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Truncation of computational domains as an error control strategy
for approximating option pricing involving PIDEs
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Abstract

Pricing of option contracts where the underlying asset follows a jump diffusion process leads to a partial
integro-differential equation. Due to the integral term, an exact or closed form solution to the resulting
equation is impossible in general. In this paper, we have investigated the localization error when the
finite difference method is applied to approximate the solution of the resulting equation. The main
focus of this paper is to reduce the complexity in implementation of the integral term by truncating of
computational domain in which the localization error is controlled. The numerical results present the
behavior of the localization error with respect to the computational domain.
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1 Introduction
Option pricing where the asset price involves jump diffusion process leads to a parabolic, partial integro-differential equation
(PIDEs), which is an extension of the Black–Scholes PDE with a new integral term. Due to the drawbacks in computing of the
closed form solution, a number of numerical methods have been studied in literature to approximate the solution of resulting
equation [6, 13, 7]. The resulting PIDE is initially produced in an unbounded domain which should be localized into the finite
domain due to the numerical computational purposes. Truncating large jumps and neglecting larger values for asset price induces
the localization error. The payoff function of vanilla options is asymptotically close to the option price as asset price goes to
infinity at maturity which leads to an exponentially decaying localization error.

Option pricing with exponential Lévy models has been studied in recent literature such as [14, 5]. Although the finite
difference method is relatively efficient for a single asset option pricing [1, 2, 8], radial basis function approximation methods
could provide a more general approach for tackling a multi-asset pricing problem [11, 15]. The pricing of European option
using the domain truncating of PIDEs was introduced by Cont et al. [5] and the performance of the finite difference method as
numerical scheme was investigated for a single asset case in bounded domain. The radial basis function approximation methods
have been studied for Merton PIDE by truncated integral domain [5, 4, 3]. Both the truncation of the domain and the truncation
of large jumps lead to errors that are exponentially small in terms of the truncating parameters. Computation of the integral term
in the PIDE would involve the solution of a dense linear system. This can be remedied by approximating the integral term only on
a bounded domain by truncating large jumps [12]. It is important to reduce the complexity when we tackle the multi-dimensional
PIDEs corresponded to the basket option pricing.

In this paper, we construct the bounded computational domain to the PDE term proportional to the truncated integral term
where the resulting error can be controlled. We also provide the upper bound for localization error which depends on the
distribution of the jump magnitudes and the payoff function. Numerical experiments show the localization error behavior in terms
of the computational domain. Moreover, they demonstrate it in terms of the truncating of integral term so that the maximum
incurred localization error to would be less than a given tolerance.

Some details of the exponential Lévy model and basket option pricing are presented in section 2. Section 3 is dealing
with computational domain and error estimation of the localization which depends on payoff function and magnitude of jump
distribution. Constructing of computational domain and localization in two-asset and three-asset cases are presented in section 4.

2 Option pricing under jump diffusion processes
In exponential Lévy model, the evolution of risky basket asset S(t) = (S1(t), . . . Sd(t)) is represented by

Si(t) = Si(0)e
r t+Li (t), i = 1, 2, . . . , d (1)
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where S(0) = (S1(0), . . . Sd(0)) is the basket price at the initial time, r is the risk-free interest rate and L(t) = (L1(t), . . . , Ld(t))
is d-dimensional Lévy process under the risk-neutral probability Q. Then the price process S(t) follows the exponential jump
diffusion model

Li(t) =

�

−λκi −
σ2

i

2

�

t +σiWi(t) +
Nt
∑

k=1

Y (k)i , i = 1, . . . , d, (2)

where σi is the volatility of the underlying ith-asset, Wi is a standard Brownian motion where ρi j is correlation between Wi , Wj ,

Nt is a Poisson process with intensity λ, Y (k)i is an iid sequence of random variables related to ith-asset and κi = E(eLi (t) − 1). In
this paper, we focus our attention on the classical Merton jump diffusion model [10] where the density function for the jump
magnitudes follows the normal distribution with mean vector µ̃ and covariance matrix Σ as

g(y) = (2π)−d/2(detΣ)−1/2 exp
�

−
1
2
(y − µ̃)tΣ−1(y − µ̃)

�

. (3)

We have supposed that there is a single Poisson process which derives correlated jumps in all assets. This corresponds to the
single market which affects all prices [5].

Let T be the maturity and τ= T − t denotes the time-to-maturity for the contingent claim V (x ,τ) where x := x(t) is the
underlying basket price in log-price scaling

x = (x1, . . . , xd) = (log(S1), . . . , log(Sd)) ∈ Ω∞ := Rd . (4)

Using the Itô’s formula for finite activity jump processes, and taking expectations under the risk-neutral price process [14, 5], we
obtain the following partial integro-differential equation (PIDE)

∂ V
∂ τ
(x ,τ) =

1
2

d
∑

i=1

d
∑

j=1

ρi jσiσ j
∂ 2V
∂ x i∂ x j

(x ,τ) +
d
∑

i=1

(r −
σ2

i

2
−λκi)

∂ V
∂ x i
(x ,τ)− (r +λ)V (x ,τ)

︸ ︷︷ ︸

LV

+λ

∫

Ω

V (x + y,τ)g(y)d y

︸ ︷︷ ︸

IV

, (x ,τ) ∈ Ω∞ × (0, T], (5)

where the jump magnitudes y = (y1, . . . , yd) in Merton model have Gaussian probability density g(y). The payoff function of the
European basket option is given by

F(x) =max(θ (E −
d
∑

i=1

wi e
xi ), 0), (6)

where E is the strike price of the option, wi is portion of ith-asset which is involved on basket and θ takes value θ = 1 in put
option and θ = −1 in call option respectively. The initial condition for (5) can be rewritten by

V (x , 0) = F(x). (7)

The boundary of the computational domain can be divided into two parts. The near-field boundary, where one or more asset
prices are zero, and the far-field boundary, where one or more asset-prices tend to infinity. For put options, the contract becomes
worthless as the price of any of the underlying assets tends to infinity. For the near-field boundary, it can be noted that once Si
reaches zero, it will be worthless afterward, i.e., the solution remains at the boundary [12].

3 Computational domain
Since numerical computations can only be performed on finite domains, the first step is to reduce the PIDE to a bounded domain.
The PDE term in equation (5) is defined on Ω∞ := Rd and we truncate the domain so that to work on ΩX ⊂ Ω∞. We also localize
the integration domain by truncating large jumps. First, we take the linear transformation in the integral term of equation (5)

∫

Ω∞

V (x + y,τ)g(y)dJ =

∫

Ω∞

V (y,τ)g(y − x)dy, (8)

and then divide the integral term (8) into two parts
∫

Ω∞

V (y,τ)g(y − x)dy =

∫

ΩX

V (y,τ)g(y − x)dy +

∫

Ω∞\ΩX

V (y,τ)g(y − x)dy (9)

such that the value of the second integral term in equation (9) be less than a given tolerance, by choosing the appropriate
bounded core domain ΩJ ⊂ ΩX . It is supposed that the jump magnitude lies into the bounded domain ΩJ . We define the residual
function R(τ, x ,ΩX ) by

R(τ, x ,ΩX ) =

∫

Ω∞\ΩX

V (y,τ)g(y − x)dy. (10)

Dolomites Research Notes on Approximation ISSN 2035-6803



Safdari-Vaighani 70

We can expect the enough small value for g(y − x), for all x ∈ ΩJ and y ∈ Ω∞\ΩX if the distance between the core domain
ΩJ and the infinite domain Ω∞\ΩX is wide enough. The asymptotic behavior of the vanilla option price induces the residual
R(τ, x ,ΩX ) be ignorable. However, the truncated domain ΩJ is possible and has a small size in practice because the probability
density function g(.) decays exponentially [5]. Both localization of the PDE domain and the core domain induce localization error
and are exponentially small in terms of truncation parameters and of course have to be estimate and controlled by an appropriate
choice of localization. Left figure 1 displays the sample core domain for integral term and computational domain for PDE part
when we tackle in two-asset options. We notice that x ∈ ΩX for the PDE term in equation (5) and x ∈ ΩJ for the integral term.

3.1 Estimation of localization error

The decay behavior of residual R(x ,ΩX ,τ) when ΩJ ,ΩX → Ω∞ is investigated on [4, 6]. We focus our attention to evaluate
the upper bound of residual with respect to the appropriate choice of ΩJ . For y ∈ Ω∞\ΩX and x ∈ ΩJ , the (y − x) distance is
minimum at x ∈ ∂ΩJ . Furthermore, the density function of the jump magnitudes g(.) decays exponentially. Then we can write

max
x∈ΩJ

g(y − x)≤ max
x∈∂ΩJ

g(y − x), y ∈ Ω∞\ΩX . (11)

The solution of PIDE (5) is asymptotically linear when the asset price is far from the strike price [16], then we can write

max
x∈ΩJ

R(x ,ΩX ,τ)≤
∫

Ω∞\ΩX

V (y,τ)g(y − x)dy, x ∈ ∂ΩJ . (12)

Notice that the value of put and call price is less than the exercise and asset price, respectively. i.e.

V (y,τ)≤ (E + (1− E)θ )
d
∑

i=1

wi e
θ yi , (13)

where θ = 0 for put option case and θ = 1 for call option case respectively.
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Figure 1: Computational domain ΩX and core domain ΩJ are in left figure and transformed domain ΩU in right figure for two-asset case. K is
strike price in log scale.

We define the diagonal matrix U = diag(u1, . . . , ud) where diagonal elements are domain distance criteria ui =min{|x i − yi | :
x = (x1, . . . , xd) ∈ ∂ΩX , y = (y1, . . . , yd) ∈ ∂ΩJ}. Substitution of y − x = (U + I)v on inequality (12) together (13) leads to

max
x∈ΩJ

R(x ,ΩX ,τ)≤ (E + (1− E)θ )

∫

Ω\ΩX

d
∑

i=1

wi e
θ yi g(y − x)dy, x ∈ ∂ΩJ (14)

≤ max
x∈∂ΩJ

eθ x (E + (1− E)θ )J

∫

Ω\ΩU

g(v + U v)
d
∑

i=1

wi e
θ (1+ui )vi dv, (15)

where ΩU = [−
u1

1+u1
, u1

1+u1
]× . . .× [− ud

1+ud
, ud

1+ud
] and Jacobian J is determinant of diagonal matrix (U + I) in which I is identity

matrix. Since θ is zero for put option case, the inequality (15) takes the simple form

max
x∈ΩJ

R(x ,ΩX ,τ)≤ EJ

∫

Ω\ΩU

g(v + U v)dv. (16)

We can see that the truncation error bound depends on payoff function and density function g. For any given value of U , the
truncation error is easy to evaluate. Asymptotic behavior of the option price enables to scale ΩX sufficiently large such that the
effect of solution details outside ΩX can be ignored. Now, we can use the truncation criteria (15) to determine diagonal element
of U and appropriate core domain ΩJ such that localization error be less than given tolerance. This choice of core domain allows
to control the localization error. It is also enable to reduce the complexity when we approximate the internal term in the PIDE by
setting a few number of grid points.
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3.2 Boundary conditions for localized domain

For the numerical implementation, we can consider ΩX ⊂ Ω∞ as a general computational domain and set IV = 0, ∀x ∈ ΩX\ΩJ
so that the PIDE (5) is computed with the jump component in ΩJ only. Typically, the domain ΩX is sufficiently large if compared
to the ΩJ which allows to control better the error of boundary truncating [4].

Instead of solving (5) in an unbounded domain Ω∞ × (0, T ], we will solve the PDE problem on truncated domain ΩX × (0, T ]
and integral term on core domain ΩJ × (0, T]. Let us define V̂ (x , t) as a solution of the localized version of equation (5) with
truncated domain

∂ V
∂ τ
(x ,τ) = LV (x ,τ) +λJIV (x ,τ) (x ,τ) ∈ ΩX × (0, T], (17)

where λJ = 0, x ∈ ΩX\ΩJ localize the domain of the integral term. The payoff function and far-field conditions are unchanged
but defined on domain ΩX instead of Ω∞ [2]. And we notice that λJ is zero for near-field boundary conditions which lead to
(d − 1)-dimensional solution of the corresponding PDE in equation (5) where the integral term is dismissed.

4 Numerical study
The collocation method for computing the solution of the PIDE gives an approximated solution of a basket option pricing problem
under jump diffusion. In order to approximate without effecting by localization error, we choose the enough small tolerance ω so
that

max
x∈∂ΩJ

eθ x (E + (1− E)θ )J

∫

Ω\ΩU

g(v + U v)
d
∑

i=1

wi e
θ (1+ui )vi dv ≤ω. (18)

A possible and easy choice for the transformed domain is considering the neighborhood centered at the strike price in log scale,
and evaluating the widths factor ui so that (log(E)± u1, . . . , log(E)± ud) = ΩU . The core computational domain ΩJ could be
constructed by distance criteria ui . A sample transformed domain ΩU and finite computational domain ΩJ ⊂ ΩX is illustrated in
figure 1. For the numerical test, the density distribution parameters considered are σ̃i = σ̃, µ̃ = 0, ρ̃ = 0 and equal distance
criteria ui = u. In general, the domains need not be square, but for ease of exposition we define the finite domains to be square.
Figure 2 presents the numerical investigation of localization error for two-asset and three-asset put option. The transformed
computational domain ΩU = [log(E)−u, log(E)+u]d proportional to the given toleranceω is obtainable by numerical integration
scheme on (16). Therefore it is possible to choose u as well as the core computational domain ΩJ for any given truncated
tolerance ω.

Notice that the localization error bound in equation (18) depends on the jump magnitude function g(.). In general, the
similar numerical results are obtainable for specific formulations of g(.) with Gaussian and exponentially distributed jumps [9]
which follow the exponential decay property. The exponentially distributed jumps is not as straightforward as with the Gaussian
case.
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Figure 2: The truncated tolerance ω as function of distance criteria u for different value of σ̃.

The computational time required to solve the PIDE (17) for two asset cases is displayed in figure 3. The finite difference
implementation for the same PIDE was taken in [12] that uses n equidistance node points in each direction x i . The tolerance
error is considered ω= 10−4 and computational core domain is the case analyzed in 2 and other basket option parameters are
the same as reported in [12]. The experiments are carried out with Matlab software on an Intel Core i7 processor, 2.7 GHz and
16 GB RAM.
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Figure 3: Computational time as function of n for two asset cases with truncated tolerance ω= 10−4.
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