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A numerical method for
the generalized Love integral equation in 2D

Luisa Fermo a · Maria Grazia Russo b · Giada Serafini c

Abstract

This paper deals with the numerical solution of the generalized Love integral equation defined on the
square. The method is of Nyström type and is based on the approximation of the integral by a product
cubature rule whose coefficients are approximated by a “dilation” scheme. The theoretical analysis of the
presented method is discussed by proving its stability and convergence in weighted spaces equipped with
the uniform norm. To support the theoretical estimates, some numerical tests are presented.

1 Introduction
Let us consider the following Fredholm integral equation of the second kind defined on the square D = [−1, 1]× [−1, 1]

f(y)−µ
∫

D

kω(x,y)f(x)w(x)dx= g(y), y ∈ D, (1)

where µ ∈ R, f is the unknown solution,

kω(x,y) =
ω−1

|x− y|2 +ω−2
(2)

is the kernel function depending on a real positive parameter ω, g is the known right-hand side, and w(x) is a bivariate Jacobi
weight in the variable x= (x1, x2) defined as

w(x) =
2
∏

i=1

(1− x i)
αi (1+ x i)

βi , αi ,βi > −1. (3)

The main pathology of (1) is the presence of a “nearly” singular kernel that is a function which is “close” to be singular at
x= y when ω−1→ 0. In addition, the presence of the Jacobi weight w implies that the unknown function f could have algebraic
singularities along the boundary of D.

Let us mention that in the case g ≡ w ≡ 1 and µ = 1
π2 , equation (1) is the bivariate Love integral equation, that is the

corresponding extension in 2D of the classical univariate Love integral equation [6].
Very recently we have developed a numerical method in order to approximate the solution of (1) in the univariate case [4].

The approach is based on the discretization of the integral operator by means of a product quadrature rule whose coefficients are
computed by using a “dilation” formula [2, 11]. Then, a Nyström method is given and very accurate results are obtained also in
the case when ω is large which is the undisputed most interesting case.

In this paper, we want to extend the method presented in [4] to the bivariate case. Then, first, we approximate the integral by
using a cubature formula given in [10]. In this way, we isolate the kernel, and consequently the pathology of the equation, in the
coefficients of such a cubature rule. At this point, to face this pathology, we use a “dilation” cubature formula to approximate the
coefficients [10]. Hence, a Nyström method is developed. It leads to a well-conditioned linear system whose size does not depend
on the magnitude of the parameter ω. Its unique solution allows us to compute the Nyström interpolant which converges to the
exact solution. The convergence and the stability of the method are proved in weighted spaces equipped with the uniform norm.
In addition, the provided error estimate claims that the error of the method is essentially of the order of the best polynomial
approximation of the unknown function, independently of the value of ω (the extra term ( d

ω )
m−1 log2 m in the convergence

estimate, vanishes exponentially).
We want to underline that the proposed mixed scheme, namely the product cubature rule combined with the dilation

technique, can be also used to approximate other nearly singular integrals whose accurate approximation plays an important
role in the boundary element method (BEM) which has wide applications [14]. These include evaluating the solution near the
boundary in potential problems and calculating displacements and stresses near the boundary in elasticity problems, for example,
displacement around open crack tips, contact problems, sensitivity problems, etc.
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In more details, the paper is organized as follows. In Section 2 we fix the spaces in which we look for the solution and we
review three different cubature schemes. Among them, we give a dilation cubature formula by providing new error estimates. In
Section 3 we focus on the numerical solution of equation (1) by presenting at first a mixed cubature rule in Section 3.1 and then
developing a Nyström method in Section 3.2. In Section 4 we give several numerical tests and in Section 5 we confine the proofs
of our theoretical analysis.

2 Preliminaries

2.1 Functional spaces

Let us denote by
vγ,δ(x) = (1− x)γ(1+ x)δ, x ∈ (−1, 1)

a generic univariate Jacobi weight function with parameters γ,δ ≥ 0 and let us introduce the bivariate weight

σ(x) = vγ1 ,δ1(x1)v
γ2 ,δ2(x2), x= (x1, x2) ∈ D. (4)

Define the space of weighted continuous function as

Cσ =
n

f ∈ C(D \ ∂ D) : lim
x→∂ D

(fσ)(x) = 0
o

,

where ∂ D denotes the boundary of the square D. We endow the space with the weighted uniform norm

‖f‖Cσ = ‖fσ‖∞ = sup
x∈D
|(fσ)(x)|.

For r > 0, setting f(r)xi
=
∂ r

∂ x r
i

f(x1, x2) and ϕ(z) =
p

1− z2, let us also introduce the following Sobolev-type space

W r
σ =

¦

f ∈ Cσ : ‖f(r)xi
ϕrσ‖∞ <∞, ∀i = 1, 2

©

equipped with the norm
‖f‖W r

σ
= ‖fσ‖∞ +max

i=1,2
‖f(r)xi

ϕrσ‖∞.

For our aims, it is also useful to define the error of best polynomial approximation in Cσ as

Em(f)σ = inf
P∈Pm
‖(f− P)σ‖∞,

where Pm denotes the set of all algebraic polynomials of two variables of degree at most m in each variable.
It is known that for each f ∈W r

σ we have [9]

Em(f)σ ≤
C

mr
‖f‖W r

σ
. (5)

Here, C is a positive constant independent of m and f. In the sequel, C will denote any positive constant having different meaning
in different formulas. We will write C 6= C(a, b, . . .) to say that C is a positive constant independent of the parameters a, b, . . ., and
C = C(a, b, . . .) to say that C depends on a, b, . . .. If A, B > 0 are quantities depending on some parameters, we will write A∼ B, if
there exists a constant C 6= C(A, B) such that C−1B ≤ A≤ CB.

2.2 Cubature schemes

The aim of this section is to recall three different cubature formulae having the Jacobi weight w given in (3) as part of the
integrand function. According to the introduced notation, such a weight can be also rewritten as

w(x) = vα1 ,β1(x1)v
α2 ,β2(x2), αi ,βi > −1, i = 1,2. (6)

In details, we aim to approximate the following three integrals
∫

D

f(x)w(x) dx,

∫

D

k(x,y)f(x)w(x)dx, and

∫

D

kω(x,y)f(x)w(x)dx,

where f, k and kω are given functions, and the last one is a “nearly” singular kernel depending on a real positive parameter ω.
For the first two integrals we propose the standard Gaussian [9] and product [10] cubature rule, respectively. For the last one,

we generalize what has already been done in [10] and [4], and present new theoretical results.
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2.2.1 Gaussian cubature rule

In this subsection we want to recall the Gaussian cubature rule presented in [9] approximating the integrals of the form
∫

D

f(x)w(x) dx=

∫ 1

−1

∫ 1

−1

f(x1, x2)v
α1 ,β1(x1)v

α2 ,β2(x2)d x1d x2,

where f is defined in D and w is as in (6). To this end, let us denote by {pm(vαi ,βi , x i)}m the sequences of orthonormal polynomials
with respect to the weight vαi ,βi for i = 1, 2 and by

ξ
αi ,βi
1 < ξ

αi ,βi
2 < · · ·< ξαi ,βi

m , i = 1,2

the zeros of pm(vαi ,βi , x i). Then, the Gaussian cubature rule reads as [9]
∫

D

f(x)w(x) dx=
m
∑

i=1

m
∑

j=1

λ
α1 ,β1
i λ

α2 ,β2
j f(ξα1 ,β1

i ,ξα2 ,β2
j ) +Rm(f), (7)

where {λαi ,βi
k }mk=1 denote the Christoffel numbers with respect to the weight vαi ,βi and Rm is the remainder term.

Let us note that Rm(P) = 0 for any bivariate polynomial P ∈ P2m−1. Next two propositions give an error estimate for Rm.
Proposition 2.1. [9] Let σ and w be the weights defined as in (4) and (6), respectively such that

0≤ γi < αi + 1, 0≤ δi < βi + 1, (8)

for each i = 1, 2. Then, for all f ∈ Cσ, we have
|Rm(f)| ≤ CE2m−1(f)σ,

where C 6= C(m, f).
Proposition 2.2. Let f be a bivariate function defined on D having 2m continuous partial derivatives with respect to both variables
x1 and x2. Then

|Rm(f)| ≤max
i=1,2
‖f(2m)

xi
‖∞

1
(2m)!

2
∏

i=1

1
(γm(vαi ,βi ))2

,

where γm(vαi ,βi ) is the leading coefficient of pm(vαi ,βi ) for each i = 1, 2.

2.2.2 Product cubature rule

Let us now consider the following integral
∫

D

k(x,y)f(x)w(x)dx

where f ∈ Cσ, w is defined in (6) and k is a known kernel function.
In order to approximate such an integral, in [10] the authors propose the following product cubature rule

∫

D

k(x,y)f(x)w(x)dx=
m
∑

i=1

m
∑

j=1

Ai j(y)f(ξ
α1 ,β1
i ,ξα2 ,β2

j ) + Em(f,y). (9)

Here Em(f,y) denotes the raminder term whereas Ai j are the coefficients given by

Ai j(y) =

∫

D

k(x,y)`i j(x)w(x)dx with `i j(x) = `
α1 ,β1
i (x1)`

α2 ,β2
j (x2),

where

`
αk ,βk
i (xk) =

pm(vαk ,βk , xk)

p′m(vαk ,βk ,ξαk ,βk
i )(xk − ξ

αk ,βk
i )

denotes the i-th fundamental Lagrange polynomial based on the zeros of pm(vαk ,βk , xk), for each k = 1,2.
The following theorem, proved in [10], guarantees the stability and the convergence of formula (9).

Theorem 2.3. [10] Let σ and w be defined as in (4) and (6), respectively such that their parameters satisfy the following conditions

max
§

0,
αi

2
−

1
4

ª

< γi <min
§

αi +
1
2

,
αi

2
+

1
4

ª

, max
§

0,
βi

2
−

1
4

ª

< δi <min
§

βi +
1
2

,
βi

2
+

1
4

ª

,

for each i = 1, 2. Moreover, assume that

sup
y∈D

∫

D

k2(x,y)w(x) dx<∞.

Then, the cubature scheme (9) is stable since

sup
y∈D

�

�

�

�

�

m
∑

i=1

m
∑

j=1

Ai j(y)f(ξ
α1 ,β1
i ,ξα2 ,β2

j )

�

�

�

�

�

≤ C‖fσ‖∞,

and the following error estimate holds true
sup
y∈D
|Em(f,y)| ≤ CEm−1(f)σ,

where in all cases C 6= C(m, f).
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2.2.3 A 2D-dilation formula

In this section we focus on the approximation of the integrals of the form

Iω(f,y) =
∫

D

kω(x,y)f(x)w(x)dx, (10)

where f is a given function, w is as in (6) and kω(x,y) is a known “nearly singular” kernel which is close to be singular if ω−1→ 0.
An example is the kernel function appearing in the Love equation (1). As already mentioned, such kind of integrals arise in
several contexts as, for instance, in the boundary element methods. Consequently, for the their numerical approximation, different
numerical formulas have been proposed over the years [5, 8, 12].

Here, our idea is to approximate the integral (10) by “generalizing” the dilation techniques proposed in [4, 10] providing
new convergence and stability results.

Following [4, 10], we aim to dilate the domain of integration from the square D into the square Dω = [−ω, ω]× [−ω, ω].
Thus, in (10) we make the following change of variables

x=
η

ω
, y=

θ

ω
, η= (η1, η2) ∈ Dω, θ = (θ1, θ2) ∈ Dω.

Then, by partitioning the new domain Dω into S2 squares of area d2 with d such that S = 2ω
d ∈ N, i.e.

Dω =
S
⋃

i=1

S
⋃

j=1

[−ω+ (i − 1)d, −ω+ id]× [−ω+ ( j − 1)d, −ω+ jd] =:
S
⋃

i=1

S
⋃

j=1

Di j ,

we get

Iω(f,y) =
1
ω2

∫

Dω

kω

�

η

ω
,
θ

ω

�

f
�η

ω

�

w
�η

ω

�

dη=:
1
ω2

∫

Dω

κ (η,θ ) f
�η

ω

�

w
�η

ω

�

dη

=
1
ω2

S
∑

i=1

S
∑

j=1

∫

Di j

κ (η,ωy) f
�η

ω

�

w
�η

ω

�

dη. (11)

Now, by using the invertible linear maps Ψ i j : Di j → D defined as

x= Ψ i j(η) =
�

2
d
(η1 +ω)− (2i − 1),

2
d
(η2 +ω)− (2 j − 1)

�

=: (Ψi(η1),Ψ j(η2)),

we can remap each integral into the unit square D. In fact, by making in (11) the following change of variables

η= Ψ−1
i j (x) =

��

x1 + 1
2

�

d −ω+ (i − 1)d,
�

x2 + 1
2

�

d −ω+ ( j − 1)d
�

=:
�

Ψ−1
i (x1),Ψ

−1
j (x2)

�

(12)

we have

Iω(f,y) =
d2

4ω2

S
∑

i=1

S
∑

j=1

∫

D

κi j(x,ωy) fi j(x)ui j(x)dx. (13)

Here

ui j(x) := uα1 ,β1
i (x1)u

α2 ,β2
j (x2), with uαk ,βk

i (xk) :=







v0,βk (xk), i = 1
v0,0(xk), 2≤ i ≤ S − 1
vαk ,0(xk), i = S

for k = 1,2, (14)

fi j(x) := f

�

Ψ−1
i j (x)

ω

�

, and κi j is the new kernel function defined as

κi j(x,ωy) := kω

�

Ψ−1
i j (x)

ω
,y

�

Ui j (x) , (15)

with

Ui j (x) := Ui (x1)U j (x2) being Ui(xk) :=































�

d
2ω

�βk

vαk ,0

�

Ψ−1
i (xk)

ω

�

, i = 1

vαk ,βk

�

Ψ−1
i (xk)

ω

�

, 2≤ i ≤ S − 1
�

d
2ω

�αk

v0,βk

�

Ψ−1
i (xk)

ω

�

, i = S

for k = 1, 2. (16)

Dolomites Research Notes on Approximation ISSN 2035-6803



Fermo · Russo · Serafini 50

By approximating each integral appearing in (13) by means of the n-point Gaussian cubature rule (7) with ui j in place of w and
κi jfi j instead of f, we have the following “dilation” cubature formula

Σn
ω
(f,ωy) =

d2

4ω2

S
∑

i=1

S
∑

j=1

n
∑

h=1

n
∑

ν=1

λ
α1 ,β1
h,i λ

α2 ,β2
ν, j κi j

�

(ξα1 ,β1
h,i ,ξα2 ,β2

ν, j ),ωy
�

fi j(ξ
α1 ,β1
h,i ,ξα2 ,β2

ν, j ), (17)

where λαk ,βk
h,i is the h-th Christoffel coefficient with respect to the weight uαk ,βk

i , ξαk ,βk
h,i is the h-th node of pn(u

αk ,βk
i ). Moreover, we

will denote by Λn
ω

the remainder term, namely

Iω(f,y) = Σn
ω
(f,ωy) +Λn

ω
(f,ωy). (18)

The given rule is stable and convergent as the following theorem shows.

Theorem 2.4. Let σ and w be the weights defined as in (4) and (6) respectively, such that their parameters satisfy

0≤ γi <min{1, αi + 1}, 0≤ δi <min{1, βi + 1},

for each i = 1, 2 and assume that the kernel function kω is such that max
x,y∈D
|kω(x,y)|<∞.

Then, for each f ∈ Cσ, we have that the cubature rule (17) is stable, i.e.

sup
y∈D
|Σn
ω
(f,ωy)| ≤ C‖fσ‖∞, C 6= C(n, f). (19)

Moreover, for any f ∈W r
σ, if

max
y∈D

�

max
i=1,2

sup
x∈D

�

�

�

�

∂ r

∂ x r
i

kω(x,y)ϕr(x i)

�

�

�

�

�

<∞, (20)

we get

sup
y∈D
|Λn
ω
(f,ωy)| ≤

C
nr

�

d
ω

�r

‖f‖W r
σ
, (21)

where C 6= C(n, f,ω, d).

Next result gives an estimate for the remainder term Λn
ω

in the case when f and kω are analytical functions.

Corollary 2.5. Let f(x) and kω(x,y) two continuous functions having 2n continuous partial derivatives with respect to each component
x i of the variable x. Then

sup
y∈D
|Λn
ω
(f,ωy)| ≤

C

(2n)2n+ 1
2

�

d
2ω

�2n+2

e
48n2+1

24n

�

‖f‖∞ +max
i=1,2
‖f(2n)

xi
‖∞
�

,

with C 6= C(n, f,ω, d).

3 The numerical method
The goal of this section is to propose a Nyström method for the bivariate Love integral equation (1). Setting

(Kωf)(y) = µ

∫

D

kω(x,y)f(x)w(x)dx, (22)

with µ ∈ R and kω defined as in (2), equation (1) can be also rewritten as

(I−Kω) f= g, (23)

where I is the identity bivariate operator. Next proposition shows the mapping properties of the operator Kω.

Proposition 3.1. Let σ and w be defined in (4) and (6), respectively such that the parameters γi , δi , αi and βi satisfy (8) for each
i = 1, 2. Then Kω : Cσ → Cσ is continuous, bounded and compact. Moreover, ∀f ∈ Cσ, it results Kωf ∈W r

σ, for all r ∈ N .

According to the previous proposition, by virtue of the Fredholm Alternative theorem, under the assumption Ker{I−Kω} = {0}
equation (23) has a unique solution for any fixed g ∈ Cσ. The next two subsections deal with the approximation of such a
solution. Specifically, in the next one we introduce a suitable cubature formula which approximate the integral operator Kω,
whereas the second one contains our Nyström method.
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3.1 A mixed cubature formula

Let us consider the operator (22) and let us approximate it by using the product rule (9) that is

(Kωf)(y) = µ
m
∑

i=1

m
∑

j=1

Ai j(y)f(ξ
α1 ,β1
i ,ξα2 ,β2

j ) + Em
ω
(f,y),

where we remind that ξαk ,βk
i is the i-th node of pm(vαk ,βk ) for each k = 1, 2.

At this point let us approximate the coefficients

Ai j(y) =

∫

D

kω(x,y)`i j(x)w(x)dx

by using the n-point “dilation” cubature formula (17), i.e. by the following

An
i j(y) =

d2

4ω2

S
∑

i=1

S
∑

j=1

n
∑

p=1

n
∑

q=1

λ
α1 ,β1
p,i λ

α2 ,β2
q, j κi j(ξpi,q j ,ωy)`i j

�

Ψ−1
i j

�

ξpi,q j

ω

��

,

with λαk ,βk
p,i the p-th Christoffel coefficient with respect to the weight uαk ,βk

i given in (14) and ξpi,q j = (ξ
α1 ,β1
p,i ,ξα2 ,β2

q, j ) with ξαk ,βk
p,i

the p-th zero of pn(u
αk ,βk
i ).

In this way we get the following mixed cubature rule

(Kωf)(y) = µ
m
∑

i=1

m
∑

j=1

An
i j(y)f(ξ

α1 ,β1
i ,ξα2 ,β2

j ) + En,m
ω
(f,y) =: Kn,m

ω
(f,y) + En,m

ω
(f,y), (24)

where En,m
ω

is the remainder term.
Next theorem gives the conditions on the weights which ensure the convergence of the above formula by providing an error

estimate in the case when n≡ m.

Theorem 3.2. Let σ and w be defined in (4) and (6), respectively with parameters such that

max
§

0,
αi

2
+

1
4

ª

< γi <min
§

1, αi + 1,
αi

2
+

5
4

ª

, max
§

0,
βi

2
+

1
4

ª

< δi <min
§

1, βi + 1,
βi

2
+

5
4

ª

, (25)

for each i = 1, 2. Then, if f ∈ Cσ the following error estimate holds true

|Em,m
ω
(f)| ≤ C

�

Em(f)σ +
�

d
ω

�m−1

log2 m‖fσ‖∞

�

,

where C 6= C(m,ω).

Let us remark that the previous theorem gives the error estimate for n = m. Nevertheless, from the practical point of view, we
can apply our method with a fixed and low value of n (for instance n=20), since in virtue of Corollary 2.5 the coefficients of the
mixed formula are approximated with an error which decreases exponentially.
Remark 1. Let us underline that the proposed cubature mixed scheme can be also applied to other kind of integral operators,
namely, to integrals of the type (22) having a different “nearly” singular kernel. In this case, Theorem 3.2 is still true but the
kernel function must satisfy the conditions given in Theorem 2.3 and Theorem 2.4 with r = m− 1.

3.2 The Nyström method

In order to approximate the solution of (23) let us consider the operator equations
�

I−Kn,m
ω

�

fn,m = g, (26)

where fn,m is unknown and Kn,m
ω

is the discrete operator arising by the mixed cubature formula introduced in (24).
We multiply both sides of equation (26) by the weight function σ and we collocate it on the pairs ξi j = (ξ

α1 ,β1
i ,ξα2 ,β2

j ), i, j =
1, ..., m.

In this way we have the following m2 ×m2 linear system

ai j −µσ(ξi j)
m
∑

h=1

m
∑

ν=1

An
h,ν(ξi j)

σ(ξi j)
ahν = (gσ)(ξi j), i, j = 1, ..., m, (27)

where the unknowns
ai j = (f

n,mσ)(ξi j), i, j = 1, ..., m,

allow us to construct the weighted bivariate Nyström interpolant

(fn,mσ)(y) = µσ(y)
m
∑

h=1

m
∑

ν=1

An
h,ν(y)

σ(ξi j)
a∗hν + (gσ)(y). (28)

Next theorem states that the above described Nyström method is stable, convergent and the condition number of the system
we solve does not depend on m.
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Theorem 3.3. Let σ and w be defined as in (4) and (6) respectively, with the parameters satisfying (25) and let us assume that
Ker{I−K} = {0} in Cσ. Then for m sufficiently large, the operators

�

I−Kn,m
ω

�−1
exist and are uniformly bounded and system (27) is

well conditioned. Moreover, if g ∈W r
σ, r ≥ 1, the following convergence estimate holds true

‖[f− fm,m]σ‖∞ ≤ C
�

1
mr
+
�

d
ω

�m−1

log2 m

�

‖f‖W r
σ
, C 6= C(m, f). (29)

Remark 2. Let us note that, as stated in estimate (29), the proposed global approximation method allows us to find the solution
of equation (1) with an order of convergence essentially given by the order of the best polynomial approximation of the unknown
function f since the extra term ( d

ω )
m−1 log2 m vanishes exponentially. Consequently, the convergence order is independent of the

magnitude of ω. However, the function f naturally depends on ω, being the solution of an equation in which such a parameter
appears and therefore the constant C in (29) depends onω. This is the only reason why for a large value ofω we need to increase
the dimension of the system in order to get high precision (see the numerical results given in Section 4).

4 Numerical Tests
The aim of this section is to show the accuracy of our method by some numerical examples. For each considered test equation,
we solve system (27) and we compute the weighted Nyström interpolant (fn,mσ)(y) (28) in several points y of the square D with
n= 20 fixed, for different values of m and with ω= 10 or ω= 102.

All the numerical experiments were performed in double precision arithmetic on an IntelCore i7 system (4 cores), running
the Mac-Os operating system and using Matlab R2018a.

Example 4.1. Let us consider the classical bivariate Love integral equation

f(y)−
1
π2

∫

D

kω(x,y)f(x)dx= 1,

in the space Cσ with σ(x) =
p

(1− x2)(1− y2). Table 1 contains the results we get for ω = 10 and ω = 102. As we can see,
the convergence is very fast and for m = 64 we get the machine precision if ω = 10 and an absolute error of the order 10−12

if ω = 102. Moreover, for different values of m, in Table 2 we report the condition numbers in infinity norm of the matrix of
coefficient Am2 of the linear system (27), showing that they are extremely well-conditioned.

ω m (f20,mσ)(0.5,0.5) (f20,mσ)(0.3,0.99) (f20,mσ)(0,0)
10 8 8.706379638969600e− 01 1.478716528767691e− 01 1.179654926512359e+ 00

16 8.706406847444945e− 01 1.478727042826599e− 01 1.179642631846515e+ 00
32 8.706406048629998e− 01 1.478727063066576e− 01 1.179642776897315e+ 00
64 8.706406048626485e− 01 1.478727063065337e− 01 1.179642776903225e+ 00
128 8.706406048626485e− 01 1.478727063065337e− 01 1.179642776903225e+ 00

ω m (f20,mσ)(0.9,0.7) (f20,mσ)(0.1,0.6) (f20,mσ)(0.5,0.2)
102 8 3.189258239649260e− 01 8.195662167349387e− 01 8.739905398475708e− 01

16 3.189266279099560e− 01 8.195642531444833e− 01 8.739905373874824e− 01
32 3.189263910313820e− 01 8.195643111474382e− 01 8.739907639414651e− 01
64 3.189263896191077e− 01 8.195643136782380e− 01 8.739907628529722e− 01
128 3.189263896171025e− 01 8.195643136779556e− 01 8.739907628538929e− 01

Table 1: Numerical results for Example 4.1

ω m cond(Am2) ω m cond(Am2)
10 8 1.357259159118987e+00 102 8 1.033095026557234e+00

16 1.441462903398752e+00 16 1.042950050720626e+00
32 1.489800370704548e+00 32 1.052106842473793e+00
64 1.509508024196380e+00 64 1.060421800715730e+00
128 1.515495801392271e+00 128 1.067223416255047e+00

Table 2: Condition numbers for Example 4.1

Example 4.2. Let us test our method on the equation

f(y)−
1
π2

∫

D

kω(x,y)f(x)
Æ

(1− x2)
p

1− y2dx= log(10− x− y),

where the weight appearing inside the integral is of the type in (6) with αi = βi = 1/2, i = 1, 2. Let us consider such a equation
in the space Cσ with σ as in (4) with γi = δi = 1, i = 1, 2, according to (25). In Tables 3 and 4 we report our numerical results.
They show the fast convergence of our method and that the linear systems we solve is well conditioned for each fixed value of m.
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ω m (f20,mσ)(−0.5,−0.2) (f20,mσ)(0,0) (f20,mσ)(0.9,−0.9)
10 8 1.914882727738103e+ 00 2.646981926729218e+ 00 8.604583371836652e− 02

16 1.914882654327322e+ 00 2.646985122795177e+ 00 8.604581564470247e− 02
32 1.914882643576744e+ 00 2.646985144586979e+ 00 8.604581566290904e− 02
64 1.914882643578620e+ 00 2.646985144594662e+ 00 8.604581566290784e− 02
128 1.914882643578620e+ 00 2.646985144594662e+ 00 8.604581566290784e− 02

ω m (f20,mσ)(−0.9,−0.3) (f20,mσ)(0.1, 0) (f20,mσ)(0.9,0.9)
102 8 4.226891240890577e− 01 2.333974818974274e+ 00 7.642142716682045e− 02

16 4.226892784081589e− 01 2.333973917132355e+ 00 7.642143745504938e− 02
32 4.226892750350204e− 01 2.333973908025957e+ 00 7.642143721145409e− 02
64 4.226892751293564e− 01 2.333973908025349e+ 00 7.642143721927090e− 02
128 4.226892751295805e− 01 2.333973908023352e+ 00 7.642143721928943e− 02

Table 3: Numerical results for Example 4.2

ω m cond(Am2) ω m cond(Am2)
10 8 1.330159520557044e+ 00 102 8 1.032981756338642e+ 00

16 1.422185660580896e+ 00 16 1.042132938492258e+ 00
32 1.475093994785804e+ 00 32 1.051654415624680e+ 00
64 1.497315163110278e+ 00 64 1.060128520091822e+ 00
128 1.503729683343860e+ 00 128 1.066998666939352e+ 00

Table 4: Condition numbers for Example 4.2

Example 4.3. Let us now apply our Nyström method on the equation

f(y)−
1
π2

∫

D

kω(x,y)f(x)
1

p

(1− x2)
p

1− y2
dx= |x|

9
2 y3,

where the weight appearing inside the integral is of the type in (6) with αi = βi = −1/2, i = 1,2, in order to approximate its
unique solution in the space Cσ where σ is as in (4) with γi = δi = 1/4, i = 1, 2. In this case, since the right-hand side g ∈W 4

σ ,
according to Theorem 3.3, we expect an order of convergence of m−4. Table 5 confirms our theoretical estimate and Table 6
shows the well-conditioning of our system. We underline that the presence of the singularities along the boundary of D in the
kernel, does not make any influence on the rate of convergence of the method.

ω m (f20,mσ)(−0.5,−0.2) (f20,mσ)(0,0) (f20,mσ)(0.5,−0.9)
10 8 −6.014268164506133e− 03 −3.515284717562412e− 18 −4.481539403944196e− 02

16 −6.032447421683561e− 03 7.030569435124824e− 19 −4.497567218241906e− 02
32 −6.032420390247492e− 03 0 −4.497474464346271e− 02
64 −6.032420285926134e− 03 1.230349651146844e− 18 −4.497474503492876e− 02
128 −6.032420283626174e− 03 −9.491268737418512e− 18 −4.497474502742697e− 02

ω m (f20,mσ)(−0.9,−0.3) (f20,mσ)(0.1, 0) (f20,mσ)(0.9, 0.7)
102 8 −1.234047743548169e− 02 8.766158391001223e− 20 1.311258296739617e− 01

16 −1.229899599514160e− 02 1.314923758650183e− 19 1.311416050215052e− 01
32 −1.229606685111479e− 02 1.424500738537699e− 19 1.311213605521988e− 01
64 −1.229630417628584e− 02 2.739424497187882e− 20 1.311209550570823e− 01
128 −1.229630551950528e− 02 −1.123164043847032e− 19 1.311209577202236e− 01

Table 5: Numerical results for Example 4.3

ω m cond(Am2) ω m cond(Am2)
10 8 2.214479076630497e+ 00 102 8 1.462137835998365e+ 00

16 2.707286451771667e+ 00 16 1.580015950348097e+ 00
32 2.991900403334029e+ 00 32 2.239311336538747e+ 00
64 3.167377814865466e+ 00 64 2.557976384124247e+ 00
128 3.374806255262317e+ 00 128 2.831292261327492e+ 00

Table 6: Condition numbers for Example 4.3
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5 Proofs
Proof of Proposition 2.2. Let us introduce the bivariate Lagrange polynomial L2m(f) of degree 2m− 1 in each variable x i [9],
interpolating the function f at the pairs (tk

1 , tk
2) where {tk

i }
2m
k=1 are the zeros of the polynomial pm(vαi ,βi )qm(x i) for i = 1, 2 with qm

a monic univariate polynomial of degree m in the variable x i .
By virtue of the exactness of the Gaussian cubature rule for algebraic polynomials of degree 2m− 1 in each variable, we can

state

Rm(f) =Rm(f−L2m(f)) =

∫

D

[f(x)−L2m(f,x)]w(x)dx.

Since we have,

f(x)−L2m(f,x) =
∂ 2m

∂ x2m
i

f(ξ1,ξ2)
1

(2m)!

2
∏

i=1

1
γm(vαi ,βi )

pm(v
αi ,βi , x i)qm(x i),

where the point (ξ1,ξ2) ∈ D depends on the variable x i with respect to we make the derivative, we can deduce

|Rm(f)| ≤
�

�

�

�

∂ 2m

∂ x2m
i

f(ξ1,ξ2)

�

�

�

�

1
(2m)!

2
∏

i=1

1
γm(vαi ,βi )

∫ 1

−1

pm(v
αi ,βi )qm(x i)v

αi ,βi (x i) d x i

≤max
i=1,2
‖f(2m)

xi
‖∞

1
(2m)!

2
∏

i=1

1
(γm(vαi ,βi ))2

.

Proof of Theorem 2.4. First, we prove the stability of the formula. By definition (17)

|Σn
ω
(f,ωy)|=

d2

4ω2

�

�

�

�

�

S
∑

i=1

S
∑

j=1

n
∑

h=1

n
∑

ν=1

λ
α1 ,β1
h,i λ

α2 ,β2
ν, j κi j

�

(ξα1 ,β1
h,i ,ξα2 ,β2

ν, j ),ωy
�

fi j(ξ
α1 ,β1
h,i ,ξα2 ,β2

ν, j )

�

�

�

�

�

≤
d2

4ω2
‖fσ‖∞max

i, j
‖κi j(ωy)‖∞

S
∑

i=1

S
∑

j=1

n
∑

h=1

λ
α1 ,β1
h,i

σ(ξα1 ,β1
h,i )

n
∑

ν=1

λ
α2 ,β2
ν, j

σ(ξα2 ,β2
ν, j )

from which taking into account that

n
∑

h=1

λ
α1 ,β1
h,i

σ(ξα1 ,β1
h,i )

≤
∫ 1

−1

vα1 ,β1
i (x1)

vγ1 ,δ1(x1)
d x1 and

n
∑

ν=1

λ
α2 ,β2
ν, j

σ(ξα2 ,β2
ν, j )

≤
∫ 1

−1

vα2 ,β2
j (x2)

vγ2 ,δ2(x2)
d x2

by the assumptions on the weights and on the kernel we get estimate (19).
Let us now prove (21). By applying Proposition 2.1 and taking into account the well-known estimate [7]

E2n−1(h1 h2)σ ≤ ‖h1σ‖∞E[ 2n−1
2 ](h2) + 2‖h2‖∞E[ 2n−1

2 ](h1)σ, ∀h1h2 ∈ Cσ,

where [a] denotes the greatest integer smaller than or equal to a > 0, we can write

|Λn
ω
(f,ωy)| ≤ C

S
∑

i=1

S
∑

j=1

�

‖fi jσ‖∞E[ 2n−1
2 ](k i j) + sup

x∈D
|κi j(x,ωy)| E[ 2n−1

2 ](fi j)σ

�

.

Then, by using (5) we get

|Λn
ω
(f,ωy)| ≤

C
nr

S
∑

i=1

S
∑

j=1

‖fi j‖W r
σ

�

Nr(κi j ,y) + sup
x∈D
|κi j(x,ωy)|

�

,

with

Nr(κi j ,ωy) :=max
k=1,2

�

max
x∈D

�

�

�

�

�

∂ r

∂ x r
k

κi j(x,ωy)

�

ϕr(xk)

�

�

�

�

�

.

By definitions (15) and (16) we can deduce
�

�

�

�

�

∂ `

∂ x`k
Ui j(x)

�

ϕ`(xk)

�

�

�

�

≤ C
�

d
2ω

�`

,

so that by applying assumptions (20) and taking into account (12), we get
�

�

�

�

�

∂ r

∂ x r
k

κi j(x,ωy)

�

ϕr(xk)

�

�

�

�

≤
r
∑

`=0

�

r
`

�

�

�

�

�

�

∂ `

∂ x`k
k

�

Ψ−1
i j (x)

ω
,y

�

ϕ`(xk)

�

�

�

�

�

�

�

�

�

�

∂ r−`

∂ x r−`
k

Ui j(x)

�

ϕr−`(xk)

�

�

�

�

≤ C
r
∑

`=0

�

r
`

��

d
2ω

�r−` � d
2ω

�`

= C
�

d
ω

�r

.
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Therefore

sup
y∈D
|Λn
ω
(f,ωy)| ≤

C
nr

�

d
ω

�r

‖f‖W r
σ
.

Proof of Corollary 2.5. By (18), taking into account (17) and by applying Proposition 2.2, we have

|Λn
ω
(f,ωy)| ≤

d2

4ω2

S
∑

i=1

S
∑

j=1

|Rn(fi j κi j ,ωy)| ≤
d2

4ω2

1
(2n)!

2
∏

k=1

1
(γn(vαk ,βk ))2

S
∑

i=1

S
∑

j=1

sup
x∈D

max
k=1,2

�

�

�

�

∂ 2n

∂ x2n
k

[fi j(x)κi j(x, ωy)]

�

�

�

�

.

By the Leibnitz rule we can write
�

�

�

�

∂ 2n

∂ x2n
k

[fi j(x)κi j(x, ωy)]

�

�

�

�

≤
2n
∑

r=0

�

2n
r

�

�

�

�

�

�

∂ 2n−r

∂ x2n−r
k

f

�

Ψ−1
i j (x)

ω

�

�

�

�

�

�

�

�

�

�

∂ r

∂ x r
k

κi j(x, ωy)

�

�

�

�

≤
2n
∑

r=0

�

2n
r

��

d
2ω

�2n−r

‖f(2n−r)
xk

‖∞ sup
x∈D

�

�

�

�

∂ r

∂ x r
k

κi j(x, ωy)

�

�

�

�

,

from which [3] we get
�

�

�

�

∂ 2n

∂ x2n
k

[fi j(x)κi j(x, ωy)]

�

�

�

�

≤ ‖f‖∞
2n
∑

r=0

�

2n
r

��

d
4ω

�2n−r
�

�

�

�

∂ r

∂ x r
k

κi j(x, ωy)

�

�

�

�

+ ‖f(2n)
xk
‖∞

2n
∑

r=0

�

2n
r

��

d
2ω

�2n−r

2r

�

�

�

�

∂ r

∂ x r
k

κi j(x, ωy)

�

�

�

�

.

(30)

Let us now estimate the partial derivative of the kernels κi j . By their definition (15) and taking into account the form of the
functions Ui j given in (16), we can write

�

�

�

�

∂ r

∂ x r
k

κi j(x, ωy)

�

�

�

�

≤
r
∑

`=0

�

r
`

�

�

�

�

�

�

∂ r−`

∂ x r−`
k

�

kω

�

Ψ−1
i j (x)

ω
,y

��

�

�

�

�

�

�

�

�

�

∂ `

∂ x`k
Ui j (x)

�

�

�

�

≤ C
r
∑

`=0

�

r
`

��

d
2ω

�r−` � d
2ω

�`

sup
x∈D

�

�

�

�

�

∂ r−`

∂ x r−`
k

kω

�

Ψ−1
i j (x)

ω
,y

�

�

�

�

�

�

.

Thus, being [3]

sup
x∈D

�

�

�

�

�

∂ r−`

∂ x r−`
k

kω

�

Ψ−1
i j (x)

ω
,y

�

�

�

�

�

�

≤ C

�

�

1
2

�r−`

sup
x∈D

�

�

�

�

�

kω

�

Ψ−1
i j (x)

ω
,y

�

�

�

�

�

�

+ 22n−r+` sup
x∈D

�

�

�

�

�

∂ 2n

∂ x2n
kω

�

Ψ−1
i j (x)

ω
,y

�

�

�

�

�

�

�

,

in virtue of the assumptions on the kernel k, we have
�

�

�

�

∂ r

∂ x r
k

κi j(x, ωy, ω)

�

�

�

�

≤ C 22n
�

3d
4ω

�r

.

Consequently, by replacing the above estimate in (30) we have
�

�

�

�

∂ 2n

∂ x2n
k

[fi j(x)κi j(x, ωy)]

�

�

�

�

≤ C
�

d
ω

�2n
�

‖f‖∞ + ‖f(2n)
xk
‖∞
�

,

from which we deduce

|Λn
ω
(f,ωy)| ≤

d2

4ω2

1
(2n)!

2
∏

k=1

1
(γn(vαk ,βk ))2

�

d
ω

�2n
�

‖f‖∞ + ‖f(2n)
xk
‖∞
�

and then taking into account that γn(w)∼ 2n [7]

|Λn
ω
(f,ωy)| ≤

�

d
2ω

�2n+2 1
(2n)!

�

‖f‖∞ + ‖f(2n)
xk
‖∞
�

.

Therefore, by using the well-known Stirling formula
�n

e

�np
2πn e−

1
12n ≤ n!≤

�n
e

�np
2πn e−

1
12n+1 ,

we get the thesis.
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Proof of Proposition 3.1 . The boundedness of the operator follows by (8) and by the fact that sup
x∈D
‖kω(x, ·)σ‖∞ <∞. In fact,

by definition we can assert

|(Kωf)(y)σ(y)| ≤ |µ| ‖fσ‖∞

∫

D

|kω(x,y)σ(y)|
w(x)
σ(x)

dx≤ C‖fσ‖∞.

In order to prove its compactness, it is sufficient to prove that the operator Kω satisfies the following condition [13]

lim
m→∞

sup
‖fσ‖∞=1

Em(Kωf)σ = 0. (31)

To this end, we note that for r > 0








∂ r

∂ y r
i

(Kωf)ϕrσ









∞
≤ |µ| ‖fσ‖∞

∫

D

�

�

�

�

∂ r

∂ y r
i

kω(x,y)ϕr(y)σ(y)

�

�

�

�

w(x)
σ(x)

dx

≤ |µ| ‖fσ‖∞ sup
x∈D









∂ r

∂ y r
i

kω(x, ·)ϕrσ









∞

∫

D

w(x)
σ(x)

dx.

Hence, Kωf ∈W r
σ

for each f ∈ Cσ, and by using (5) we deduce (31).

Proof of Theorem 3.2. At first, let us mention that the kernel kω satisfies the assumptions of Theorem 2.3 and 2.4 for any r ≥ 1.
Now, by (24) we can write

|Em,m
ω
(f,y)| ≤

�

�

�

�

�

∫

D

k(x,y)f(x)w(x)dx−µ
m
∑

i=1

m
∑

j=1

Ai j(y)f(ξ
α1 ,β1
i ,ξα2 ,β2

j )

�

�

�

�

�

+ |µ|

�

�

�

�

�

m
∑

i=1

m
∑

j=1

[Ai j(y)− Am
i j(y)]f(ξ

α1 ,β1
i ,ξα2 ,β2

j )

�

�

�

�

�

≤ |Em
ω
(f,y)|+ |µ| ‖fσ‖∞

m
∑

h=1

m
∑

ν=1

|Λm
ω
(`i, j ,ωy)|

σ(ξα1 ,β1
i ,ξα2 ,β2

j )
.

Then, by applying (21) with r = m− 1 we have

|Λm
ω
(`i, j ,ωy)| ≤

C
mm−1

�

d
ω

�m−1

‖`i, j‖W m−1
σ

.

Consequently, by using the weighted Bernstein inequality (see, for instance [7, p. 170]) we get

|Λm
ω
(`i, j ,ωy)| ≤ C

�

d
ω

�m−1

‖`i, jσ‖∞,

from which, taking into account the bahaviour of the Lebesgue constants [7] we deduce

|Em,m
ω
(f,y)| ≤ |Em(f,y)|+ C

�

d
ω

�m−1

log2 m‖fσ‖∞.

Then the thesis is obtained by applying Theorem 2.3 to the first term.

Proof of Theorem 3.3. By Theorem 3.2 we can deduce that ‖(Kω−Km,m
ω
)fσ‖ tends to zero for any f ∈ Cσ. Moreover, by proceeding

as done in the proof of Theorem 4.1 in [4] we can state that the operators {Km,m
ω
}m are collectively compact. Thus, in virtue of the

principle of uniform boundedness, we can deduce that sup
m
‖Km,m

ω
‖<∞ and ‖(K−Km,m

ω
)Km,m
ω
‖ tends to zero [1, Lemma 4.1.2].

Consequently, we can claim that for m sufficiently large, the operator (I− Km,m
ω
)−1 exists and it is uniformly bounded i.e. the

method is stable.
About the well-conditioning of the matrix of system (27) we can use the same arguments in [1, p.113] only by replacing the

usual infinity norm with the weighted uniform norm of Cσ. Finally, estimate (29) follows taking into account that

‖(f− fm,m)σ‖∞ ≤ ‖(I+Km,m
ω
)−1‖‖(K−Km,m

ω
)f‖∞

and by applying Theorem 3.2 to the last term.
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