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Abstract

We study the asymptotic distribution of zeros for the lacunary random polynomials. It is shown that
the equidistribution of zeros near the unit circumference holds under more relaxed conditions on the
random coefficients than in the case of Kac polynomials. Moreover, the zeros exhibit stronger convergence
patterns towards the unit circumference.
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1 Asymptotic distribution of zeros
The distribution of zeros of the polynomials Pn(z) =

∑n
k=0 Akzk with random coefficients is now a classical subject, see, e.g.,

Bharucha-Reid and Sambandham [4]. It is well known that the bulk of zeros for such polynomials are equidistributed near
the unit circumference under mild conditions on the probability distribution of the coefficients. Let {Zk}nk=1 be the zeros of a
polynomial Pn of degree n, and define the zero counting measure

τn =
1
n

n
∑

k=1

δZk
.

The fact of equidistribution for the zeros of random polynomials is expressed via the weak convergence of τn to the normalized
arclength measure µT on the unit circumference T, where dµT(ei t) := d t/(2π). Namely, we have that τn

w
→ µT with probability

1 (abbreviated as a.s. or almost surely). Ibragimov and Zaporozhets [8] proved that if the coefficients are independent and
identically distributed non-trivial random variables, then the condition E[log+ |A0|]<∞ is necessary and sufficient for τn

w
→ µT

almost surely. Here, E[X ] denotes the expectation of a random variable X , and X is called non-trivial if P(X = 0)< 1. Further
related results and history are found in the papers [9, 10], [11, 12], [13], [3], etc.

Let {rk}∞k=0 ⊂ N∪ {0} be a strictly increasing deterministic sequence. We are interested in the asymptotic distribution for the
zeros of lacunary polynomials

Pn(z) =
n
∑

k=0

ckzk,

where ck = 0 with probability one for all k 6∈ {r j}∞j=0, while the subsequence cr j
= A j , j = 0, 1, 2, . . . , is given by non-trivial complex

random variables {A j}∞j=0 that are often assumed to be i.i.d. In the case of bounded gaps, the equidistribution results remain
essentially the same as for Kac polynomials, see [3] and references therein. But if the gaps grow sufficiently fast, then lacunary
structure of Pn may prevent convergence τn

w
→ µT along the whole sequence n ∈ N, regardless of what is assumed about the

non-trivial sequence of coefficients. For example, if r j = 2 j , j ∈ N, then Pn(z) = P2 j for all n= 2 j , . . . , 2 j+1 − 1, so that

τ2 j+1−1(C)≤
2 j

2 j+1 − 1
→

1
2

as j→∞,

with probability one. On the other hand, the only really interesting subsequence of these lacunary polynomials is given by

Ln(z) =
n
∑

j=0

A jz
r j , n ∈ N. (1.1)
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We provide several results on the equidistribution of zeros for this sequence. Specifically, the zero counting measures for Ln satisfy

νn :=
1
rn

∑

Ln(Z)=0

δZ
w
→ µT as n→∞,

with probability one, under certain weak assumptions on {A j}∞j=0. In fact, these assumptions typically become more relaxed with
faster growth of the sequence {rk}∞k=0. We mention that convergence questions on lacunary random polynomials were previously
studied in [2].

Our first theorem is an analogue of the Ibragimov and Zaporozhets result [8] in the case of subexponential gaps.

Theorem 1.1. Assume {An}∞n=0 are non-trivial i.i.d. complex random variables such that E[log+ |An|]<∞. If for any b > 0 and
m(n) = [n− b log n] we have

lim
n→∞

rm(n)

rn
= 1, (1.2)

then νn
w
→ µT almost surely.

If we have more detailed information about {rn}∞n=0, then we can relax the condition on the random coefficients as follows.

Theorem 1.2. Let a > 0 and p ≥ 1. Suppose {An}∞n=0 are non-trivial i.i.d. complex random variables satisfying E[(log+ |An|)1/p]<∞.
If

lim
n→∞

rn

anp
= 1

then νn
w
→ µT almost surely.

In the case of Hadamard gaps, i.e., when the sequence {rn}∞n=0 grows exponentially, one needs somewhat different assumptions
on random coefficients. Non-triviality of random variables is no longer helpful, as seen from the following example. Let rn = 2n

and let An be i.i.d. Bernoulli random variables that take values 0 and 1 with equal probabilities. The second Borel-Cantelli Lemma
implies that An = 0 infinitely often with probability one, cf. [7, p. 99]. Hence there is a subsequence such that

νn(C)≤
2n−1

2n
=

1
2

,

with probability one. It is clear that νn
w
→ µT as n→∞ cannot hold almost surely through the whole sequence n ∈ N.

Note that we drop the independence assumption for the random coefficients below.

Theorem 1.3. Assume that
lim inf

n→∞
r1/n

n > 1.

If {An}∞n=0 ⊂ C is a sequence of identically distributed random variables satisfying

E[log+ | log |An||]<∞, then νn
w
→ µT almost surely.

Theorem 1.3 may be generalized as follows to deal with faster growth of {rn}∞n=0.

Theorem 1.4. Suppose that log rn ≥ h(n) for all n≥ N ∈ N, where h(x) is a strictly increasing function on [N ,∞). Assume further
that the inverse h−1 satisfies

h−1(x + y)≤ c(h−1(x) + h−1(y))

for a fixed c > 0 and all x , y ∈ [h(N),∞). If {An}∞n=0 ⊂ C are identically distributed random variables such thatE
�

h−1
�

log+ | log |An||
��

<

∞, then νn
w
→ µT almost surely.

It is clear that iterated exponential growth of {rn}∞n=0 leads to the iterated logarithmic integral conditions on random
coefficients, often considered in probability theory.

In a different direction, we state the following companion for Theorem 1.2.

Theorem 1.5. Let a > 0 and p ≥ 1. Suppose {An}∞n=0 are identically distributed complex random variables satisfying E[| log |An||1/p]<
∞. If rn ≥ anp for all large n ∈ N, then νn

w
→ µT almost surely.

2 Discrepancy estimates and asymptotics

We considered a series of results on almost sure convergence νn
w
→ µT that hold under various weak log-integrability conditions

on random coefficients. Slightly more restrictive assumptions of finite fractional moments for An already suffice to study the
deviation of νn from µT in terms of discrepancy estimates that quantify the weak convergence of the zero counting measures
of random polynomials to the normalized arclength on the unit circle. We assume that the complex valued random variables
An, n= 0,1,2, . . . , are identically distributed (for the sake of convenience), but they may not necessarily be independent. It is
standard to consider the discrepancy of νn and µT in the annular sectors of the form

Sr(α,β) = {z ∈ C : r < |z|< 1/r, α≤ arg z < β}, 0< r < 1.

We first state an immediate consequence of a known result from [12].
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Theorem 2.1. Suppose that {An}∞n=0 are identically distributed complex random variables that satisfy E[|An|t] <∞ for a fixed
t ∈ (0, 1], and E[log |An|]> −∞. Then there is C > 0 such that for all large n ∈ N we have

E
��

�

�

�

νn(Sr(α,β))−
β −α

2π

�

�

�

�

�

≤ C

√

√ log rn

rn
. (2.1)

Observe that the number of zeros of Ln in any set S ⊂ C denoted by Nn(S) is equal to nνn(S), and the estimates for E[Nn(S)]
readily follow from Theorem 2.1.

We now state an almost sure convergence result for discrepancy, restricting ourselves to the case of Hadamard gaps for
simplicity.

Theorem 2.2. Suppose that {An}∞n=0 are identically distributed complex random variables such that E[|An|t] <∞ for a fixed
t ∈ (0, 1], and E[log |An|]> −∞. If

lim inf
n→∞

r1/n
n = q > 1

then

limsup
n→∞

�

�

�

�

νn(Sr(α,β))−
β −α

2π

�

�

�

�

1/n

≤
1
p

q
a.s. (2.2)

3 Proofs
We need several facts about limiting behavior of random coefficients. The first result is well known, and can be found in many
papers, see [1], [8], [11], etc. It follows from the Borel-Cantelli Lemmas (see, e.g., [7, p. 96]) in a standard way.

Lemma 3.1. If {An}∞n=0 are non-trivial i.i.d. complex random variables that satisfy
E[log+ |An|]<∞, then

limsup
n→∞

|An|1/n = 1 a.s. (3.1)

and

limsup
n→∞

�

max
0≤k≤n

|Ak|
�1/n

= 1 a.s. (3.2)

The next lemma shows that i.i.d. coefficients cannot be “too small too often." The exact form given below appeared in [13],
but its roots are found in [5].

Lemma 3.2. If {Ak}∞k=0 are non-trivial i.i.d. complex random variables, then there is b > 0 such that

lim inf
n→∞

�

max
n−b log n<k≤n

|Ak|
�1/n

≥ 1 a.s. (3.3)

All of our results on the equidistribution of zeros are obtained by using the following deterministic proposition, which is a
consequence of a result by Grothmann [6].

Proposition 3.3. Let {An}∞n=0 ⊂ C and {rn}∞n=0 ⊂ N∪{0} be deterministic sequences, the latter one being strictly increasing. Suppose
that

lim sup
n→∞

�

max
0≤k≤n

|Ak|
�1/rn

≤ 1. (3.4)

If there is a sequence m(n) ∈ N, with m(n)≤ n, such that

lim
n→∞

rm(n)

rn
= 1 (3.5)

and

lim inf
n→∞

�

max
m(n)≤k≤n

|Ak|
�1/rn

≥ 1, (3.6)

then the zero counting measures of Ln defined by (1.1) satisfy νn
w
→ µT as n→∞.

Proof of Proposition 3.3. The proof is constructed as an application of Theorem 1 from [6]. Estimating

max
|z|=R
|Ln(z)| ≤

n
∑

k=0

|Ak|Rrk , R> 0, (3.7)

we observe that (3.4) guarantees uniform convergence of Ln on compact sets E ⊂ D to an analytic function f in the unit disk.
Since not all coefficients An are zero by (3.6), it follows that f (z) =

∑∞
n=0 Anz rn 6≡ 0 in D. Hurwitz’s theorem now implies that

lim
n→∞

νn(E) = 0 (3.8)
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for any compact set E ⊂ D. Moreover, (3.7) and (3.4) give that

lim sup
n→∞

�

max
z∈T
|Ln(z)|

�1/rn
≤ limsup

n→∞

�

(n+ 1) max
0≤k≤n

|Ak|
�1/rn

≤ 1. (3.9)

Consider R> 1 and write

Ak =
1

2πi

∫

|z|=R

Ln(z) dz
z rk+1

, k = 0, . . . , n.

It follows that

|Ak| ≤
max
|z|=R
|Ln(z)|

Rrk

and
max
|z|=R
|Ln(z)| ≥ max

m(n)≤k≤n
(|Ak|Rrk )≥ Rrm(n) max

m(n)≤k≤n
|Ak|.

Applying (3.5) and (3.6) to the above estimate, we obtain that

lim inf
n→∞

�

max
|z|=R
|Ln(z)|

�1/rn

≥ lim inf
n→∞

Rrm(n)/rn lim inf
n→∞

�

max
m(n)≤k≤n

|Ak|
�1/rn

≥ R.

The latter inequality combined with (3.8) and (3.9) show that all assumptions of Theorem 1 [6] are satisfied, and the desired
convergence νn

w
→ µT as n→∞ holds.

Proof of Theorem 1.1. Apply Proposition 3.3 with m(n) = [n− b log n], and use Lemmas 3.1 and 3.2. One only needs to note that
(3.2) implies (3.4) because rn ≥ n, and that (3.3) implies (3.6) with probability one.

Proof of Theorem 1.2. We again use Proposition 3.3 with m(n) = [n − b log n], and Lemma 3.2. Equation (3.5) is verified
immediately, and (3.3) implies (3.6) almost surely as before. It remains to show that (3.4) holds almost surely under current
assumptions. For any fixed ε > 0, define events En = {|An| ≥ eεrn}, n ∈ N. Then

∞
∑

n=1

P(En) =
∞
∑

n=1

P({log+ |An| ≥ εrn}) =
∞
∑

n=1

P
��

�

1
ε

log+ |A0|
�1/p

≥ r1/p
n

��

≤ C +
∞
∑

n=1

P
��

�

2
aε

log+ |A0|
�1/p

≥ n

��

≤ C +
�

2
aε

�1/p

E
�

(log+ |A0|)1/p
�

<∞,

where C > 0 is a constant. Hence P(En occurs infinitely often) = 0 by the first Borel-Cantelli Lemma, so that the complementary
event E c

n must happen for all large n with probability one. This means |An|1/rn ≤ eε for all sufficiently large n ∈ N almost surely,
i.e., there is N ∈ N such that

�

max
0≤k≤n

|Ak|
�1/rn

≤max
�

max
0≤k≤N

|Ak|1/rn , eε
�

a.s.

Letting rn ≥ n→∞, we obtain that

limsup
n→∞

�

max
0≤k≤n

|Ak|
�1/rn

≤ eε a.s.

Since ε > 0 is arbitrary, (3.4) now follows with probability one.

We prove the more general result of Theorem 1.4, and them deduce Theorem 1.3.

Proof of Theorem 1.4. In this case, we apply Proposition 3.3 with m(n) = n, so that (3.5) holds trivially. In order to verify that
(3.4) and (3.6) hold almost surely, we first prove that for any sufficiently small ε > 0 the probability P

��

�log |An|1/rn
�

�≥ ε i. o.
�

= 0
by the first Borel-Cantelli Lemma. We estimate the corresponding series as follows:

∞
∑

n=N

P({
�

�log |An|1/rn
�

�≥ ε}) =
∞
∑

n=N

P ({log |log |A0|| − logε ≥ log rn})

≤
∞
∑

n=N

P
��

log+ |log |A0|| − logε ≥ h(n)
	�

=
∞
∑

n=N

P
�§

h−1
�

log+ |log |A0||+ log
1
ε

�

≥ n
ª�

≤
∞
∑

n=N

P
�§

ch−1
�

log+ |log |A0||
�

+ ch−1
�

log
1
ε

�

≥ n
ª�

≤ E
�

ch−1
�

log+ |log |A0||
�

+ ch−1
�

log
1
ε

��

= cE
�

h−1
�

log+ |log |A0||
��

+ ch−1
�

log
1
ε

�

<∞.
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Consequently, for any ε > 0 the inequality
�

�log |An|1/rn
�

� < ε holds for all sufficiently large n ∈ N with probability one, and we
obtain that

lim
n→∞

log |An|1/rn = 0 a.s.

Thus (3.6) holds almost surely with m(n) = n. Moreover, arguing as in the end of proof of Theorem 1.2, we obtain (3.4) with
probability one.

Proof of Theorem 1.3. It is clear that the assumption on rn is equivalent to log rn ≥ an for a fixed a > 0 and all large n ∈ N. Hence
we apply Theorem 1.4 with h(x) = ax and complete the proof.

Proof of Theorem 1.5. Once again, Proposition 3.3 is used with m(n) = n, and (3.5) is clearly satisfied. Given any ε > 0 we prove
that P

��

�log |An|1/rn
�

�≥ ε i. o.
�

= 0 by the first Borel-Cantelli Lemma. Since rn ≥ anp for all n≥ N ∈ N, we estimate

∞
∑

n=N

P({
�

�log |An|1/rn
�

�≥ ε}) =
∞
∑

n=N

P ({|log |A0|| ≥ εrn})

≤
∞
∑

n=N

P ({|log |A0|| ≥ εanp})

=
∞
∑

n=N

P
��

�

1
aε
|log |A0||

�1/p

≥ n

��

≤
�

1
aε

�1/p

E
�

|log |A0||
1/p
�

<∞,

It follows that the inequality
�

�log |An|1/rn
�

�< ε holds for all sufficiently large n ∈ N with probability one. Therefore, (3.6) holds
almost surely with m(n) = n, because

lim
n→∞

log |An|1/rn = 0 a.s.

Another conclusion is that (3.4) holds with probability one, which comes via the same argument as in the end of proof of Theorem
1.2.

Proof of Theorem 2.1. Since the random coefficients An are identically distributed, the result follows immediately from Corollary
3.2 of [12].

Proof of Theorem 2.2. We set for brevity

Dn :=

�

�

�

�

νn(Sr(α,β))−
β −α

2π

�

�

�

�

.

Consider any small ε > 0. Chebyshev’s inequality and (2.1) give

P
��

Dn ≥ q(ε−1)n/2
	�

≤ q(1−ε)n/2E[Dn]≤ Cq−εn/4

for all n≥ N ∈ N, where N is sufficiently large. Hence

∞
∑

n=N

P
��

Dn ≥ q(ε−1)n/2
	�

<∞,

and the first Borel-Cantelli Lemma implies P
��

Dn ≥ q(ε−1)n/2 i.o.
	�

= 0. This is equivalent to

Dn < q(ε−1)n/2 a.s.

for all sufficiently large n ∈ N. Finally, we obtain that

lim sup
n→∞

D1/n
n ≤ q(ε−1)/2 a.s.,

and (2.2) follows as ε > 0 can be made arbitrarily small.
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