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Extra Regularity of Hermite Subdivision Schemes

Jean-Louis Merrien a · Tomas Sauer b

Abstract

Hermite subdivision schemes act on vector valued sequences that are not only considered as functions
values of a vector valued function from R to Rr , but as evaluations of a function and its consecutive
derivatives. Starting with data on `r (Z), r = d+1, interpreted as function value and d = r−1 consecutive
derivatives, we compute successive iterations to define values on `r (2−nZ) and an r-vector valued limit
function for whose first component Cd–smoothness is generally expected.
In this paper, we construct univariate Hermite subdivision schemes such that, for any given initial data, it
is possible to reach a limit function with smoothness d + p for any p > 0. The result is obtained with a
generalized Taylor factorization and a smoothness condition for vector subdivision schemes.

1 Introduction
Subdivision schemes create curves or surfaces by applying stationary refinement rules on data defined on the integers. This
refinement process extends the data to a discrete function defined on the half integers, quarter integers and so on, until eventually
the values become so dense that one could speak of a limit function. In the univariate case, which is the one we consider here,
stationary subdivision [1] means that any step of the subdivision process is a stationary process which defines data on next level
in a convolution-like way as

gn+1 = Sa gn :=
∑

β∈Z

a(· − 2β) gn(β);

in this expression, a stands for the mask, a finitely supported sequence and the values gn on different iteration levels are
normalized to be discrete functions gn : Z → R with the understanding that gn(α) stands for a value at 2−nα, α ∈ Z. Such
subdivision schemes with scalar coefficients can be trivially extended to the generation of curves by acting componentwise, on
vector data, resulting in the iteration

g n+1 = Sa g n :=
∑

β∈Z

a(· − 2β) g n(β), g n : Z→ Rr .

Vector subdivision goes one step further by applying a matrix valued mask to the data, allowing for interaction between the
components of the data vectors:

g n+1 = SA gn :=
∑

β∈Z

A(· − 2β) g n(β), A : Z→ Rr×r ,

again with the assumption that A is finitely supported. Finally, in Hermite subdivision the components of the vector f n(α) ∈ Rr ,
r = d + 1, are considered as function value and d consecutive derivatives of a function at 2−nα. Due to the chain rule, the
refinement scheme now takes a level dependent form, that is, the operator depends on the iteration level n as

f n+1 = D−n−1 SA Dn f n =
∑

β∈Z

D−n−1 A(· − 2β)Dn f n(β), D =









1
1
2

. . .
2−d









.

All such types of subdivision schemes are covered extensively in the literature, see e.g. [2, 3, 4, 5, 8, 15], just to name a few specific
references on Hermite subdivision schemes. Standard questions to consider are the convergence of the iterative schemes and the
regularity of the associated limit functions. This is well-known to be closely related to the way how the subdivision operators act
on polynomial sequences, a property that can in turn be conveniently characterized by means of operator factorizations.

In the next section, we will review the basic definitions of vector and Hermite subdivision schemes and the appropriate
notions of convergence. We will point out what vector subdivision schemes and Hermite subdivision schemes have in common
and where they differ. Introducing Taylor operators, we will also present the transformation of a Hermite subdivision scheme into
vector subdivision schemes via the Taylor factorizations. We illustrate the different schemes with an example where, in particular
the limit functions are shown.
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We will see that the definitions of the smoothness of the two schemes are significantly different. By construction, the limit
function

φ =





φ0
...
φd



 ,

of a Hermite scheme satisfies φ j = φ
( j)
0 for j = 0, . . . , d, so that φ0 ∈ C d whenever all components of φ are continuous. The limit

of a Hermite subdivision scheme always has to have a certain amount of regularity in the sense of differentiability. In this paper
we investigate the question under which circumstances we can have extra regularity, that is, φ0 ∈ C d+p for some integer p ≥ 0.
We will relate this to a combined factorization, one due to the nature of Hermite subdivision schemes and one coming from
a smoothness condition for vector subdivision schemes that is due to [14]. A similar approach has been used to characterize
overreproduction of polynomials as an algebraic properties of the matrix symbols in [16, 17].

Section 3 will be devoted to the B-spline case. Here the splines are obtained as the limit of, firstly, a scalar subdivision scheme,
secondly, a Hermite subdivision scheme. The smoothness of such functions is well-known and can be as large as wanted.

In the final Section 4, we will give a generic construction to obtain convergent Hermite subdivision schemes with any order of
extra smoothness.

2 Vector and Hermite subdivision schemes
We begin by fixing some notation to describe subdivision schemes. Vectors in Rr , r ∈ N, will generally be labeled by lowercase
boldface letters: y =

�

y j

�

j=0,...,r−1
or y =

�

y ( j)
�

j=0,...,r−1
, where the latter notation is used whenever we especially want to

highlight the aforementioned fact that in Hermite subdivision the components of the vectors correspond to consecutive derivatives.
Moreover, in Hermite subdivision we denote the highest derivative by d, so that throughout the paper we will always have the
relationship r = d + 1.

Matrices in Rr×r will be written as uppercase boldface letters such as A=
�

a jk

�

j,k=0,...,r−1
. The space of polynomials in one

variable of degree at most n will be written as Πn, with the usual convention Π−1 = {0}, while Π will denote the space of all
polynomials. Vector sequences will be considered as functions from Z to Rr and the vector space of all such functions will be
denoted by `r(Z). For a sequence y ∈ `r(Z), the forward difference is defined as ∆y := y(·+ 1)− y , and iterated to

∆ j y :=∆
�

∆ j−1 y
�

=∆ j−1 y(·+ 1)−∆ j−1 y(·) =
j
∑

k=0

(−1)k− j
�

j
k

�

y(·+ k), j ≥ 1.

We use 0 to indicate zero vectors and matrices. If we want to highlight the dimension of the object, we will use a subscript like
0r , but to avoid too cluttered notation, we will often drop them if the size of the object is clear from the context.

For a finitely supported sequence of matrices A ∈ `r×r
0 (Z), called the mask of the subdivision scheme, we define the associated

stationary subdivision operator
SA : g 7→

∑

β∈Z

A(· − 2β) g (β), g ∈ `r(Z).

Using potentially different masks An ∈ `r×r
0 (Z), n ∈ N, these operators can be iterated into a subdivision scheme that creates

sequences g n ∈ `r
0(Z), n≥ 0,

g n+1 := SAn
g n :=

∑

β∈Z

An (· − 2β) g n(β), n≥ 0, (1)

from a given g 0. An important algebraic tool for stationary subdivision operators is the symbol of the mask, the matrix valued
Laurent polynomial

A∗(z) :=
∑

α∈Z

A(α) zα, z ∈ C \ {0}. (2)

In a vector subdivision scheme as defined in [1], we simply set An = A ∈ `r×r
0 (Z) and define convergence as follows.

Definition 2.1. The vector subdivision operator SA : `r(Z)→ `r(Z) is called C p–convergent, p ≥ 0, if for any data g 0 := g ∈ `r(Z)
and the refinements from (1) there exists a function ψg : R→ Rr with C p components such that for any compact K ⊂ R there
exists a sequence εn with limit 0 that satisfies

max
α∈Z∩2nK



g n(α)−ψg

�

2−nα
�



∞ ≤ εn. (3)

For a Hermite scheme, in (1), we set

An(α) = D−n−1A(α)Dn, α ∈ Z, D :=









1
1
2

. . .
1

2d









, (4)

so that r = d +1 and for k = 0, . . . , d the k-th component of cn(α) corresponds to an approximation of the k-th derivative of some
function ϕn at α2−n. Starting from an initial sequence f 0 ∈ `r(Z), a Hermite scheme

f n+1 := HAn
f n := D−n−1SADn f n, n≥ 0,
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can be rewritten as
g n+1 := Dn+1 f n+1 = SADn f n = SA g n, n≥ 0, (5)

based on the relation
g n = Dn f n, n≥ 0. (6)

To capture the intuition of vectors with consecutive derivatives, the convergence of Hermite schemes is a little bit more intricate
and defined as follows.
Definition 2.2. The Hermite subdivision scheme with respect to the mask A ∈ `r×r(Z) as defined by (5) is called convergent if
for any data f 0 ∈ `r(Z) there exists a function Φ : R→ Rr with (uniformly) continuous components such that for any compact
K ⊂ R there exists a sequence εn with limit 0 which satisfies

max
0≤ j≤d

max
α∈Z∩2nK

�

� f ( j)n (α)−φi

�

2−nα
��

�≤ εn. (7)

Moreover, the scheme HAn
is said to be C p–convergent with p ≥ d if in addition φ0 is a C p function and

φ
( j)
0 = φ j , 0≤ j ≤ d.

Remark 1. Since the intuition of Hermite subdivision schemes is to iterate on function values and derivatives, it usually only
makes sense to consider C p–convergence for p ≥ d. Note, however, that the case p > d leads to additional requirements.
Remark 2. The two concepts of convergence based on SA and HAn

are significantly different as can be seen immediately from (6).
Indeed, if the Hermite subdivision scheme is convergent it follows that

g n =









f (0)n
2−n f (1)n

...
2−nd f (d)n









→









φ0
0
...
0









,

hence Ψg = φ0 e0. In particular, the components of g n have to converge to zero even with a prescribed rate. Therefore, in general
it cannot be ensured that D−ng n converges or is bounded, even if g n converges to a multiple of e0. This is the reason why the
factorization properties and the convergence analysis for Hermite subdivision cannot be obtained in a straightforward way from
that of the vector subdivision operator, even if they are based on the same mask, see Fig. 1 for a particular example.
As a consequence of Remark 2 we observe that whenever a mask A defines a convergent Hermite subdivision scheme, the
associated vector subdivision scheme based on SA is a so-called rank-1 subdivision scheme as defined in [13, 14]. In concrete
terms, this means that the mask as to satisfy

Q0e0 = Q1e0 = e0, Qε :=
∑

α∈Z

A2α+1, ε ∈ {0, 1},

and that the two matrices Q0 and Q1 have no further common eigenvector with respect to the eigenvalue 1.
To give convergence criteria for vector and Hermite subdivision schemes, we need three different types of difference operators
from [10, 11].
Definition 2.3. The simple difference operator (of rank-1 type) is defined as

Dd := I + (∆− 1)edeT
d =









1
...

1
∆









. (8)

A generalized incomplete Taylor operator is an operator of the form

Td :=















∆ −1 ∗ . . . ∗
. . .

. . .
. . .

...
. . .

. . . ∗
∆ −1

1















=
�

∆I
1

�

+
�

t jk

�

j,k=0,...,d
, (9)

where
t j, j+1 = −1 and t jk = 0, k ≤ j.

In the same way, the generalized complete Taylor operator is of the form

eTd := Dd Td =















∆ −1 ∗ . . . ∗
. . .

. . .
. . .

...
. . .

. . . ∗
∆ −1

∆















=∆I +
�

t jk

�

j,k=0,...,d
. (10)

In this paper we only consider generalized Taylor operators, so that from now on we will drop the word “generalized” and always
speak of generalized operators and factorizations.
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The name Taylor operator stems from the fact that, motivated by observations from [6], the (incomplete) operator had originally
be introduced in [10] as

Td :=















∆ −1 − 1
2 . . . − 1

d!
. . .

. . .
. . .

...
. . .

. . . − 1
2

∆ −1
1















.

It is a particular case of our new generalized Taylor operator and it appears as a comparison between the difference of function
values and the derivative terms of the Taylor expansion. Since for any φ ∈ C d+1(R) one has that

T̃d









φ
φ′

...
φ(d)









(x) =









φ(d+1)(ξ0)
φ(d+1)(ξ1)

...
φ(d+1)(ξd)









, ξ j ∈ (x , x + 1), j = 0, . . . , d,

the operator clearly annihilates all polynomials of degree at most d.
The generalized Taylor operatorenables us to give a sufficient criterion for the convergence of Hermite subdivision schemes

by means of factorization.
Definition 2.4. The masks B, eB ∈ `r×r(Z) are called a Taylor factorization and a complete Taylor factorization of A, respectively, if
they satisfy

TdSA = 2−dSB Td and eTdSA = 2−dS
eB
eTd , (11)

respectively.
In a certain sense, the factorization always exists. We simply have to write (11) as

T ∗(z)A∗(z) = 2−d B∗(z)T ∗(z2), T ∗(z) :=















z−1 − 1 −1 ∗ . . . ∗
. . .

. . .
. . .

...
. . .

. . . ∗
z−1 − 1 −1

1















with an analogous identity for the complete factorization, to obtain that

B∗(z) = 2d T ∗(z)A∗(z)T ∗(z2)−1 and A∗(z) = 2−d T ∗(z)−1B∗(z)T ∗(z2),

respectively. Given a finitely supported mask A, the resulting B∗(z) is usually a non-polynomial rational function, hence the factor
B is an infinitely supported mask. Unfortunately, the same also holds true for A∗ which, for given B can only be guaranteed to be
a rational function, even if

det A∗(z) = 2−d (det T ∗(z))−1 det B∗(z) det T ∗(z2) = 2−d (z
−2 − 1)d+1

(z−1 − 1)d+1
det B∗(z)

= 2
�

z−1 + 1
2

�d+1

det B∗(z)

is a Laurent polynomial in z. This is in contrast to scalar subdivision schemes where raising the order of the zero at −1 is the
standard way to increase the smoothness of the limit function. Nevertheless, the existence of a factorization is the key to the
construction of convergent Hermite subdivision schemes.
Theorem 2.1 ([11], Corollary 4). If a given mask A has a complete Taylor factorization eTdSA = 2−dS

eB
eTd where

1. eB ∈ `r×r(Z) is finitely supported,
2. S

eB is a contraction on `r
∞(Z),

3. (B∗(1))11 = 1,
then HAn

is C d -convergent.

Hence, in order to construct a C d -convergent subdivision scheme, we can start with a finitely supported eB such that the associated
subdivision satisfies the contractivity condition 2) and the normalization condition 3) at the same time. Note that the latter
prohibits a simple rescaling of B, i.e., a multiplication with a small constant.

This, however, is not enough as one also has to ensure that T ∗(z)−1B∗(z)T ∗(z2) is a matrix valued Laurent polynomial which
leads to additional conditions on B∗. A generic construction for such a B has been given, for any generalized Taylor operator, in
[11] which shows that for any generalized Taylor operator and any d there exists a C d convergent Hermite subdivision scheme that
is factorizable with respect to this generalized Taylor operator. We will later extend this construction by means of a supercomplete
Taylor factorization, but first we illustrate the concept by looking at a special case that actually motivated the development of
generalized Taylor factorizations.

In Figure 1, with a given mask, {A(·)}, we plot the ”limit” functions for the two vector schemes, SA, SB (after Taylor incomplete
factorization), and the Hermite scheme HAn

. We notice that the first functions for SA and HAn
are identical, corresponding to φ0

in Definition 2.2 and similarly the last ones of SB and HAn
corresponding to φ(d)0 in the same definition.
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Figure 1: The different schemes: SA, SB and HAn
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3 The B–spline case
In this section, we rewrite the well known cardinal splines, [18] in term of a scalar subdivision scheme and extend it into Hermite
schemes of different orders. From the properties of cardinal splines, we have convergence of the schemes and regularity of the
limit.

Our presentation, already proposed in [9], is based on a construction detailed by Michelli in [12] and in summarized in the
following.

Let

ϕ0(x) = χ[0,1] =
§

1 if x ∈ [0,1],
0 if x /∈ [0,1].

For m= 1, 2, . . ., we build ϕm by means of autoconvolution as ϕm = ϕ0 ∗ϕm−1 or ϕm(x) =
∫ x

x−1
ϕm−1(t)d t.

Let us recall that ϕm is a Cm−1 piecewise polynomial of degree m with finite support [0, m+ 1].

Moreover, ϕm(x) =
1

2m

∑

α∈Z

�m+1
α

�

ϕm(2x −α) where
� i

j

�

=

�

i!
j!(i− j)! if 0≤ j ≤ i,

0 otherwise.

Considering v(x) =
∑

α∈Z f (0)0 (α)ϕm(x −α), which is a finite sum for any x ∈ R since ϕm has finite support, we deduce for
n ∈ N0 that v(x) =

∑

α∈Z f (0)n (α)ϕm (2n x −α) where

f (0)n+1(α) =
1

2m

∑

β∈Z

�

m+ 1
α− 2β

�

f (0)n (β) =:
∑

β∈Z

am(α− 2β) f (0)n (β), α ∈ Z, (12)

that is,

am(α) =
1

2m

�

m+ 1
α

�

, α ∈ Z. (13)

This is a scalar subdivision scheme.
Then, the well–known derivative formula for cardinal B–spline yields

d i v
d x i
(x) =

∑

α∈Z

2ni∆i f (0)n (α− i)ϕm−i (2
n x −α) , i = 0, . . . , m− 1. (14)

We have a particular case when i = m− 1. Since the function ϕ1 is piecewise linear with ϕ1(α) = δ1α, we obtain

dm−1v
d xm−1

(β/2n) = 2n(m−1)∆m−1 f (0)n (β −m+ 1).

With this formula, we define a Hermite subdivision scheme of order d < m with mask {A(α)} and support [0, m+ d + 1] by
applying differences to the mask am, yielding

A(α) =









am(α) 0 . . . 0
∆am(α− 1) 0 . . . 0

...
∆d am(α− d) 0 . . . 0









, (15)

thus

A∗(z) =
(1+ z)m+1

2m









1 0 . . . 0
(1− z) 0 . . . 0

...
(1− z)d 0 . . . 0









. (16)

Beginning with f 0 ∈ `r , and using the recurrence (5) we notice that for n≥ 1 and i = 1, . . . , d:

f (i)n (α) = 2in∆i f (0)n (α− i). (17)

Now with (12) and (14), for n> 0,

d i v
d x i
(x) =

∑

α∈Z

f (i)n (α)ϕm−i(2
n x −α), i = 0, . . . , d.

In [9], we had proved that the generalized Taylor operators are given by

T d :=









∆ −1 . . . −1
...

. . .
...

∆ −1
1









and eT d :=









∆ −1 . . . −1
...

. . .
...

∆ −1
∆









(18)
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Thus the corresponding vector scheme in the factorization is given by

eB
∗
(z) =

z(1+ z)m−d

2m−d









1
1
...
1









�

(1− z2)d z2((1− z2)d−1 . . . z2(1− z2) z2
�

. (19)

It is of rank 1. Let us also notice that

eT
∗
(z)A∗(z) = 2−d

eB
∗
(z)T ∗(z2) = 2−mz−1(1+ z)m+1(1− z)d+1









1 0 . . . 0
1 0 . . . 0
...

...
...

1 0 . . . 0









.

We did not plot the graphs of the B-splines which are well known and probably everyone has seen one already.

4 Hermite schemes with extra regularity: a generic construction
In this section we will show that for any generalized Taylor operator of any order d there exists a C d -convergent subdivision
scheme with an a extra regularity of p for any given p ≥ 0. Before we give a proof by means of an explicit construction for such a
scheme, we formally state the result.

Theorem 4.1. Given p ≥ 0 and a generalized Taylor operator Td of order d, there exists a finitely supported mask A ∈ `r×r such that
the Hermite subdivision HA scheme is C d -convergent with a limit function φ ∈ C d+p(R) and SA admits a Taylor factorization with
respect to Td .

The idea behind the construction is simple and to some extent even follows the same concept as usual scalar subdivision:
starting with the Taylor factor B such that TdSA = 2−dSB Td , we increase the order of smoothness of the limit function of SB by
constructing a scheme whose symbol has extra (matrix) factors. This means that SB from the (incomplete) Taylor factorization
should be further factorizable into

�

I d
∆

�p

SB = 2−p S
eB

�

I d
∆

�p

, (20)

where eB is also a finitely supported mask. From [13, 14] we recall the following result on smoothing limit functions.

Theorem 4.2. The vector subdivision scheme SB has C p limit function if
�

I d
∆

�p+1

SB =
1
2p

S
eB

�

I d
∆

�p+1

(21)

and S
eB is contractive. The converse does not hold.

For the construction of an appropriate eB, we partition it as

eB
∗
(z) =

�

eB
∗
11(z) eB

∗
12(z)

eB
∗
21(z) eB

∗
22(z)

�

, eB11 ∈ `d×d(R), eB12, eB
T

21 ∈ `
1×d(R), eB11 ∈ `1×1(R)

Since (21) can be rewritten as

B∗(z) =
1
2p

�

I d
z−1 − 1

�−p−1 �
eB
∗
11(z) eB

∗
12(z)

eB
∗
21(z) eB

∗
22(z)

�

�

I d
z−2 − 1

�p+1

=
1
2p

�

eB
∗
11(z) (z−2 − 1)p+1

eB
∗
12(z)

(z−1 − 1)−p−1
eB
∗
21(z) (z + 1)p+1

eB
∗
22(z)

�

, (22)

we can record the following immediate consequence of Theorem 4.2.

Corollary 4.3. SB converges to a C p limit function of the form f c = fc ed if

1. S
eB is contractive,

2. eB
∗
21 has a zero of order p+ 1 at 1,

3. eB is normalized as eB
∗
22(1) = 1.

The corollary tells us that contractive schemes are at the heart of the construction of a convergent Hermite subdivision scheme.
Note that contractivity of a scheme C means that the spectral radius

ρ(SC ) := limsup
n→∞

‖Sn
C‖

1/n, ‖SC‖ := sup
‖c‖∞=1

‖SC c‖∞,

based on the operator norm of the subdivision operator is less than one, where

‖c‖∞ = sup
α∈Z

max
0≤k<r

|ck(α)|.

The following simple sufficient condition for contractivity of a vector subdivision scheme is most likely known in the folklore, but
we state it and give a quick proof for the sake of completeness and the reader’s convenience.
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Lemma 4.4. If C is a lower triangular mask, i.e., all components of C(α) are lower triangular matrices and the diagonal elements
c00, . . . , cr−1,r−1 ∈ `(Z) are scalar contractive schemes, then C defines a contractive vector subdivision scheme.

Proof. Write C = D+N where D ∈ `r×r(Z) is a diagonal scheme and N ∈ `r×r(Z) is strictly lower diagonal one, then Sn
C = Sn

D+SNn
for some strictly lower diagonal Nn ∈ `r×r(Z), n ∈ N. Since the diagonal elements are contractions, there exist some n ∈ N such
that



Sn
D



< 1. With

Eε :=









1
ε

. . .
εr−1









we have that

EεS
n
C E−1

ε
= Sn

D + SEεNnE−1
ε

, EεN
nE−1
ε
=









0
ε ∗ 0
...

. . .
. . .

εr−1 ∗ . . . ε ∗ 0









and hence there exists ε > 0 such that ρ :=


EεS
n
C E−1

ε



< 1. Hence, for any m ∈ N,

‖Smn
C ‖ ≤ ‖Eε‖‖E

−1
ε
‖


EεS
mn
C E−1

ε



= ε1−r




�

EεS
n
C E−1

ε

�m
≤

ρr

er−1

which becomes < 1 for m sufficiently large. Since ρ(SC )≤ ‖Smn
C ‖

1/(mn) for any choice of m, n ∈ N, this completes the proof that
SC is a contraction.

Next, note that the second condition on eB in Corollary 4.3 ensures that B∗ in (22) is a Laurent polynomial while the normalization
yields

B∗(1) =
�

∗ 0
0 2

�

, B∗(−1) =
�

∗ 0
∗ 0

�

,

hence
�

∑

α∈Z

B(2α)

�

ed =

�

∑

α∈Z

B(2α+ 1)

�

ed = ed ,

which is the necessary condition for the limit function to be of the form fced . Combining the two factorizations into one, we
arrive at the following definition.

Definition 4.1. The (generalized) supercomplete Taylor operator of order d and extra regularity p is of the form

Td,p :=















∆ −1 ∗ . . . ∗
. . .

. . .
. . .

...
. . .

. . . ∗
∆ −1

∆p+1















=
�

I d
∆

�p

eTd =
�

I d
∆

�p+1

Td . (23)

The special cases are Td = Td,−1 and eTd = Td,0.

A factorization with respect to a supercomplete operator, Td,pSA = 2−p−dS
bB Td,p is equivalent to

A∗(z) =
1

2p+d

�

T ∗d,p(z)
�−1

bB
∗
(z)bT

∗
d,p(z

2)

=
1

2p+d

�

eT
∗
(z)
�−1

�

I d
(z−1 − 1)−p

�

bB
∗
(z)

�

I d
(z−2 − 1)p

�

eT
∗
(z2)

=
1

2p+d

�

eT
∗
(z)
�−1

�

I d
z−1 − 1

�−p−1

bB
∗
(z)

�

I d
z−2 − 1

�p+1

eT
∗
(z2)

=:
1
2d

�

eT
∗
(z)
�−1

C ∗(z) eT
∗
(z2).

Thus, if we can find mask C associated to a contractive scheme and normalized as (C ∗(1))dd = 1, such that HA is a C d -convergent
subdivision scheme, then we can compute bB

∗
(z) as

bB
∗
(z) = 2p

�

I d
z−1 − 1

�p+1

C ∗(z)
�

I d
z−1 − 1

�−p−1

= 2p

�

eC
∗
11(z)

�

1
z−2−1

�p+1
eC
∗
12(z)

(z−1 − 1)p+1
eC
∗
21(z)

�

1
z−1+1

�p+1
eC
∗
22(z)

�

.
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The construction of C has been pointed out in [11]. More precisely, given any symbol h∗dd of a mask h such that the univariate
scalar stationary subdivision scheme Sh is contractive, then there exists a recursive scheme [11, eq. (65) in the proof of Theorem 5]
to compute h∗d,d−1, . . . , hd,0 such that for any h∗jk, k = 0, . . . , j − 1, j = 1, . . . , d − 1, the lower triangular symbol

C ∗(z) =

















z−1−1
2

(z−1 − 1)2h∗10(z)
(z−1−1)2

4
...

. . .
. . .

(z−1 − 1)dh∗d−1,0(z) . . . (z−1 − 1)dh∗d−1,d−2(z)
(z−1−1)d

2d

c∗d0(z) . . . c∗d,d−2(z) c∗d,d−1(z) c∗dd(z)

















with
c∗d j(z) =

�

z−1 − 1
�d− j

h∗d j(z
−1), j = 0, . . . , d,

defines a Taylor factor with a contractive associated subdivision scheme by Lemma 4.4. Note, in particular, that C ∗12 = 0 and that
c∗dd = h∗dd . If, in addition, we choose

h∗dd(z) =
(z + 1)p+1

2p+1
a(z), a(1) = 2,

in a B-spline fashion, then bB
∗
(z) is a matrix Laurent polynomial and SA, defined by

A∗(z) =
1
2d

�

eT
∗
(z)
�−1

C ∗(z) eT
∗
(z2) =

1
2p+d

�

T ∗d,p(z)
�−1

bB
∗
(z)bT

∗
d,p(z

2)

defines a C d convergent Hermite subdivision scheme by Theorem 2.1 and has a p-supercomplete Taylor factorization with factor
bB. The symbol bB

∗
is a lower triangular matrix with the same diagonal structure as C ∗ and thus also defines a contraction. Hence,

by Theorem 4.2 and Corollary 4.3, the last component of the limit
�

φ,φ′, . . . ,φ(d)
�

of HA belongs to C p(R) which eventually
verifies that φ ∈ C d+p(R).

This also concludes the proof of Theorem 4.2.
We finish with revisiting one example from [11] where already a mask with a supercomplete Taylor factorization was

constructed.

Example 4.1. In the case n= 5 with the functions from [11, Example 5], we can get a factorization with p = 4 and obtain

bB
∗
(z) =







− 8 (z−1)
z 0 0

16 (z−1)2

z2
4 (z−1)2

z2 0
32 (z−1)6 (5−4 a−3 z+4 a z)

z7 − 8 (z−1)5 (15−20 a+16 a2−18 z+32 a z−32 a2 z+7 z2−12 a z2+16 a2 z2)
z7

1+z
2 z







as well as

A∗(z)

=







− (1+z)(−20 a+16 a2−23 z+48 a z−32 a2 z+15 z2−28 a z2+16 a2 z2)
2 z3

− (z−1) (1+z) (11−8 a−7 z+8 a z)
z3

2 (z−1)2 (1+z) (5−4 a−3 z+4 a z)
z4

30 a−40 a2+32 a3+31 z−46 a z+56 a2 z−32 a3 z+24 z2−78 a z2+72 a2 z2−32 a3 z2−45 z3+94 a z3−88 a2 z3+32 a3 z3

4 z3

(z−1)(−31+40 a−32 a2−24 z+16 a z+43 z2−56 a z2+32 a2 z2)
4 z3

− (z−1)2 (−15+20 a−16 a2−12 z+8 a z+19 z2−28 a z2+16 a2 z2)
2 z4

a+z+7 a z+8 z2+22 a z2+30 z3+42 a z3+72 z4−183 a z4−119 z5+63 a z5

32 z5

(z−1)(−1−8 z−30 z2−72 z3+119 z4+32 a z4)
32 z5

− (z−1)3 (1+9 z+39 z2+111 z3)
32 z6






.

In this expression, a is the free parameter of the associated generalized Taylor operator with complete form

eTd =





∆ −1 a
∆ −1

∆



 .

In Fig. 2, we have plotted the ”limit” function and its first and second derivatives. Since the process does not compute the next
derivatives, the approximations for higher derivatives in Fig. 3 have been determined using the successive finite differences of
f (2).
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Figure 2: The function and its first and second derivatives

Figure 3: Approximation of the successive derivatives by finite differences
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5 Conclusion
Convergent Hermite subdivision schemes of order d have a limit function that belongs to C d , at least if the scheme converges in
the sense proper for Hermite subdivision. We have shown that this regularity can be raised to an arbitrary order and provided
an explicit recipe to determine such schemes. The approach uses factorizations and contractivity, but in contrast to the scalar
univariate case the factor mask eB must satisfy additional, nontrivial conditions, and the main task in the construction is to satisfy
these conditions.
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