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Abstract

It is well-known that the univariate Multiquadric quasi-interpolation operator is constructed based on the
piecewise linear interpolation by |x |. In this paper, we first introduce a new transcendental RBF based
on the hyperbolic tangent function as an smooth approximant to φ(r) = r with higher accuracy and
better convergence properties than the MQ RBF

p
r2 + c2. Then the Wu-Schaback’s quasi-interpolation

formula is rewritten using the proposed RBF. It preserves convexity and monotonicity. We prove that
the proposed scheme converges with a rate of O(h2). So it has a higher degree of smoothness. Some
numerical experiments are given in order to demonstrate the efficiency and accuracy of the method.
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1 Introduction
Given a set of n distinct (scattered) points {x j}nj=0 ∈ Ω ⊆ R

d and corresponding data values { f j}nj=0 ∈ R, a standard way to
interpolate a function f ∈ C1 : Ω→ R is by using

L f (x) =
n
∑

j=0

λ jX (x − x j), (1)

with the coefficients λ j determined by the interpolation conditions L f (x j) = f j , j = 0, . . . , n, where X (·) is an interpolation
kernel. Many authors use Radial Basis Functions (RBFs) to solve the interpolating problem (1), that is X (x − x j) = φ(∥x − x j∥),
(∥ · ∥ is the Euclidean norm) with φ : [0,∞) → R, is some radial function [46]. Then, the coefficients λ j are determined
solving a symmetric linear system Aλ = f , where A =

�

φ(∥x i − x j∥)
�

0≤i, j≤n
. RBF method provides excellent interpolants for

high dimensional scattered data sets. The corresponding theory had been extensively studied by many researchers (see e.g
[2, 30, 31, 32, 36, 37, 44, 46, 50, 49]). That is why in the last few decades, RBFs have been widely applied in a number of
fields such as multivariate function approximation, neural networks and solution of differential and integral equations (see e.g
[6, 7, 10, 16, 19, 24, 25, 33, 39, 45, 52]). The Multiquadric (MQ) RBF

φ j(x) =
Ç

∥x − x j∥
2 + c2, (2)

proposed by Hardy [17], is undoubtedly the most popular RBF that is used in many applications and is representative of the
class of global infinitely differentiable RBFs. Hardy [18] summarized the achievement of study of MQ from 1968 to 1988 and
showed that it can be applied in hydrology, geodesy, photogrammetry, surveying and mapping, geophysics, crustal movement,
geology, mining and so on. In the survey paper [11], Franke pointed out that MQ interpolation was the best among 29 scattered
data interpolation methods in terms of timing, storage, accuracy, visual pleasantness of surface reconstruction and ease to
implement. The existence of the solution of the associated interpolation problem was shown later on by Micchelli [32]. Although
the MQ interpolation is always solvable, the resulting matrix quickly becomes ill-conditioned as the number of points increases.
Researchers concentrated on a weaker form of (1), known as quasi-interpolation, that holds only for polynomials of some low
degree m, i.e.,

Lpm(x j) = pm(x j), ∀pm ∈ Πd
m,

for all 0≤ j ≤ n, where Πd
m denotes the space of polynomials of degree less and equal to m in Rd . Beatson and Powell [1, 35]

first proposed a univariate quasi-interpolation formula where X in (1), is a linear combination of MQ RBF and low degree
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polynomials. Their idea is based on the fact that the MQ degenerates to |x − x j |, for c = 0 and d = 1, hence quasi-interpolation
(1) is the usual piecewise linear interpolation which reproduces linear polynomials as c tends to zero. However, their operator
requires the approximation of the derivatives of the function at endpoints, which is not convenient for practical purposes. Thus,
Wu and Schaback [51] constructed another univariate MQ quasi-interpolation operator with without the use of derivatives at the
endpoints. Given data

a = x0 < x1 < · · ·< xn = b h := max
2≤ j≤n

(x j − x j−1),

Wu-Schaback’s MQ quasi-interpolation formula is

(LMQ f )(x) = f0α0(x) + f1α1(x) +
n−2
∑

j=2

f jψ j(x) + fn−1αn−1(x) + fnαn(x) (3)

where

α0(x) =
1
2
+
φ1(x)− (x − x0)

2(x1 − x0)
,

α1(x) =
φ2(x)−φ1(x)

2(x2 − x1)
−
φ1(x)− (x − x0)

2(x1 − x0)
,

αn−1(x) =
(xn − x)−φn−1(x)

2(xn − xn−1)
−
φn−1(x)−φn−2(x)

2(xn−1 − xn−2)
,

αn(x) =
1
2
+
φn−1(x)− (xn − x)

2(xn − xn−1)
,

ψ j(x) =
φ j+1(x)−φ j(x)

2(x j+1 − x j)
−
φ j(x)−φ j−1(x)

2(x j − x j−1)
, 2≤ j ≤ n− 2.

The main advantage of this formula is that it does not require the solution of any linear system. Instead, the formula uses the
function values f j at x j as its coefficients. The drawback is that instead of c = O(h), one needs to use a smaller shape parameter
c2| log c| = O(h2) in order to achieve quadratic convergence, resulting in a lower smoothness. Note that for c = 0, the basis
functions given in quasi-interpolant LMQ f are cardinal with respect to {x j}nj=0. For a general quasi-interpolation operator L we
can state the following definitions.

Definition 1.1. The quasi-interpolation operator L constructed at the data points {(x j , f j)}, is called to be monotonicity preserving,
if the first order divided difference f [x j , x j+1] is nonnegative (non-positive) implies that (L f )′ is also nonnegative (non-positive).

Definition 1.2. The quasi-interpolation operator L constructed at the data points (x j , f j), is called to be convexity preserving if
the second order divided difference f [x j−1, x j , x j+1] is nonnegative (non-positive, zero) implies that (L f )′′ is also nonnegative
(non-positive, zero).

Since
p

x2 + c2 tends to |x | as c tends to zero, and radial basis interpolation (as well as the quasi-interpolation) based on
|x | is piecewise linear, Wu and Schaback claimed that the shape preserving properties of piecewise linear interpolation can
be expected to hold for quasi-interpolation with multiquadrics, too. Actually, they first showed that the quasi-interpolation
operator of Beatson and Powell is indeed convexity preserving. Then they proved that the quasi-interpolation operator (3) is
monotonicity and convexity preserving. In 2004, Ling [26] proposed a multilevel quasi-interpolation operator and proved that it
converges with a rate of O(h2.5) log h as c = O(h). In 2009, Feng and Li [9] constructed a shape preserving quasi-interpolation
operator by shifts of cubic MQ functions proving that it can produce an error of O(h2) as c = O(h). Wang et al. [42] proposed an
improved univariate MQ quasi-interpolation operator, by using Hermite interpolating polynomials, with convergence rate heavily
depending on the shape parameter c. Jiang et al. [22] proposed two new multilevel univariate MQ quasi-interpolation operators
with higher approximation order. Ling proposed a multidimensional quasi-interpolation operator using the dimension-splitting
multiquadric basis function approach [27], and Wu et al. modified their idea by using multivariate divided difference and the
idea of the superposition [48]. Gao and Wu [12] studied the quasi-interpolation for the linear functional data rather than the
discrete function values. Moreover, MQ quasi-interpolation has been successfully applied in a wide range of fields. For example,
in 2007, Wang and Wu [43] applied the operator (3) to tackle approximate implicitization of parametric curves. In 2011, Wu
[47] presented a new approach to construct the so-called shape preserving interpolation curves based on MQ quasi-interpolation
(3). A vast discussion on approximating k-th derivatives (k ≥ 0) by using MQ quasi-interpolation can be found in [29] where the
authors improved the approximation behaviors near the boundary by introducing a polynomial, which is shown to be an effective
technique for MQ quasi-interpolation schemes. Combining the techniques of trigonometric spline quasi-interpolation [28] with
MQ quasi-interpolation, a quasi-interpolation called MQ trigonometric spline quasi-interpolation scheme for periodic data was
constructed in [13]. It is based on a periodic kernel and applying trigonometric divided differences to the periodic kernel. The
MQ trigonometric spline quasi-interpolation not only possesses many fair properties of MQ quasi-interpolant such as smoothness,
simplicity, efficiency, and capabilities of approximating high-order derivatives but it turns out to be also quasi-interpolant as
well as its derivatives are periodic. Gao and Zhang [14] extended MQ trigonometric spline quasi-interpolation for numerical
differentiation of noisy data. Moreover, motivated from the need of dealing with integral functionals in data science applications
and other applications of MQ quasi-interpolation, in [15] there have been constructed three new MQ quasi-interpolation schemes
for integral functionals. Finally, Hon and Wu [20], Chen and Wu [4, 5], Jiang and Wang [21], and other researches provided
some successful examples using MQ quasi-interpolation operators to solve different types of partial differential equations.
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The outline of the paper is as follows. In the next section, we introduce a new quasi-interpolation operator based on the
hyperbolic tangent function, that is the function

g(x) = x tanh
� x

c

�

, c > 0 (4)

which leads to a smooth and shape preserving interpolation operator with O(h2) rate of convergence. In section 3, we discuss
its accuracy providing an error estimate. Numerical experiments are presented in section 4 with the aim of comparing the
accuracy of our quasi-interpolation scheme with that of Wu and Schaback’s, and also verifying the convergence rate of new
quasi-interpolation operator by examples. The last section summarizes the conclusion and some further works.

2 Quasi-interpolation operator based on a new transcendental RBF
In this section, we first analyse a new approximation of |x | based on the hyperbolic tangent, with better accuracy than the MQ
RBF
p

x2 + c2. The general question is, are there any good approximations of the absolute value function which are smooth?
One simple approximation is MQ RBF

p
x2 + c2. Carlos Ramirez et al. [38] proved that

p
x2 + c2 is the most computationally

efficient and smooth approximation of |x |, while S. Voronin et al. [40] proved the following Lemma.

Lemma 2.1. The approximation of |x | by the multiquadrics g(x) =
p

x2 + c2, c ∈ R+ satisfies
�

�

�|x | −
p

x2 + c2
�

�

�≤ c ,

|x | ≤
p

x2 + c2 .

As noticed by Gauss in [41], the hyperbolic tangent can be written using the continued fraction

tanh(x) =
x

1+ x2

3+ x2
5+···

.

This fact shows immediately that the function g(x) = x tanh
� x

c

�

is a nonnegative function that indeed can be used to approximate

|x |.
Since for the hyperbolic tangent

lim
c→0+

tanh
� x

c

�

=

(

1, x > 0,
0, x = 0
−1, x < 0.

.

we then have the approximation

x tanh
� x

c

�

≈ |x |.

Now, we show that the approximation of |x | by x tanh
�

x
c

�

is more accurate than that given by the multiquadric.

Lemma 2.2. The approximation of |x | by g(x) = x tanh
�

x
c

�

, c ∈ R+ satisfies
�

�

�|x | − x tanh
� x

c

�
�

�

�≤ 0.28c < c, (5)

x tanh
� x

c

�

≤ |x | . (6)

Proof. The proof of (5) is trivial for x = 0. Letting h(x) = |x | − x tanh
�

x
c

�

that, for x > 0, becomes h(x) = x − x tanh
�

x
c

�

. The
maxima and minima of h are those that annihilate

h′(x) =
� x

c

��

tanh
� x

c

��2
− tanh
� x

c

�

+
�

1−
x
c

�

.

Setting x
c = t, we have

t tanh2(t)− tanh(t) + (1− t) = 0

which reduces to solve s(t) = t(tanh(t) + 1) − 1 = 0. The function s on t ≥ 0 is strictly increasing, with s(0) = −1.
Hence there exits only one zero in (0,1). By numerically solving it, with the Matlab function fzero using options =
optimset('Display','iter'); the method converges in 7 iterations to the only solution in (0,1) to the value t∗ =
0.639232271380537 (in particular s(t∗) = −1.110223024625157e− 16) so that x∗ = 0.639232271380537c.

Notice that when x < 0, that is t < 0 and s(t)< −1, showing that the value t∗ is the only extremal value of h. Hence, the
claimed value, approximated to two digits, follows

h(x∗) = 0.278464542761074c ≃ 0.28c.

To prove (6), we have

x tanh
� x

c

�

≤ |x | ⇐⇒ x2 tanh2
� x

c

�

≤ x2,

⇐⇒ tanh2
� x

c

�

≤ 1.
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Theorem 2.3. The approximation of |x | by x tanh( x
c ) is more accurate than that with

p
x2 + c2.

Proof. It is clear that

cosh
� x

c

�

>
x
c

.

Since cosh(x) is an even function we have

cosh2
� x

c

�

>
x2

c2
,

then
x2sech2
� x

c

�

< c2,

which in turn gives

x2 − x2 tanh2
� x

c

�

< c2.

Then
x2 − x2 tanh2
� x

c

�

< c2 =
�

x2 + c2
�

− x2.

Moreover, the function x tanh
�

x
c

�

converges to |x | faster than
p

x2 + c2 to |x | by decreasing c, as stated in the next Theorem.

Theorem 2.4. If c −→ 0+ then x tanh
�

x
c

�

− |x |= o
�p

x2 + c2 − |x |
�

.

Proof. We have

lim
c−→0+

x tanh
�

x
c

�

− |x |
p

x2 + c2 − |x |
= lim

c−→0+

x2 tanh2( x
c )− x2

c2
× lim

c−→0+

p
x2 + c2 + |x |

x tanh
�

x
c

�

+ |x |

= −x2 lim
c−→0+

sech2
�

x
c

�

c2
×

2|x |
2|x |

= −x2 lim
t−→+∞

t2

cosh2(t x)
= 0

where t = 1
c .

In order to illustrate the superiority of the new hyperbolic approximation to |x |, L∞ error norm

max
1≤i≤n
|g(x i)− |x i ||,

and the rate of convergence

rc =
log
�

Eci
Eci−1

�

log
�

ci
ci−1

� ,

for both approximants x tanh
�

x
c

�

and
p

x2 + c2 are reported in Table 1, for n = 100, 200, 400 equally spaced points in [−10, 10].
Table 1 shows that x tanh

�

x
c

�

approximates |x | much better than
p

x2 + c2 while Table 1 and the logarithmic scale plots 1 show
that the approximant x tanh

�

x
c

�

has exponential rate of convergence to |x | as c→ 0 instead of O(c2) provided by
p

x2 + c2.

2.1 New transcendental RBF

Let us introduce the following globally supported and infinitely differentiable transcendental RBF

φ(r) = r tanh
� r

c

�

,

abbreviated by RTH, where r = ∥x − x j∥ and ∥ · ∥ is the Euclidean norm Rd .
The parameter c > 0 is called shape parameter.
Compared with interpolation, the quasi-interpolation method does not require the solution of any linear system, avoiding the

ill-conditioning which arises when solving a linear system. The smaller the shape parameter c the faster φ approaches to r. So
the shape parameter c can be chosen sufficiently small for getting accurate numerical solutions.

Theorem 2.5. The RTH RBF is conditionally negative definite of order 1 on every Rd .

Proof. We show that ψ(r) = −φ(r) is conditionally positive definite of order 1. We have ψ(r) = f (s) = −
p

s tanh
�p

s
c

�

, where

s = r2. Now for

g(s) = − f ′(s) =
1
2

s−
1
2 tanh
�p

s
c

�

+
1
2c

�

1− tanh2
�p

s
c

��

,

we have
(−1)l g(l)(s)≥ 0, for all l ∈ N0 and all s > 0.

So − f ′(s) is completely monotone on (0,∞). Now, since f ̸∈ Πd
m , the claim is proved according to Micchelli’s theorem [32].
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Table 1: L∞ errors and convergence rates for both approximants of |x | for different values of c.

�

�|x | −
p

x2 + c2
�

�

�

�|x | − x tanh
� x

c

��

�

n c L∞ error rc L∞ error rc

100

0.1 4.1127e-02 — 2.3656e-02 —
0.05 1.1698e-02 1.813823944 3.4922e-03 2.759998057
0.025 3.0478e-03 1.940421754 6.2490e-05 5.804367034
0.0125 7.7050e-04 1.983901373 1.9342e-08 11.65767264
0.00625 1.9317e-04 1.995923901 1.8457e-15 23.32106557

200

0.1 6.1665e-02 — 2.6930e-02 —
0.05 2.0637e-02 1.579218611 1.1875e-02 1.181286716
0.025 5.8753e-03 1.812498837 1.7723e-03 2.744232777
0.0125 1.5314e-03 1.939811357 3.2376e-05 5.774554268
0.00625 3.8718e-04 1.983774825 1.0436e-08 11.59914019

400

0.1 7.8030e-02 — 2.7348e-02 —
0.05 3.0867e-02 1.337963627 1.3456e-02 1.023185719
0.025 1.0337e-02 1.578247724 5.9488e-03 1.177579030
0.0125 2.9442e-03 1.811869965 8.9273e-04 2.736302862
0.00625 7.6754e-04 1.939561834 1.6476e-05 5.759785971

(a) (b)

(c)

Figure 1: log |error| versus log (1/c) for n= 100 (a), n= 200 (b), and n= 400 (c).

Remark 1. Since φ is conditionally negative definite of order 1 and φ(0) = 0, then the matrix A=
�

φ(∥x i − x j∥)
�

1≤i, j≤n
has one

positive and n− 1 negative eigenvalues and in particular it is invertible.
In the sequel, we consider d = 1, since our work is confined to the univariate case. We have seen before that the RTH RBF

is an smooth approximant to τ(r) = r with higher accuracy and better convergence properties than the MQ RBF
p

r2 + c2, by
decreasing shape parameter c. In Figure 2, we have plotted both RTH basis

φ j(x) =
�

x − x j

�

tanh
� x − x j

c

�

, (7)

and MQ basis (2) centered at x j = 0. It can be noted from Figure 2 that the RTH RBF approaches to |x | faster than the MQ RBF,
even with larger shape parameters. Moreover, in RTH RBF φ j(x j) = 0 independent of the value of c, but MQ requires that c = 0.
This property of the RTH RBF leads to getting more accurate results in corresponding quasi-interpolants. The first and second
derivatives of the RTH RBF (7) are of the form

Dolomites Research Notes on Approximation ISSN 2035-6803



Heidari · Mohammadi · De Marchi 61

Figure 2: Plots of Multiquadric RBF (left), and RTH RBF (right) for different values of shape parameter c.

φ′j(x) = tanh
� x − x j

c

�

+
(x − x j)

c
sech2
� x − x j

c

�

,

φ′′j (x) =
�

2
c
− 2
� x − x j

c2

�

tanh
� x − x j

c

��

sech2
� x − x j

c

�

,

and are plotted in Figure 3 for c = 1 and centerd at x j = 0. In Tables 2 and 3, we summarized the properties of both MQ and

(a) (b)

(c)

Figure 3: (a) RTH RBF, (b) first derivative, (c) second derivative. The shape parameter is c = 1

RTH RBFs, where ξ= 1.199678640, is obtained numerically by calculating the roots of the second derivative.

2.2 Quasi-interpolation operator

The quasi-interpolation operator of a function f : [a, b]→ R with RTH RBF on the scattered points

a = x0 < x1 < · · ·< xn = b h := max
2≤ j≤n

(x j − x j−1), (8)
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Table 2: Comparing both RBFs.

Name φ j(x) lim
x→x j

φ j(x) lim
c→0
φ j(x) lim

x→±∞
φ
′

j(x) condition

MQ RBF
Æ

c2 + (x − x j)2 c |x − x j | ±1 x ∈ (−∞,∞)

RTH RBF
�

x − x j
�

tanh
� x − x j

c

�

0 |x − x j | ±1 x ∈ (−∞,∞)

Table 3: Comparing both RBFs.

Name φ j(x) φ
′

j(x) φ
′′

j (x) condition

MQ RBF
Æ

c2 + (x − x j)2 Strictly increasing ≥ 0 x ∈ (−∞,∞)

RTH RBF
�

x − x j
�

tanh
� x − x j

c

�

Strictly increasing ≥ 0 x ∈ [−cξ, cξ]

has the form

(LRT H f )(x) = f0α0(x) + f1α1(x) +
n−2
∑

j=2

f jψ j(x) + fn−1αn−1(x) + fnαn(x) (9)

where

α0(x) =
1
2
+
φ1(x)− (x − x0)

2(x1 − x0)
,

α1(x) =
φ2(x)−φ1(x)

2(x2 − x1)
−
φ1(x)− (x − x0)

2(x1 − x0)
,

αn−1(x) =
(xn − x)−φn−1(x)

2(xn − xn−1)
−
φn−1(x)−φn−2(x)

2(xn−1 − xn−2)
,

αn(x) =
1
2
+
φn−1(x)− (xn − x)

2(xn − xn−1)
,

φ j(x) =
�

x − x j

�

tanh
� x − x j

c

�

, j = 1, . . . , n− 1, c ∈ R+,

ψ j(x) =
φ j+1(x)−φ j(x)

2(x j+1 − x j)
−
φ j(x)−φ j−1(x)

2(x j − x j−1)
, 2≤ j ≤ n− 2.

The formula (9) can be rewritten as

(LRT H f ) (x) =
1
2

n−1
∑

j=1

f [x j−1, x j , x j+1](x j+1 − x j−1)φ j(x) + (10)

f0 + fn

2
+

1
2

f [x0, x1](x − x0)−
1
2

f [xn−1, xn](xn − x).

Let φ−1(x) = |x − x−1|, φ0(x) = |x − x0|, φn(x) = |x − xn| and φn+1(x) = |x − xn+1|, then for x ∈ [x0, xn], the operator LRT H
can be rearranged as

(LRT H f )(x) =
n
∑

j=0

f jψ j(x), (11)

where

ψ j(x) =
φ j+1(x)−φ j(x)

2(x j+1 − x j)
−
φ j(x)−φ j−1(x)

2(x j − x j−1)
, j = 0, . . . , n,

and x−1 < x0, xn+1 > xn.
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Figure 4: First row: the basis functions φ j for c = 0.1 and the corresponding functions ψ j on [−2, 2]. Second row: the same functions for c = 2.1

Remark 2. From relation (10), it is clear that the quasi-interpolation operator LRT H reproduces the linear polynomials on [x0, xn],
that is

n
∑

j=0

(ax j + b)ψ j(x) = ax + b, a, b ∈ R , (12)

from which we also get
n
∑

j=0

ψ j(x) = 1 at any point x ∈ [x0, xn] (see also Figure 4).

The first and second derivatives of (LRT H f )(x) in (10) can be calculated as follows

(LRT H f )′(x) =
1
2

n−1
∑

j=1

f [x j−1, x j , x j+1](x j+1 − x j−1)φ
′
j(x) +

1
2
( f [x0, x1] + f [xn−1, xn]) . (13)

(LRT H f )′′(x) =
1
2

n−1
∑

j=1

�

f j+1 − f j

x j+1 − x j
−

f j − f j−1

x j − x j−1

�

φ′′j (x). (14)

In order to prove the shape preserving property of the quasi-interpolation operator (9), we give some important definitions and
theorems from differential geometry (cf. e.g. [34]).

Definition 2.1. A differentiable plane curve α : (a, b)→ R2 is said to be regular if its derivative never vanishes. That is

∀t ∈ (a, b), α′(t) =
�

dα1

d t
,

dα2

d t

�

̸= (0, 0).

Theorem 2.6. Let C be a regular plane curve given by α(t). Then the curvature κ of C at t is given by

κ[α](t) =


α′(t)×α′′(t)


/


α′(t)




3
.

Definition 2.2. Let f ∈ C2[a, b]. The curvature of the plane curve y = f (x) is given by

κ(x) =
| f ′′(x)|

(1+ ( f ′(x))2)
3
2

.
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Definition 2.3. An isometry of R2 is a mapping F : R2→ R2 such that

d(F(p), F(q)) = d(p, q),

for all points p, q in R2.

Theorem 2.7. Every isometry of R2 is the composition of translations, reflections and rotations.

Definition 2.4. Two curves α,β : I −→ R2 are congruent provided there exists an isometry F of R2 such that β = F(α); that is,
β(t) = F(α(t)) for all t in I .

Intuitively speaking, congruent curves are the same except for position in space.

Theorem 2.8. If α,β : I −→ R2 are plane curves such that κα = κβ , then α and β are congruent.

Theorem 2.9. The quasi-interpolation operator LRT H constructed by data points {(x j , f j)}, is monotonicity and convexity preserving
for c small enough.

Proof. We show that the MQ and RTH quasi-interpolants are congruent for c small enough. According to the Theorem 2.8, we
prove that

lim
c→0
|κLMQ

(x)− κLRT H
(x)|= 0.

Let x ̸= x j , otherwise both quasi-interpolants (3) and (9) do not have first and second derivatives as c approaches 0. Now,
according to definition 2.2, we have

κLMQ
(x) =

|(LMQ f )′′(x)|
�

1+
�

(LMQ f )′(x)
�2�

3
2

.

Since for MQ RBF,

φ′′j (x) =
c2

�

c2 + (x − x j)2
�3/2

,

then

lim
c−→0

φ′′j (x) = 0.

Moreover

(LMQ f )′′(x) =
1
2

n−1
∑

j=1

�

f j+1 − f j

x j+1 − x j
−

f j − f j−1

x j − x j−1

�

φ′′j (x),

then

lim
c−→0

κLMQ
(x) = 0,

which leads to

∀ε > 0 ∃δ1 > 0; | c |< δ1⇒ |κLMQ
(x)|< ε.

Similarly, for RTH RBF, we have

lim
c−→0

φ′′j (x) = 0,

then

lim
c−→0

κLRT H
(x) = 0,

which leads to

∀ε > 0 ∃δ2 > 0; | c |< δ2⇒ |κLRT H
(x)|< ε.

The proof completes by considering δ =min{δ1,δ2}.
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3 Accuracy of the quasi-interpolation operator LRT H

In this section, we give an approximation order for the quasi-interpolation operator LRT H .

Theorem 3.1. Assume f ′′ is Lipschitz continuous. The quasi-interpolation operator LRT H f , at the point set (8) as h→ 0, converges
as follows

∥ f −LRT H f ∥∞ ≤ kh2, (15)

where k is independent of h and c.

Proof. Let t(y) be the local Taylor approximation of f at y , that is

t(y) = f (x) + f ′(x)(y − x) , x ∈ [a, b]

According to Remark 2, we get
n
∑

j=0

(x − x j)ψ j(x) = 0,
n
∑

j=0

ψ j(x) = 1.

Then we get
n
∑

j=0

t(x j)ψ j(x) =
n
∑

j=0

�

f (x) + f ′(x)(x j − x)
�

ψ j(x)

= f (x)
n
∑

j=0

ψ j(x) + f ′(x)
n
∑

j=0

(x − x j)ψ j(x)

= f (x).

Since f ′′(x) is Lipschitz continuous, then for every x1, x2 ∈ [a, b], | f ′′(x1)− f ′′(x2)| ≤ c0|x1−x2|, where 0< c0 = ess supa≤x≤b| f
′′′(x)|.

Now according to (10) and the reproduction of linear functions, it is enough to bound the difference LRT H f −L f , with L f
the linear approximation of f .

|LRT H f (x)−L f (x)| =

�

�

�

�

�

n
∑

j=0

�

f (x j)− t(x j)
�

ψ j(x)

�

�

�

�

�

≤
1
2

�

�

�

�

�

n−1
∑

j=1

�

f [x j−1, x j , x j+1]− t[x j−1, x j , x j+1]
�

(x j+1 − x j−1)φ j(x)

�

�

�

�

�

≤
1
4

n−1
∑

j=1

| f ′′(ξ)− f ′′(η)||φ j(x) (x j+1 − x j−1)|, (ξ,η ∈ (x j−1, x j+1))

≤
1
2

c0h
n−1
∑

j=1

|x − x j |(x j+1 − x j−1)

≤
1
2

c0h
n−1
∑

j = 1
|x−x j |≤h

|x − x j |(x j+1 − x j−1) +
1
2

c0h
n−1
∑

j = 1
|x−x j |>h

|x − x j |(x j+1 − x j−1)

≤ 4c0h3 + c0h

�

∫

|x−t|>h

|x − t| d t +O(h)

�

≤ k1h3 + k2h2

≤ kh2

4 Numerical results
In this section, we compare the accuracy of the quasi-interpolation operator LRT H with that of Wu and Schaback, LMQ (defined in
(3)) for the approximation of five functions. We take equidistant center points and choose different shape parameters c and also
different step sizes h. The maximum absolute error norm is then computed for comparing approximation accuracy. The rate of
convergence is also computed by

rh =
ln
�

Ehi
Ehi−1

�

ln
�

hi
hi−1

� ,

where Ehi
indicates the error of the quasi-interpolant LRT H f corresponding to the parameter hi . In all tests, we choose m= 220

equidistant evaluation points. All experiments have been done using an Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz, 2.11
GHz.
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4.1 Test problem 1

In the first test problem, we apply the RTH quasi-interpolation to approximate the function (cf. [8])

f1(x) =
sinh(x)

1+ cosh(x)
, x ∈ [−3,3].

The results are shown in Tables 4-6. In Tables 4, 5, and 6, we set h = 0.1, 0.01, 0.001, respectively, and c = 2h, h, 0.5h, 0.2h, 0.1h,
then we compute the ∥LRT H f − f ∥∞ and ∥LMQ f − f ∥∞. In Table 7, we set c = 0.01, h = 0.2, 0.1, 0.05, 0.025, 0.0125, to observe
the convergence rate rh of LRT H f with the variation of h.

Table 4: Comparison of approximation accuracy of RTH and MQ quasi-interpolation; Test problem 1.

c 0.2 0.1 0.05 0.02 0.01
h 0.1 0.1 0.1 0.1 0.1
∥LMQ f − f ∥∞ 9.3× 10−3 3.1× 10−3 1.1× 10−3 3.9× 10−4 2.7× 10−4

∥LRT H f − f ∥∞ 2.9× 10−3 6.2× 10−4 7.1× 10−5 2.2× 10−4 1.4× 10−4

Table 5: Comparison of approximation accuracy of RTH and MQ quasi-interpolation; Test problem 1.

c 0.02 0.01 0.005 0.002 0.001
h 0.01 0.01 0.01 0.01 0.01
∥LMQ f − f ∥∞ 1.8× 10−4 5.3× 10−5 1.6× 10−5 4.7× 10−6 2.4× 10−6

∥LRT H f − f ∥∞ 3.0× 10−5 6.3× 10−6 7.1× 10−7 2.2× 10−6 1.4× 10−6

Table 6: Comparison of approximation accuracy of RTH and MQ quasi-interpolation; Test problem 1.

c 0.002 0.001 0.0005 0.0002 0.0001
h 0.001 0.001 0.001 0.001 0.001
∥LMQ f − f ∥∞ 2.7× 10−6 7.5× 10−7 2.2× 10−7 5.6× 10−8 3.2× 10−8

∥LRT H f − f ∥∞ 3.0× 10−7 6.3× 10−8 7.1× 10−9 2.2× 10−8 2.4× 10−8

Table 7: Convergence rates of LRT H f by using c = 0.01, h= 0.2, 0.1,0.05, 0.025,0.0125; Test problem 1.

c 0.01 0.01 0.01 0.01 0.01
h 0.2 0.1 0.05 0.025 0.0125
∥LRT H f − f ∥∞ 9.5× 10−4 2.4× 10−4 5.6× 10−5 5.6× 10−6 2.5× 10−6

rh - 1.9848 2.0995 3.3219 1.1634

4.2 Test problem 2

In this experiment we apply the RTH quasi-interpolation to approximate the function (again considered in [8])

f2(x) = sin
� x

2

�

− 2 cos(x) + 4sin(πx), x ∈ [−4, 4]. (16)

The comparison results are shown in Tables 8-10. In Tables 8, 9, and 10, we set h = 0.1,0.01,0.001, respectively, and
c = 2h, h, 0.5h, 0.2h, 0.1h, then we compute the ∥LRT H f − f ∥∞ and ∥LMQ f − f ∥∞. In Table 11, we set c = 0.01, h =
0.2,0.1, 0.05,0.025, 0.0125, to observe the convergence rate rh of LRT H f with the variation of h.

Table 8: Comparison of approximation accuracy of RTH and MQ quasi-interpolation; Test problem 2.

c 0.2 0.1 0.05 0.02 0.01
h 0.1 0.1 0.1 0.1 0.1
∥LMQ f − f ∥∞ 1.2× 100 4.5× 10−1 1.7× 10−1 7.2× 10−2 5.6× 10−2

∥LRT H f − f ∥∞ 4.5× 10−1 1.2× 10−1 1.4× 10−2 4.8× 10−2 5.1× 10−2
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Table 9: Comparison of approximation accuracy of RTH and MQ quasi-interpolation; Test problem 2.

c 0.02 0.01 0.005 0.002 0.001
h 0.01 0.01 0.01 0.01 0.01
∥LMQ f − f ∥∞ 3.0× 10−1 9.2× 10−3 2.9× 10−3 9.1× 10−4 6.1× 10−4

∥LRT H f − f ∥∞ 6.4× 10−3 1.3× 10−3 1.5× 10−4 4.8× 10−4 5.1× 10−4

Table 10: Comparison of approximation accuracy of RTH and MQ quasi-interpolation; Test problem 2.

c 0.002 0.001 0.0005 0.0002 0.0001
h 0.001 0.001 0.001 0.001 0.001
∥LMQ f − f ∥∞ 4.9× 10−4 1.4× 10−4 4.1× 10−5 1.1× 10−5 6.6× 10−6

∥LRT H f − f ∥∞ 6.5× 10−5 1.4× 10−5 1.5× 10−6 4.8× 10−6 5.0× 10−6

Table 11: Convergence rates of LRT H f by using c = 0.01, h= 0.2,0.1, 0.05,0.025, 0.0125; Test problem 2.

c 0.01 0.01 0.01 0.01 0.01
h 0.2 0.1 0.05 0.025 0.0125
∥LRT H f − f ∥∞ 2.3× 10−1 5.1× 10−2 1.2× 10−2 1.1× 10−3 5.0× 10−4

rh - 2.1730 2.0874 3.4474 1.1375

4.3 Test problem 3

Consider the function (see again [8])

f3(x) = 10e−x2
+ x2, x ∈ [−3, 3], (17)

for approximating by the RTH quasi-interpolation operator. The comparison results are shown in Tables 12-14. In Tables 12,
13, and 14, we set h = 0.1,0.01,0.001, respectively, and c = 2h, h, 0.5h, 0.2h, 0.1h, then we compute the ∥LRT H f − f ∥∞ and
∥LMQ f − f ∥∞. In Table 15, we set c = 0.01, h= 0.2,0.1,0.05,0.025,0.0125, to observe the convergence rate rh of LRT H f on
varying h.

Table 12: Comparison of approximation accuracy of RTH and MQ quasi-interpolation; Test problem 3.

c 0.2 0.1 0.05 0.02 0.01
h 0.1 0.1 0.1 0.1 0.1
∥LMQ f − f ∥∞ 4.9× 10−1 1.9× 10−1 7.4× 10−2 3.1× 10−2 2.4× 10−2

∥LRT H f − f ∥∞ 2.2× 10−1 5.4× 10−2 6.4× 10−3 1.1× 10−2 1.2× 10−2

Table 13: Comparison of approximation accuracy of RTH and MQ quasi-interpolation; Test problem 3.

c 0.02 0.01 0.005 0.002 0.001
h 0.01 0.01 0.01 0.01 0.01
∥LMQ f − f ∥∞ 9.7× 10−2 2.9× 10−2 9.09× 10−3 2.5× 10−3 1.5× 10−3

∥LRT H f − f ∥∞ 2.8× 10−3 5.9× 10−4 6.7× 10−5 2.1× 10−4 2.2× 10−4

Table 14: Comparison of approximation accuracy of RTH and MQ quasi-interpolation; Test problem 3.

c 0.002 0.001 0.0005 0.0002 0.0001
h 0.001 0.001 0.001 0.001 0.001
∥LMQ f − f ∥∞ 2.1× 10−4 6.0× 10−5 1.8× 10−5 4.8× 10−6 2.9× 10−6

∥LRT H f − f ∥∞ 2.8× 10−5 5.9× 10−6 6.7× 10−7 2.1× 10−6 1.2× 10−6

Remark 3. By analyzing the results in Tables 4-6, 8-10, and 12-14, we see that the accuracy of the RTH quasi-interpolation
scheme is dependent on the shape parameter c and on step size h. Furthermore, the accuracy of the RTH quasi-interpolation
operator is better than that of MQ for the same values of c and h. From Tables 7, 11, 15, we see that the convergence rate of
LRT H reaches up to 2 which justifies our theoretical findings of Section 3. By these numerical experiments, we can say that the
quasi-interpolation LRT H is a very attractive alternative, in terms of accuracy and convergence, to LMQ.
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Table 15: Convergence rates of LRT H f by using c = 0.01, h= 0.2,0.1, 0.05,0.025, 0.0125; Test Problem 3.

c 0.01 0.01 0.01 0.01 0.01
h 0.2 0.1 0.05 0.025 0.0125
∥LRT H f − f ∥∞ 8.6× 10−2 2.2× 10−2 5.2× 10−3 4.9× 10−4 2.2× 10−4

rh - 1.9668 2.0809 3.4076 1.1552

4.4 Test problem 4 (Runge function)

Let us consider the Runge function on [−1, 1], that is f4(x) =
1

1+ 25x2
. Figure 5 shows the exact and approximate values of f4

for c = 0.01, h = 0.1, 0.02. In Figure 5, we see that the Runge phenomenon has disappeared by decreasing h. Relative errors are
shown in Figure 6 using the RTH quasi-interpolation operator.

(a) (b)

Figure 5: RTH quasi-interpolation of f4(x) =
1

1+25x2 ; h= 0.1 (a), h= 0.02 (b), and c = 0.01.

(a) (b)

(c)

Figure 6: Relative errors: c = 0.1 (a), c = 0.01 (b), c = 0.001 (c), and h= 0.01; Test problem 4.
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4.5 Test problem 5 (Gibbs Phenomenon)

It is well-known that any global or high order approximation method suffers from the Gibbs phenomenon if the function has a
jump discontinuity in the given domain. In this test problem, we show that the RTH quasi-interpolation operator substantially
mitigates the Gibbs phenomenon (cf. [3]).

f5(x) =







10
3 x , 0≤ x ≤ 0.3,

1, 0.3≤ x ≤ 0.6,
0, 0.6< x ≤ 1.

Figure 7 shows the exact and approximate values of f5. In Figure 7, we see that the Gibbs oscillations are considerably attenuated
by decreasing c. Relative errors are reported in Figure 8.

(a) (b)

(c)

Figure 7: Approximations of f5 with RTH quasi-interpolation; c = 0.1 (a), c = 0.01 (b), c = 0.001 (c), and h= 0.01.

4.6 Test problem 6 (A piecewise analytic function)

As a final example, we consider the piecewise analytic function (cf. [23])

f6(x) =
§

sin(x), x < 0,
cos(x), x > 0,

with x ∈ [−1, 1]. Figure 9 shows the exact and approximate values of f6, where Gibbs oscillations are considerably attenuated by
decreasing c. Relative errors are shown in Figure 10.

4.7 Test problem 7 (Derivatives approximation)

In this test problem, we approximate the first and second derivatives of the following function [29]

f7(x) = cos(x)e2x2
, x ∈ [0,1], (18)

based on the RTH quasi-interpolation schemes (13)-(14). The relative error functions for the first and second derivatives are
plotted in Figures 11-12, respectively. It can be noted from Figures 11-12 that the the accuracy is poor near the boundary. We
should handle this problem by introducing a polynomial like the one discussed in [29]. We leave this to our further works.
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(a) (b)

(c)

Figure 8: Relative errors: c = 0.1 (a), c = 0.01 (b), c = 0.001 (c), and h= 0.01; Test problem 5.

(a) (b)

(c)

Figure 9: RTH quasi-interpolation of the piecewise analytic function f6; c = 0.1 (a), c = 0.01 (b), c = 0.001 (c), and h= 0.02.
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(a) (b)

(c)

Figure 10: Relative errors: c = 0.1 (a), c = 0.01 (b), c = 0.001 (c), and h= 0.01; Test problem 6.

(a) (b)

Figure 11: Relative errors of the first derivative approximation by RTH quasi-interpolation for h= 0.01 (a), h= 0.001 (b), and c = 0.01; Test
problem 7.

5 Conclusion
In this paper, an efficient shape preserving quasi-interpolation operator with high degree of smoothness and very accurate results
is proposed. It is based on the reformulation of Wu-Schaback quasi-interpolation operator by a new transcendental RBF of the
form φ(r) = r tanh

�

r
c

�

. The quasi-interpolation operator, called LRT H has nice convergence properties, being ∥LRT H− f ∥∞ ≤ k h2,
with h being the step size and k a positive constant independent on the shape parameter c and the step size h (cf. Theorem 3.1).
Numerical experiments reveal that the proposed quasi-interpolation operator not only gives very accurate results but also it does
not suffer of the Runge and Gibbs phenomena (see Test problems 4-6). As a future work we go further into the approximation
properties to the high order derivatives by using RTH quasi-interpolation. We also work in the application of the operator to real
worlds problems, in particular to irregular surfaces approximation and image segmentation.
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(a) (b)

Figure 12: Relative errors of the second derivative approximation by RTH quasi-interpolation for h = 0.01 (a), h = 0.001 (b), and c = 0.01; Test
problem 7.
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computation, 172(1):472–484, 2006.

[5] Ronghua Chen and Zongmin Wu. Solving partial differential equation by using multiquadric quasi-interpolation. Applied Mathematics and
Computation, 186(2):1502–1510, 2007.

[6] Gregory E Fasshauer. Solving partial differential equations by collocation with radial basis functions. In Proceedings of Chamonix, volume
1997, pages 1–8. Citeseer, 1996.

[7] Gregory E Fasshauer. Meshfree approximation methods with MATLAB, volume 6. World Scientific, 2007.

[8] Gregory E Fasshauer and Michael J McCourt. Stable evaluation of gaussian radial basis function interpolants. SIAM Journal on Scientific
Computing, 34(2):A737–A762, 2012.

[9] Renzhong Feng and Feng Li. A shape-preserving quasi-interpolation operator satisfying quadratic polynomial reproduction property to
scattered data. Journal of computational and applied mathematics, 225(2):594–601, 2009.

[10] Carsten Franke and Robert Schaback. Convergence order estimates of meshless collocation methods using radial basis functions. Advances
in computational mathematics, 8(4):381–399, 1998.

[11] Richard Franke. Scattered data interpolation: tests of some methods. Mathematics of computation, 38(157):181–200, 1982.

[12] Wenwu Gao and Zongmin Wu. Quasi-interpolation for linear functional data. Journal of Computational and Applied Mathematics,
236(13):3256–3264, 2012.

[13] Wenwu Gao and Zongmin Wu. A quasi-interpolation scheme for periodic data based on multiquadric trigonometric b-splines. Journal of
computational and applied mathematics, 271:20–30, 2014.

[14] Wenwu Gao and Ran Zhang. Multiquadric trigonometric spline quasi-interpolation for numerical differentiation of noisy data: a stochastic
perspective. Numerical Algorithms, 77(1):243–259, 2018.

[15] Wenwu Gao, Xia Zhang, and Xuan Zhou. Multiquadric quasi-interpolation for integral functionals. Mathematics and Computers in Simulation,
177:316–328, 2020.

[16] MA Golberg, CS Chen, and SR Karur. Improved multiquadric approximation for partial differential equations. Engineering Analysis with
boundary elements, 18(1):9–17, 1996.

[17] Rolland L Hardy. Multiquadric equations of topography and other irregular surfaces. Journal of geophysical research, 76(8):1905–1915,
1971.

[18] Rolland L Hardy. Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988. Computers &
Mathematics with Applications, 19(8-9):163–208, 1990.

[19] Y.C. Hon and X. Z. Mao. An efficient numerical scheme for burgers’ equation. Applied Mathematics and Computation, 95(1):37–50, 1998.

[20] YC Hon and Zongmin Wu. A quasi-interpolation method for solving stiff ordinary differential equations. International Journal for Numerical
Methods in Engineering, 48(8):1187–1197, 2000.

[21] Zi-Wu Jiang and Ren-Hong Wang. Numerical solution of one-dimensional sine–gordon equation using high accuracy multiquadric
quasi-interpolation. Applied Mathematics and Computation, 218(15):7711–7716, 2012.

[22] Zi-Wu Jiang, Ren-Hong Wang, Chun-Gang Zhu, and Min Xu. High accuracy multiquadric quasi-interpolation. Applied Mathematical
Modelling, 35(5):2185–2195, 2011.

Dolomites Research Notes on Approximation ISSN 2035-6803



Heidari · Mohammadi · De Marchi 73

[23] Jae-Hun Jung. A note on the gibbs phenomenon with multiquadric radial basis functions. Applied numerical mathematics, 57(2):213–229,
2007.

[24] Edward J Kansa. Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-i surface
approximations and partial derivative estimates. Computers & Mathematics with applications, 19(8-9):127–145, 1990.

[25] Edward J Kansa. Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-ii solutions to
parabolic, hyperbolic and elliptic partial differential equations. Computers & mathematics with applications, 19(8-9):147–161, 1990.

[26] Leevan Ling. A univariate quasi-multiquadric interpolationwith better smoothness. Computers & Mathematics with Applications, 48(5-
6):897–912, 2004.

[27] Leevan Ling. Multivariate quasi-interpolation schemes for dimension-splitting multiquadric. Applied mathematics and computation,
161(1):195–209, 2005.

[28] Tom Lyche, Larry L Schumaker, and Sonya Stanley. Quasi-interpolants based on trigonometric splines. Journal of Approximation theory,
95(2):280–309, 1998.

[29] Limin Ma and Zongmin Wu. Approximation to the k-th derivatives by multiquadric quasi-interpolation method. Journal of computational
and applied mathematics, 231(2):925–932, 2009.

[30] WR Madych. Miscellaneous error bounds for multiquadric and related interpolators. Computers & Mathematics with Applications, 24(12):121–
138, 1992.

[31] WR Madych and SA Nelson. Error bounds for multiquadric interpolation. Approximation Theory VI, 2:413–416, 1989.

[32] Charles A Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constructive approxima-
tion, 2(1):11–22, 1986.

[33] M Mohammadi, R Mokhtari, and R Schaback. A meshless method for solving the 2d brusselator reaction-diffusion system. Comput. Model.
Eng. Sci.(CMES), 101:113–138, 2014.

[34] Barrett O’neill. Elementary differential geometry. Elsevier, 2006.

[35] Michael James David Powell. Univariate multiquadric approximation: reproduction of linear polynomials. In Multivariate Approximation
and Interpolation, pages 227–240. Springer, 1990.

[36] Michael JD Powell. The theory of radial basis function approximation in 1990. Advances in numerical analysis, pages 105–210, 1992.

[37] Michael JD Powell. The theory of radial basis function approximation in 1990. Advances in numerical analysis, pages 105–210, 1992.

[38] Carlos Ramirez, Reinaldo Sanchez, Vladik Kreinovich, and Miguel Argaez.
p

x2 +µ is the most computationally efficient smooth
approximation to |x|: a proof. 2013.

[39] Fahimeh Saberi Zafarghandi, Maryam Mohammadi, and Robert Schaback. On the fractional derivatives of radial basis functions: Theories
and applications. Mathematical Methods in the Applied Sciences, 42(11):3877–3899, 2019.

[40] Sergey Voronin, Gorkem Ozkaya, and Davis Yoshida. Convolution based smooth approximations to the absolute value function with
application to non-smooth regularization. arXiv preprint arXiv:1408.6795, 2014.

[41] Hubert Stanley Wall. Analytic theory of continued fractions. Courier Dover Publications, 2018.

[42] Ren-Hong Wang, Min Xu, and Qin Fang. A kind of improved univariate multiquadric quasi-interpolation operators. Computers & mathematics
with applications, 59(1):451–456, 2010.

[43] Renhong Wang and Jinming Wu. Approximate implicitization based on rbf networks and mq quasi-interpolation. Journal of Computational
Mathematics, pages 97–103, 2007.

[44] Holger Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in
computational Mathematics, 4(1):389–396, 1995.

[45] Holger Wendland. Meshless galerkin methods using radial basis functions. Mathematics of computation, 68(228):1521–1531, 1999.

[46] Holger Wendland. Scattered data approximation, volume 17. Cambridge university press, 2004.

[47] Jinming Wu and Xiaolei Zhang. A new approach for approximate implicitization of parametric curves. Computational and Applied
Mathematics, 33(2):399–409, 2014.

[48] Ruifeng Wu, Tieru Wu, and Huilai Li. A family of multivariate multiquadric quasi-interpolation operators with higher degree polynomial
reproduction. Journal of Computational and Applied Mathematics, 274:88–108, 2015.

[49] Zong-min Wu and Robert Schaback. Local error estimates for radial basis function interpolation of scattered data. IMA journal of Numerical
Analysis, 13(1):13–27, 1993.

[50] Zongmin Wu. Compactly supported positive definite radial functions. Advances in computational mathematics, 4(1):283–292, 1995.

[51] Zongmin Wu and Robert Schaback. Shape preserving properties and convergence of univariate multiquadric quasi-interpolation. Acta
Mathematicae Applicatae Sinica, 10(4):441–446, 1994.

[52] Fahimeh Saberi Zafarghandi, Maryam Mohammadi, Esmail Babolian, and Shahnam Javadi. Radial basis functions method for solving the
fractional diffusion equations. Applied Mathematics and Computation, 342:224–246, 2019.

Dolomites Research Notes on Approximation ISSN 2035-6803


	Introduction
	Quasi-interpolation operator based on a new transcendental RBF
	New transcendental RBF
	Quasi-interpolation operator

	Accuracy of the quasi-interpolation operator LRTH
	Numerical results
	Test problem 1
	Test problem 2
	Test problem 3
	Test problem 4 (Runge function)
	Test problem 5 (Gibbs Phenomenon)
	Test problem 6 (A piecewise analytic function)
	Test problem 7 (Derivatives approximation)

	Conclusion

