplication formula. [10, Equation (12)] For every n≥ 0 and m ∈ N

Bn(mx) = mn−1
m−1
∑

k=0

Bn

�

x +
k
m

�

.

(c) Addition theorem of the argument. [10, Equation (13)] For x , y ∈ R and n ∈ N0, we have

Bn(x + y) =
n
∑

k=0

Bk(x)y
n−k.
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(d) Integral formulas. [10, Equation (15)] For every n ∈ N
∫ x+1

x

Bn(t)d t = xn.

In the present work we define a new family of generalized Bernoulli–type polynomials, and we study algebraic and differential
properties. We also show some applications of this new family of Bernoulli–type polynomials. The paper is organized as follows.
In Section 3, we define the new family of Bernoulli–type polynomials and Bernoulli–type numbers respectively, as well as the
generalized Bernoulli–type polynomials; we prove some relevant algebraic and differential properties of them. In Section 4, we
introduce some applications such as generalized Bernoulli–type polynomial matrix, we derive a product formula for it and give
some factorizations for such a matrix, which involve summation matrices and the generalized Pascal matrix of the first kind. In
addition, we will study the summation formula of Euler–Maclaurin type and the Riemann zeta function applied to Bernoulli–type
polynomials.

2 Background and previous results

Throughout this paper, all matrices are in Mn+1(R), the set of all (n+ 1)-square matrices over the real field. Also, for i, j any non
negative integers we adopt the following convention

�

i
j

�

= 0, whenever j > i.

Let x be any nonzero real number. The generalized Pascal matrix of first kind P[x] is an (n+ 1)× (n+ 1) matrix whose entries
are given by (see [3, 15]):

pi, j(x) =







�i
j

�

x i− j , i ≥ j,

0, otherwise.

In [3, 15, 16] some properties of the generalized Pascal matrix of first kind are showed, for example, its matrix factorization by
special summation matrices, its associated differential equation and its bivariate extensions. Let P[x] be the generalized Pascal
matrix of first kind and order n+ 1. Then the following statements hold.

(a) Special value. If the convention 00 = 1 is adopted, then it is possible to define

P[0] := In+1 = diag(1,1, . . . , 1), (2)

where In+1 denotes the identity matrix of order n+ 1.

(b) P[x] is an invertible matrix and its inverse is given by

P−1[x] := (P[x])−1 = P[−x]. (3)

(c) [3, Theorem 2] Addition theorem of the argument. For x , y ∈ R we have

P[x + y] = P[x]P[y].

(d) [3, Theorem 5] Differential relation (Appell type polynomial entries). P[x] satisfies the following differential equation

Dx P[x] = LP[x] = P[x]L,

where Dx P[x] is the matrix resulting from taking the derivative with respect to x of each entry of P[x] and the entries of
the (n+ 1)× (n+ 1) matrix L are given by

li, j =







p′i, j(0), i ≥ j,

0, otherwise,

=







j + 1, i = j + 1,

0, otherwise.

(e) ([15, Theorem 1]). The matrix P[x] can be factorized as follows.

P[x] = Gn[x]Gn−1[x] · · ·G1[x],
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where Gk[x] is the (n+ 1)× (n+ 1) summation matrix given by

Gk[x] =















�

In−k 0
0 Sk[x]

�

, k = 1, . . . , n− 1,

Sn[x], k = n,

being Sk[x] the (k+ 1)× (k+ 1) matrix with (0≤ i, j ≤ k) whose entries Sk(x; i, j) are given by

Sk(x; i, j) =







x i− j , j ≤ i,

0, j > i.

3 New family Bernoulli–type polynomials Rn(x)

In this section, we present some novel properties for a new family of Bernoulli–type polynomials.

Definition 3.1. The new family of Bernoulli–type polynomials Rn(x) of degree n in x are defined by the generating function
�

z2

2ez − 2

�

ezx =
∞
∑

n=0

Rn(x)
zn

n!
, |z|< 2π. (4)

The first six Bernoulli–type polynomials, Rn(x), are

R0(x) = 0, R3(x) =
3
2 x2 − 3

2 x + 1
4 ,

R1(x) =
1
2 , R4(x) = 2x3 − 3x2 + x ,

R2(x) = x − 1
2 , R5(x) =

5
2 x4 − 5x3 + 5

2 x2 − 1
12 .

For x = 0 in (4) the Bernoulli–type numbers are defined by the generating function

z2

2ez − 2
=
∞
∑

n=0

Rnzn

n!
, |z|< 2π. (5)

Some of these numbers are

R0 = 0; R1 =
1
2

; R2 = −
1
2

; R3 =
1
4

; R4 = 0; R5 = −
1

12
; R6 = 0; R7 = −

1
12

; R8 = 0.

A consequence of (4) and (5) is the following proposition.

Proposition 3.1. For n ∈ N, let {Rn(x)}n≥0 be the sequences of Bernoulli–type polynomials in the variable x. Then the following
statements hold.

(i) Rn(x) =
n
∑

k=0

�n
k

�

Rk xn−k.

(ii) Rn(x + 1)− Rn(x) =
n(n−1)

2 xn−2.

(iii) R
′

n+1(x) = (n+ 1)Rn(x). n ∈ N,

(iv)
2

n+ 1

∫ m+1

1

Rn+1(t)d t =
m
∑

k=1

kn, n ∈ N.

(v)

∫ x+1

x

Rn(t)d t =
n
2

xn−1, n ∈ N.

(vi)

∫ y

x

Rn(t)d t =
Rn+1(y)− Rn+1(x)

(n+ 1)
, n ∈ N0 − {1}.

Proof. For the proof of (i), by multiplying both sides of (5) by exz , from (4)

z2

2ez − 2
exz =

∞
∑

n=0

Rn
zn

n!
exz

∞
∑

n=0

Rn(x)
zn

n!
=

∞
∑

n=0

Rn
zn

n!

∞
∑

n=0

xn zn

n!

=
∞
∑

n=0

n
∑

k=0

�

n
k

�

Rk xn−k zn

n!
.
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Equating the coefficients of
zn

n!
, we obtain the desired result.

Proof. For the proof of (ii), consider the following generating functions

z2

2ez − 2
e(x+1)z =

∞
∑

n=0

Rn(x + 1)
zn

n!
, (6)

and
z2

2ez − 2
exz =

∞
∑

n=0

Rn(x)
zn

n!
. (7)

Subtracting the left-hand sides of (6) and (7), we have

z2

2ez − 2
e(x+1)z −

z2

2ez − 2
exz =

z2

2ez − 2
exz(ez − 1)

=
z2

2
exz

=
1
2

∞
∑

n=0

zn+2 xn

n!

=
1
2

∞
∑

n=2

n(n− 1)xn−2 zn

n!
.

Then,
∞
∑

n=0

[Rn(x + 1)− Rn(x)]
zn

n!
=
∞
∑

n=2

n(n− 1)
2

xn−2 zn

n!
.

Equating the coefficients of
zn

n!
, we obtain the result.

The proof of (iii) is omitted as it is well-known that any family of polynomials of Appell type satisfies this property.
The proof of (iv), (v) and (vi) follow a similar approach to those employed in Theorem 4 in [11, p. 293].

Theorem 3.2. The Bernoulli–type numbers are equal to zero for all integer greater than two, that is

Rn = 0 for all n≥ 4.

Proof. From the generating function (5), we have

z2

2ez − 2
=
∞
∑

n=0

Rn
zn

n!
= R0 + R1z +

R2

2!
z2 +

R3

3!
z3 +

∞
∑

n=4

Rn
zn

n!
. (8)

Solving for (8) and replacing them with the numbers R0, R1, R2 and R3, we have
∞
∑

n=0

Rn
zn

n!
=

z2

2ez − 2
−

1
2

z +
1
4

z2 −
1

24
z3.

Consider the following function:

f (z) =
z2

2ez − 2
−

1
2

z +
1
4

z2 −
1

24
z3. (9)

By performing some calculations, it can be seen that (9) is an odd function. So that

f (−z) =
∞
∑

n=4

Rn
(−z)n

n!
= −

∞
∑

n=4

Rn
zn

n!
, (10)

and

f (−z) =
∞
∑

n=4

Rn
(−z)n

n!
=
∞
∑

n=4

(−1)nRn
zn

n!
. (11)

Therefore, from (10) and (11), we get
−Rn = (−1)nRn, ∀n≥ 4.

Thus if n is even, then −Rn = Rn. This proves the Theorem.

Lemma 3.3. For N , M ∈ N with N > Mand 0≤ j ≤ k− 1, we have

N−1
∑

q=M

k−1
∑

j=0

(kq+ j)n =
Nk−1
∑

m=Mk

mn =
2

(n+ 2)(n+ 1)
{Rn+2[(Nk− 1) + 1]
︸ ︷︷ ︸

Rn+2(Nk)

−Rn+2(Mk).}
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Proof.

N−1
∑

q=M

k−1
∑

j=0

(kq+ j)n =
N−1
∑

q=M

[(kq)n + (kq+ 1)n + (kq+ 2)n + · · ·+ (kq+ k− 1)n]

= [(kM)n + (kM + 1)n + (kM + 2)n + · · ·+ (kM + k− 1)n]

+[(kM + k)n + (kM + k+ 1)n + (kM + k+ 2)n + · · ·+ (kM + 2k− 1)n]

+[(kM + 2k)n + (kM + 2k+ 1)n + (kM + 2k+ 2)n + · · ·+ (kM + 3k− 1)n]
...

+[(kN − k)n + (kN − k+ 1)n + (kN − k+ 2)n + · · ·+ (kN − 1)n]

=
Nk−1
∑

m=Mk

mn =
2

(n+ 2)(n+ 1)
{Rn+2[(Nk− 1) + 1]
︸ ︷︷ ︸

Rn+2(Nk)

−Rn+2(Mk).}

So we have reached the testing phase.

Theorem 3.4. (Multiplication formula). The Bernoulli–type polynomials Rn(x), of variable x, satisfies the following relation

Rn+1(mx) = mn−1
m−1
∑

k=0

Rn+1(x +
k
m
), n ∈ N0, m ∈ N.

Proof. From (ii) of Proposition 3.1, we get,

(kq+ j)n =
2

(n+ 2)(n+ 1)
kn
�

Rn+2(q+
j
k
+ 1)− Rn+2(q+

j
k
)
�

, k 6= 0,

If N , M ∈ N with N > M and 0≤ j ≤ k− 1, we have

N−1
∑

q=M

k−1
∑

j=0

(kq+ j)n =
2

(n+ 2)(n+ 1)
kn

N−1
∑

q=M

k−1
∑

j=0

�

Rn+2(q+
j
k
+ 1)− Rn+2(q+

j
k
)
�

=
2kn

(n+ 2)(n+ 1)

k−1
∑

j=0

�

Rn+2(N +
j
k
)− Rn+2(M +

j
k
)
�

.

From the Lemma 3.3, we have

N−1
∑

q=M

k−1
∑

j=0

(kq+ j)n =
Nk−1
∑

m=Mk

mn =
2

(n+ 2)(n+ 1)
{Rn+2[(Nk− 1) + 1]
︸ ︷︷ ︸

Rn+2(Nk)

−Rn+2(Mk)},

then

[Rn+2(Nk)− Rn+2(Mk)] = kn
k−1
∑

j=0

�

Rn+2(N +
j
k
)− Rn+2(M +

j
k
)
�

.

So,

Rn+2(Nk)− kn
k−1
∑

j=0

Rn+2(N +
j
k
) = Rn+2(Mk)− kn

k−1
∑

j=0

Rn+2(M +
j
k
), ∀N > M .

On the other hand, consider the following function

f (x) = Rn+2(xk)− kn
k−1
∑

j=0

Rn+2(x +
j
k
).

For a fixed M ∈ N, we have
f (M + 1) = f (M + 2) = f (M + 3) = · · · .

Therefore f (x) must be a constant polynomial and when deriving it, we will have

f ′(x) = kR′n+2(xk)− kn
k−1
∑

j=0

R′n+2(x +
j
k
) = 0,

then

kRn+1(xk)− kn
k−1
∑

j=0

Rn+1(x +
j
k
) = 0,
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therefore

Rn+1(xk) = kn−1
k−1
∑

j=0

Rn+1(x +
j
k
).

Thus the thesis follows.

Definition 3.2. For a real or complex parameter α, the generalized Bernoulli–type polynomials R(α)n (x), of degree n in x , are
defined by means of the following generating functions

�

z2

2ez − 2

�α

exz =
∞
∑

n=0

R(α)n (x)
zn

n!
, |z|< 2π, 1α := 1, (12)

Rn(x) := R(1)n (x), n ∈ N0,

where N0 := N∪ {0} and N= {1,2, 3, . . .}.

From the generating relation (12), it is fairly straightforward to deduce the addition formula:

R(α+β)n (x + y) =
n
∑

k=0

�

n
k

�

R(α)k (x)R
(β)
n−k(y). (13)

Making an adequate substitution (13), we get

R(α)n (x + y) =
n
∑

k=0

�

n
k

�

R(α)k (y)x
n−k.

As an immediate consequence (13), we have

Rn(x + y) =
n
∑

k=0

�

n
k

�

Rk(y)x
n−k,

Rn(x) =
n
∑

k=0

�

n
k

�

Rk xn−k,

R(α)n (x) = 0, n< α.

4 Some applications

Inspired by the article [14] in which the authors introduce the generalized Apostol-type polynomial matrix, in this section we
focus our attention on the algebraic and differential properties of the Bernoulli–type polynomial matrix. We will also show
summation formula of Euler-Maclaurin type based on the Bernoulli–type polynomials and the values of the Riemann zeta function
for Bernoulli–type numbers.

Definition 4.1. The generalized (n+ 1)× (n+ 1) Bernoulli–type polynomial matrix R(α)(x) is defined by

R(α)i, j (x) =











(i+1
j+1)

α!(i− j+α
α )

R(α)i− j+α(x), i ≥ j,

0, otherwise,

while, R(x) :=R(1)(x) and R :=R(0) are called Bernoulli–type polynomial matrix and Bernoulli–type matrix, respectively.

Let us consider n= 3. It follows from the Definition 4.1 that

R =









1
2 0 0 0
− 1

2
1
2 0 0

1
4 0 1

2 0
0 1

2 −1 1
2









and R(x) =









1
2 0 0 0

x − 1
2

1
2 0 0

3
2 x2 − 3x + 1

4
3
2 x − 3

2
1
2 0

2x3 − 3x2 + x 3x2 − 3x + 1
2 2x − 1 1

2









.

Theorem 4.1. The generalized Bernoulli–type polynomial matrix R(α)(x) satisfies the following product formula.

R(α+β)(x + y) =R(α)(x)R(β)(y) =R(β)(x)R(α)(y) =R(α)(y)R(β)(x). (14)
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Proof. Let W (α,β)
i, j (x , y). Be the (i, j)-th entry of the matrix product R(α)(x)R(β)(y). By the addition formula (13), we have.

W (α,β)
i, j (x , y) =

i
∑

k= j

�

i + 1
k+ 1

�

α!
�i−k+α

α

�R(α)i−k+α(x)

�

k+ 1
j + 1

�

β!
�

k− j + β
β

�R(β)k− j+β (y)

=

�

i + 1
j + 1

�

(α+ β)!
�

i − j +α+ β
α+ β

�

i
∑

k= j

(i − j +α+ β)!
(i − k+α)!(k− j + β)!

R(α)i−k+α(x)R
(β)
k− j+β (y)

=

�

i + 1
j + 1

�

(α+ β)!
�

i − j +α+ β
α+ β

�

i− j+α+β
∑

k=α+β

�

i − j +α+ β
k−α

�

R(α)i− j+α+β−(k−α)(x)R
β

k−α(y)

=

�

i + 1
j + 1

�

(α+ β)!
�

i − j +α+ β
α+ β

�R(α+β)i− j+α+β (x + y),

which implies the first equality of (14). The second and third equalities of (14) can be derived in a similar way.

Corollary 4.2. The generalized Bernoulli–type polynomial matrix R(α)(x) satisfies the following identity.
�

R(α)(x)
�k
=R(kα)(kx).

In particular,

(R(x))k = R(k)(kx),

Rk = R(k).

Let be the (n+ 1)× (n+ 1) matrix whose entries are defined by

fi, j =







2
i− j+1

�i+1
j+1

�

, i ≥ j,

0, otherwise.

Theorem 4.3. The inverse Bernoulli–type matrix R is given by

R−1 = .

Proof. Given
n
∑

k=0

2
(k+ 1)(n− k+ 1)

�

n
k

�

Rn−k+1 = δn,0,

where δn,0 is the Kronecker delta (cf, [17]), we have

i
∑

k= j

�

i + 1
k+ 1

�

i − k+ 1
Ri−k+1

2
k− j + 1

�

k+ 1
j + 1

�

=
�

i + 1
j + 1

� i
∑

k= j

�

i − j
k− j

�

Ri−k+1
2

k− j + 1
1

i − k+ j

=
�

i + 1
j + 1

� i− j
∑

k=0

�

i − j
k

�

Ri−k− j+1
2

k+ 1
1

i − k− j + 1

=
�

i + 1
j + 1

�

δi− j , 0.

The proof is finished.

The next result establishes the relationship between the Bernoulli–type polynomial matrix and the generalized Pascal matrix
of first kind.
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Theorem 4.4. The Bernoulli–type polynomial matrix R(x) satisfies the following relation.

R(x + y) = P[x]R(y) = P[y]R(x), (15)

R(x) = P[x]R.

Proof. The substitution β = 0 into (14) yields

R(α)(x + y) =R(α)(x)R(0)(y) =R(0)(x)R(α)(y) =R(α)(y)R(0)(x).

Since R(0)(x) = P[x], we obtain
R(α)(x + y) = P[x]R(α)(y). (16)

Next, the substitution α= 1 into (16) yields (15).

Theorem 4.5. (Summation formula of Euler-Maclaurin type based on the Bernoulli–type polynomials Rn(x)). Let Rn(x) = Rn(x−bxc)
and suppose f ∈ C k+1[a, b] with a, b ∈ Z. Then

∑

a<n≤b

f (n) =

∫ b

a

f (t)d t + 2
k
∑

r=0

(−1)r+1

(r + 2)!

�

f (r)(b)− f (r)(a)
�

Rr+2 + Pk, (17)

where

Pk =
2(−1)k

(k+ 2)!

∫ b

a

Rk+2(t) f
(k+1)(t)d t.

Proof. Consider

∫ n+1

n

f (t)d t =

∫ n+1

n

f (t)R
′
2(t)d t. Solving the integral in the right side by parts, we have

u= f (t)⇒ du= f ′(t)d t, dv = R
′
2(t)d t ⇒ v = R2(t)

∫ n+1

n

f (t)d t =

∫ n+1

n

f (t)R′2(t)d t = f (t)R2(t)|n+1
n −

∫ n+1

n

R2(t) f
′(t)d t

= f (n+ 1)R2[(n+ 1)−]− f (n)R2(n
+)−

∫ n+1

n

R2(t) f
′(t)d t

=
1
2

f (n+ 1) +
1
2

f (n)−
∫ n+1

n

R2(t) f
′(t)d t

=
f (n) + f (n+ 1)

2
−
∫ n+1

n

R2(t) f
′(t)d t,

where R2[(n+ 1)−] = lim
t→(n+1)−

R2(t) =
1
2

and R2[(n)
+] = lim

t→(n)+
R2(t) = −

1
2

.

So,
∫ n+1

n

f (t)d t =
f (n) + f (n+ 1)

2
−
∫ n+1

n

R2(t) f
′(t)d t. (18)

Adding in (18) for n= a, a+ 1, a+ 2, ..., b− 1; we obtain:
∫ b

a

f (t)d t =
b−1
∑

n=a

f (n) + f (n+ 1)
2

−
∫ b

a

R2(t) f
′(t)d t

=
f (a) + f (b)

2
+

b−1
∑

n=a+1

f (n)−
∫ b

a

R2(t) f
′(t)d t.

Then,
∑

a<n≤b

f (n) =

∫ b

a

f (t)d t − [ f (b)− f (a)](−
1
2
) +

∫ b

a

R2(t) f
′(t)d t.

This is the case for k = 0 in (17).

Suppose this theorem is true for k = q, that is to say

∑

a<n≤b

f (n) =

∫ b

a

f (x)d x + 2
q
∑

r=0

(−1)r+1

(r + 2)!
[ f (r)(b)− f (r)(a)]Rr+2 +

(−1)q

(q+ 2)!
2

∫ b

a

Rq+2(t) f
(q+1)(t)d t. (19)
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Let’s prove that it’s true for k = q+ 1.

Adding and subtracting
(−1)q+2

(q+ 3)!
2[ f (q+1)(b)− f (q+1)(a)]Rq+3 on the right side of (19), we get

∑

a<n≤b

f (n) =

∫ b

a

f (t)d t+2
q+1
∑

r=0

(−1)r+1

(r + 2)!
[ f (r)(b)− f (r)(a)]Rr+2+

(−1)q+1

(q+ 3)!
2Rq+3(t) f

(q+1)(t)|ba−
(−1)q+1

(q+ 3)!
2(q+3)

∫ b

a

Rq+2(t) f
(q+1)(t)d t

=

∫ b

a

f (t)d t + 2
q+1
∑

r=0

(−1)r+1

(r + 2)!
[ f (r)(b)− f (r)(a)]Rr+2 +

(−1)q+1

(q+ 3)!
2

∫ b

a

Rq+3(t) f
(q+2)(t)d t.

Which amounts to the theorem for k = q+ 1.

Example 4.1. Let f (t) =
1
t

; and a = 1; b = x; k = 2. From (17),

x
∑

1<n≤x

1
n
=

∫ x

1

1
t

d t + 2
2
∑

r=0

(−1)r+1

(r + 2)!

�

f (r)(x)− f (r)(1)
�

Rr+2 +
2
4!

∫ x

1

R4(t) f
(3)(t)d t

= ln |x |+ 2
�

−
1
2

�

1
x
− 1

�

R2 +
1
6

�

−
1
x2
+ 1

�

R3 −
1

24

�

2
x3
− 2

�

R4

�

−
1
2

∫ 2

1

R4(t)
t4

d t,

then
x
∑

n=1

1
n
− ln |x |=

1
2x
+

1
2
−

1
12x2

+
1

12
−

1
2

∫ x

1

R4(t)
t4

d t. (20)

Taking limit x →∞, on both sides, we have

γ=
1
2
+

1
12
−

1
2

∫ ∞

1

R4(t)
t4

d t, (21)

where γ is the constant of Euler-Masheroni (see, [7, p. 119, Eq (27a)]). From (20) and (21), we obtain
x
∑

n=1

1
n
= ln |x |+

1
2x
−

1
12x2

+ γ+O
�

1
x3

�

.

Theorem 4.6. The values of the Riemann zeta function are given by (see [9])

ζ(k) =
∞
∑

n=1

1
nk
= (−1)

k
2+1(2π)k

Rk+1

(k+ 1)!

for k even, where Rk+1 are the Bernoulli–type numbers defined (5).

Proof. Let’s consider the function

f (z) = π cot(πz) = π
cos(πz)
sin(πz)

and the contour CN with N ∈ N in the complex plane that consists in the edge of the square with vertices (N + 1
2 )(±1± i). Let

g(z) =
1
zk

f (z) (22)

with k even. It has simple poles in the integers z = n with n 6= 0, and reminder
1
nk

, because given n0 ≤ N

lim
z→n0

(z − n0)
zk

π
cos(πz)
sin(πz)

= lim
z→n0

(πz − n0π)
zk

cos(πz)
(−1)n0 sin(πz − n0π)

=
1

nk
0

.

Then by the Residue Theorem
∫

CN

g(z)dz = 2πi

�

N
∑

n=−N ,n 6=0

1
nk
+ Resz=0 g(z)

�

.

As k is an even number
N
∑

n=−N

1
nk
= 2

N
∑

n=1

1
nk

,

Dolomites Research Notes on Approximation ISSN 2035-6803



Alejandro · William · Roberto · María José 29

so
∫

CN

g(z)dz = 2πi

�

2
N
∑

n=1

1
nk
+ Resz=0 g(z)

�

. (23)

On the other hand, as f (z) is bounded on the contour CN , this means

| f (z)| ≤ A for every z ∈ CN (with A independent of N).

We get
�

�

�

�

�

∫

CN

g(z)dz

�

�

�

�

�

=

�

�

�

�

�

∫

CN

1
zk

f (z)dz

�

�

�

�

�

≤
∫

CN

�

�

�

�

1
zk

f (z)dz

�

�

�

�

≤
∫

CN

�

�

�

�

1
zk

�

�

�

�

| f (z)| |dz|

≤
1

�

N + 1
2

�k
A · 4(2N + 1)→ 0 as N →∞.

Taking the limit (23) when N →∞, we obtain

∞
∑

n=1

1
nk
= −

1
2

Resz=0 g(z). (24)

Now,we look for Resz=0 g(z).
We obtain that

cot(πz) =
cos(πz)
sin(πz)

= i
eπiz + e−πiz

eπiz − e−πiz
= i coth(πiz). (25)

On the other side,

coth
� z

2

�

=
e

z
2 + e−

z
2

e
z
2 − e−

z
2
=

2z2

2z2

�

ez

ez − 1
+

1
ez − 1

�

=
2
z2

�

z2ez

2ez − 2
+

z2

2ez − 2

�

=
2
z2

�∞
∑

n=0

Rn(1)
zn

n!
+
∞
∑

n=0

Rn(0)
zn

n!

�

. (26)

As Rn(1) = Rn(0) = Rn ∀n> 2 ; R2(1) =
1
2 , R2(0) = −

1
2 , R0(0) = 0= R0(1), R1(1) =

1
2 = R1(0).

Then (26) is transformed into

coth
� z

2

�

=
2
z2

�

z + 2
∞
∑

n=3

Rn

n!
zn

�

,

and given Rn = 0 for n even with n> 3 we have,

2
z2

�

z + 2
∞
∑

n=1

R2n+1

(2n+ 1)!
z2n+1

�

=
2
z2

∞
∑

n=0

2R2n+1

(2n+ 1)!
z2n+1 =

∞
∑

n=0

4
R2n+1

(2n+ 1)!
z2n−2.

So

coth
� z

2

�

=
∞
∑

n=0

4
R2n+1

(2n+ 1)!
z2n−2.

Thus,

coth(πiz) =
∞
∑

n=0

4
R2n+1

(2n+ 1)!
(2πiz)2n−2. (27)

From (22), (25) and (27), we get

g(z) = π
cot(πz)

zk

=
π

zk
i coth(πiz)

=
π

zk
i
∞
∑

n=0

4
R2n+1

(2n+ 1)!
(2πiz)2n−1

=
∞
∑

n=0

(−1)n2(2π)2n R2n+1

(2n+ 1)!
(z)2n−k−1.

Taking Laurentś series development of g(z). It is enough to find the coefficient a−1, that equals to Resz=0 g(z).
So

Resz=0 g(z) = (−1)
k
2 2(2π)k

Rk+1

(k+ 1)!
.
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And finally replacing this result in (24), we obtain

ζ(k) =
∞
∑

n=1

1
nk

= −
1
2
(−1)

k
2 2(2π)k

Rk+1

(k+ 1)!

= (−1)
k
2+1(2π)k

Rk+1

(k+ 1)!
.

Example 4.2. Some values of ζ are given by

ζ(2) = 6(−1)2(2π)2
R3

3

= 4π2 1/4
3!

=
π2

6
.

ζ(4) = (−1)3(2π)4
R5

5!

=
−16π4(−1/12)

120

=
π4

90
.
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