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Introduction

Idea Design adaptive approximation schemes respecting the local
geometric regularity of two-dimensional functions

Basic adaptive wavelet approaches

a) Apply a generalized lifting scheme to the data using (nonlinear)
data-dependent prediction and update operators

b) Adaptive approximation schemes using geometric image informati-
on, usually with extra adaptivity costs
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Basic adaptive wavelet approaches

a) Apply a generalized lifting scheme to the data using (nonlinear)
data-dependent prediction and update operators

Literature (incomplete)

• discrete MRA and generalized wavelets (Harten ’93)

• second generation wavelets (Sweldens ’97)

• edge adapted multiscale transform (Cohen & Matei ’01)

• Nonlinear wavelet transforms (Claypoole et al. ’03)

• adaptive lifting schemes (Heijmans et al. ’06)

• adaptive directional lifting based wavelet transf. (Ding et al. ’06)

• edge-adapted nonlinear MRA (ENO-EA) (Arandiga et al. ’08)

• meshless multiscale decompositions (Baraniuk et al. ’08)

• nonlinear locally adaptive filter banks (Plonka & Tenorth ’09)
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How does it work?

The general lifting scheme consists of three steps.

1. Split Split the given data a = (a(i, j))N−1i,j=0 into two sets
ae and ao

2. Predict Find a good approximation ão of ao of the form

ão = P1a
o + P2a

e

Put
do := ão − ao.

Assume that (ae, ao) 7→ (ae, do) is invertible, i.e., I − P1 is invertible.

3. Update Find a “smoothed” approximation of ae

(a low-pass filtered subsampled version of a)

ãe := U1(d
o) + U2(a

e)

Assume that (ae, do) 7→ (ãe, do) is invertible, i.e., that U2 is invertible.
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How to choose the prediction and update operators?

Prediction operator local approximation of ao by an adaptively
weighted average of “neighboring” data

Example 1.

• Fix a stencil at a neighborhood of ao(i, j) (adaptively)

• Compute a polynomial p by interpolating/approximating the data
on the stencil

• Choose p(i, j) to approximate ao(i, j).

Example 2. Use nonlinear diffusion filters to determine the prediction
operator

Update operator usually linear, non-adaptive
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Basic adaptive wavelet approaches

b) Adaptive wavelet approximation schemes using geometric image
information, usually with extra adaptivity costs

Literature (incomplete)

• wedgelets (Donoho ’99)

• bandelets (Le Pennec & Mallat ’05)

• geometric wavelets (Dekel & Leviatan ’05)

• geometrical grouplets (Mallat ’09)

• EPWT (Plonka et al. 09)

• tetrolets (Krommweh ’10)

• generalized tree-based wavelet transform (Ram, Elad et al. ’11)
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Basic adaptive wavelet approaches

wedgelets (Donoho ’99)

approximation of images using an adaptively chosen domain decom-
position

bandelets (Le Pennec & Mallat ’05)

wavelet filter bank followed by adaptive geometric orthogonal filters

geometric wavelets (Dekel & Leviatan ’05)

binary space partition and polynomial approximations in subdo-
mains

geometrical grouplets (Mallat ’09)

association fields that group points, generalized Haar wavelets

EPWT (Plonka et al. 09)

tetrolets (Krommweh ’10)

generalized Haar wavelets on adaptively chosen tetrolet partitions
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Comparison of basic adaptive wavelet approaches

a) Generalized lifting scheme with nonlinear prediction

Advantages invertible transform, no side information necessary
usually a justifiable computational effort

Drawbacks bad stability of the reconstruction scheme
only slightly better approximation results compared with
linear (nonadaptive) transforms

b) Adaptive wavelet approximation using geometric image informa-
tion

Advantages very good approximation results

Drawbacks adaptivity costs for encoding
usually high computational effort
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Description of the EPWT

Problem Given a matrix of data points (image values), how to com-
press the data by a wavelet transform thereby exploiting
the local correlations efficiently?

Idea

1. Find a (one-dimensional) path through all data points such that
there is a strong correlation between neighboring data points.

2. Apply a one-dimensional wavelet transform along the path.

3. Apply the idea repeatedly to the low-pass filtered array of data.
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Toy Example

f =


115 108 109 112
106 116 107 109
112 110 108 108
108 109 103 106

 array of data.
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p4 = ((0, 5, 8, 9, 13, 12), (1, 6, 11, 10, 7, 2, 3), (4), (15, 14)),

f3 = (115.5, 111, 108.5, 107.5, 108, 109, 109, 104.5),

p3 = ((0, 1, 6, 5, 4, 3), (2, 7)), p2 = (0, 1, 2, 3).
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The relaxed EPWT

Idea: Change the direction of the path only if the difference of data
values is greater than a predetermined value θ.

rigorous EPWT (θ = 0)

Entropy 2.08 bit per pixel

relaxed EPWT (θ = 0.14)

Entropy 0.39 bit per pixel
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Numerical results

Test: door lock image (128× 128)

θ1 levels nonzero PSNR entropy
WT coeff of p̃14

tensor prod. Haar - 7 512 22.16 -
tensor prod Daub. - 6 512 22.94 -
tensor prod 7-9 - 4 512 22.49 -
EPWT Haar 0.00 14 512 28.04 2.22
EPWT Haar 0.05 14 512 28.37 1.11
EPWT Haar 0.10 14 512 27.74 0.55
EPWT Daub. 0.00 12 512 28.63 2.22
EPWT Daub. 0.05 12 512 29.23 1.11
EPWT Daub. 0.10 12 512 28.67 0.55
EPWT Daub. 0.15 12 512 27.65 0.32
EPWT 7-9 0.00 10 512 28.35 2.22
EPWT 7-9 0.05 10 512 28.99 1.11
EPWT 7-9 0.10 10 512 28.38 0.55
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Results for N-term approximation

Theorem 1 (Plonka, Tenorth, Iske (2011))

The EPWT (with the Haar wavelet transform) leads for suitable path
vectors to an N -term approximation of the form

‖f − fN‖22 ≤ C N−α

for piecewise Hölder continuous functions of order α (with 0 < α ≤ 1)
possessing discontinuities along curves of finite length.

Theorem 2 (Plonka, Iske, Tenorth (2013))

The application of the EPWT leads for suitably chosen path vectors
to an N -term approximation of the form

‖f − fN‖22 ≤ C N−α

for piecewise Hölder smooth functions of order α > 0 possessing dis-
continuities along curves of finite length.
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The hybrid method using the EPWT

Idea

1. Apply an image separation into a smooth image part and a remain-
der part containing edges and texture

u = usm + ur

using e.g. a suitable smoothing filter.

2. Apply a tensor product wavelet transform to the smooth image part
usm to get an N -term approximation usmN .

3. Apply the EPWT to the (shrinked) remainder ur to get am M -term
approximation urM .

4. Add usmN and urM to find a good approximation of u.
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A sketch of the hybrid method

We use the tensor-product wavelet transform for the smoothed image
and the EPWT for the (shrunken) difference image.
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Example

Original image smoothed image usm wavelet approxi-

mation usm1200

difference image ur shrunken difference
ur1/4

EPWT approximation

ur800
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Example continued

N -term approximation with N = 2000.

(a) u1200+800 using the new hybrid method

(b) u2000 using the 9/7 wavelet transform with 2000 non-zero elements

(a) (b)
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Numerical results for the hybrid method

9/7 Hybrid
image nzc PSNR PSNR entropy
barbara 500 23.33 27.28 1.0070
cameraman 500 22.54 27.49 0.9893
clock 500 24.61 30.87 0.8742
goldhill 500 24.18 28.19 0.8408
lena 500 23.21 27.91 0.9022
pepper 500 23.41 28.03 0.8795
sails 500 21.32 25.42 0.9190

Hybrid: Search for suitable path vectors in each level
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Original image 7/9, 500 coeff.

PSNR= 23.21

Hybrid, 500 coeff.

PSNR=27.91

Original image 7/9, 500 coeff.

PSNR=23.41

Hybrid, 500 coeff.

PSNR = 28.03
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Denoising of scattered data using the EPWT approach

Given

a set of d-dimensional points Γ = {x1, x2, . . . , xN} ⊂ Rd

noisy function values f̃(xj) = f(xj) + zj , j = 1, . . . , N

where

f : Rd → R piecewise smooth

zj independent and N (0, σ2j ) distributed (Gaussian noise)

Wanted denoised function values f(xj)

Classical wavelet shrinkage

wavelet decomposition

shrinkage: set small high-pass coefficients to zero

wavelet reconstruction

Analogon of cycle shift:
average [ shift → wavelet shrinkage → un-shift ]
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Denoising scheme (wavelet decomposition and shrinkage)

• find path through all points

Problem & Proposed Algorithm
Construction of Path Vectors

Properties of Wavelet Transform on Paths
Numerical Results

Problem
Classical Wavelet Shrinkage
Proposed Algorithm

Proposed Denoising Scheme: Decomposition

suitable path construction

one-dimensional wavelet
decomposition along path

update point set by wavelet
transform (componentwise)

shrink high-pass coefficients

low-pass coefficients �→
updated point set

continue for further levels
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Dennis Heinen Wavelet Shrinkage on Paths for Denoising of Scattered Data
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Denoising scheme (wavelet decomposition and shrinkage)
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Denoising scheme (wavelet decomposition and shrinkage)

• find path through all points

• apply 1D wavelet transform
along the path
low pass coefficients (3, 10, 8, 1)
high pass coefficients (1, 2, 2, 1)

Problem & Proposed Algorithm
Construction of Path Vectors

Properties of Wavelet Transform on Paths
Numerical Results

Problem
Classical Wavelet Shrinkage
Proposed Algorithm

Proposed Denoising Scheme: Decomposition

suitable path construction

one-dimensional wavelet
decomposition along path

update point set by wavelet
transform (componentwise)

shrink high-pass coefficients

low-pass coefficients �→
updated point set

continue for further levels
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Denoising scheme (wavelet decomposition and shrinkage)

• find path through all points
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along the path
low pass coefficients (3, 10, 8, 1)
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Denoising scheme (wavelet decomposition and shrinkage)

• find path through all points

• apply 1D wavelet transform
along the path
low pass coefficients (3, 10, 8, 1)
high pass coefficients (1, 2, 2, 1)

• update point set

• apply shrinkage to wavelet
coefficients

• relate low pass coefficients
to the updated point set
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Denoising scheme (wavelet decomposition and shrinkage)

• find path through all points

• apply 1D wavelet transform
along the path
low pass coefficients (3, 10, 8, 1)
high pass coefficients (1, 2, 2, 1)

• update point set

• apply shrinkage to wavelet
coefficients

• relate low pass coefficients
to the updated point set

• continue at the next level

Problem & Proposed Algorithm
Construction of Path Vectors

Properties of Wavelet Transform on Paths
Numerical Results

Problem
Classical Wavelet Shrinkage
Proposed Algorithm

Proposed Denoising Scheme: Decomposition

suitable path construction

one-dimensional wavelet
decomposition along path

update point set by wavelet
transform (componentwise)

shrink high-pass coefficients

low-pass coefficients �→
updated point set

continue for further levels
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Adaptive path reconstruction

• Choose first path index p(1) randomly from Γ := {1, . . . , N}.
• For k = 1, . . . , N − 1 choose p(k + 1) such that

xp(k+1) = argmax
x∈NC,θ(xp(k))

〈xp(k) − xp(k−1), x− xp(k)〉
‖xp(k) − xp(k−1)‖ · ‖x− xp(k)‖

where NC,θ(xp(k)) contains all points xr ∈ Γ fulfilling:

1. r /∈ {p(1), . . . , p(k)}
2. ‖xr − xp(k)‖2 ≤ C

3. |f(xr)− f(xp(k))| ≤ θ.

If NC,θ(xp(k)) = ∅, randomly choose p(k+1) among the indices fulfilling
1 & 2 or only 1.
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Example: Adaptive path reconstruction

29



Original image noisy image

PSNR= 19.97

adaptive path constr.

PSNR 29.01

random path constr.

PSNR = 27.96

σ = 0.1
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Original image noisy image

PSNR= 16.45

adaptive path constr.

PSNR 26.44

random path constr.

PSNR = 25.69

σ = 0.15

31



Comparison of denoising results

Problem & Proposed Algorithm
Construction of Path Vectors

Properties of Wavelet Transform on Paths
Numerical Results

Numerical Results: Comparison (PSNR)

peppers peppers cameraman cameraman
noisy image 19.97 16.45 19.97 16.45

tensor product wavelet shrinkage 24.91 23.20 24.74 22.86
with cycle spinning 28.11 25.86 27.19 25.14

4-pixel scheme 28.26 26.13 27.64 25.73
curvelet shrinkage 26.36 23.95 25.48 23.73
shearlet shrinkage 26.82 25.04 26.07 24.23
deterministic path 29.01 26.44 28.28 26.15

random path 27.96 25.69 27.44 24.85

Dennis Heinen Wavelet Shrinkage on Paths for Denoising of Scattered Data
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Denoising of non-rectangular domains

Original image noisy image

PSNR= 19.97

denoised image

PSNR=27.77
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Original image noisy image

PSNR= 19.98

denoised image

PSNR=26.31

Original image noisy image

PSNR=19.96

denoised image

PSNR = 28.71
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