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Abstract

We survey elements of the nonlinear potential theory associated to m-subharmonic functions and the
complex Hessian equation. We focus on properties which distinguish m-subharmonic functions from
plurisubharmonic ones.

Introduction
Plurisubharmonic functions arose as multidimensional generalizations of subharmonic functions in the complex plane (see [LG]).
Thus it is not surprising that these two classes of functions share many similarities. There are however many subtler properties
which make a plurisubharmonic function in Cn, n > 1 differ from a general subharmonic function. Below we list some of the
basic ones:

Liouville type properties. it is known ([LG]) that an entire plurisubharmonic function cannot be bounded from above unless
it is constant. The function u(z) = −1

||z||2n−2 in Cn, n> 1 is an example that this is not true for subharmonic ones;
Integrability. Any plurisubarmonic function belongs to Lp

loc for any 1≤ p <∞. For subharmonic functions this is true only
for p < n

n−1 as the function u above shows.
Symmetries. Any holomorphic mapping preserves plurisubharmonic functions in the sense that a composition of a plur-

isubharmonic function with a holomporhic mapping is still plurisubharmonic. This does not hold for subharmonic functions in
Cn, n> 1.

The notion of m-subharmonic function (see [Bl1], [DK2, DK1]) interpolates between subharmonicity and plurisubharmonicity.
It is thus expected that the corresponding nonlinear potential theory will share the joint properties of potential and pluripotential
theories.

Indeed in the works of Li, Blocki, Chinh, Abdullaev and Sadullaev, Dhouib and Elkhadhra, Nguyen and many others the
m-subharmonic potential theory was thoroughly developed. In particular S. Y. Li [Li] solved the associated smooth Dirichlet
problem under suitable assumptions, proving thus an analogue of the Caffarelli-Nirenberg-Spruck theorem [CNS] who dealt
with the real setting. Z. Blocki [Bl1, Bl3] noted that the Bedford-Taylor apparatus from [BT1] and [BT2] can be adapted to
m-subharmonic setting. He also described the domain of definition of the complex Hessian operator. L. H. Chinh developed the
variational apporach to the complex Hessian equation [Chi1] and studied the associated viscosity theory of weak solutions in
[Chi3]. He also developed the theory of m-subharmonic Cegrell classes [Chi1, Chi2]. Abdullaev and Sadullaev in [AS] defined
the corresponding m-capacities (this was done also independently by Chinh in [Chi2] and the authors in [DK2]). A. Dhouib and
F. Elkhadhra investigated m-subharmonicity with respect to a current [DE] and noticed several interesting phenomena. N. C.
Nguyen in [N] investigated existence of solutions to the Hessian equations if a subsolution exists.

Arguably the most interesting part of the theory is the one that differs from its pluripotential counterpart. This involves not
only new phenomena but also requires new tools. Obviously there are good reasons for such a discrepancy. The very notion of
plurisubharmonicity is independent of the Kähler metric in sharp contrast to m-subharmonicity. The fundamental solution for the
m-Hessian equation is − 1

|z|2
n
m −2 , hence there is stronger than logarithmic singularity at the origin and the function is bounded at

infinity. Also it is only Lp integrable for p < nm
n−m .

The goal of this survey note is to gather such distinctive results for m-subharmonic functions. Our choice is of course subjective
and we do not cover many important issues such as m-polar sets or m-subharmonic functions on compact manifolds. First we deal
with the symmetries of m-sh functions. We show in particular that the set these symmetries coincides with the set of holomorphic
and antiholomorphic orthogonal affine maps for any 1< m< n in sharp contrast to the borderline cases. We also investigate the
analogues of upper level sets of Lelong numbers. Following the arguments of Harvey and Lawson ([HL1]) and Chu ([Ch]) we
present the proof of the stunning fact that the upper level sets are discrete for m< n. This again is drastically different from the
plurisubharmonic case where Siu’s theorem implies the analyticity of such sets when m= n.
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The note is organized as follows: the basic notions and tools are listed in Section 1. In particular we have covered the linear
algebraic and potential theoretic properties of m-sh functions. We have also included a fairly brief subsection devoted to weak
solutions of general elliptic PDEs. The first part of Section 2 is devoted to the symmetries of m-sh functions. In the second one we
construct a particular nonlinear operator Pm. We show that all m-sh functions are subsolutions for Pm and, more importantly,
Pm has the same fundamental solution as the m-Hessian operator. We wish to point out that Pm is an example of a much more
general construction of an uniformly elliptic operator with the same Riesz characteristic as defined by Harvey and Lawson (see
[HL1]). Finally in Section 3 we investigate the upper level sets of analogues of Lelong numbers of m-sh functions. This section
depends on the general agruments of Harvey and Lawson ([HL1, HL2]) and Chu ([Ch]). As we deal with the concrete case of
m-sh functions our argument is slightly simpler but the main ideas are the same.

Dedication. It is our pleasure to dedicate this article to Norm, a great friend and mathematician.
Aknowledgements. Both authors were supported by the NCN grant

2013/08/A/ST1/00312.

1 Preliminaries
In this section we recall the notions and tools appearing in the potential theory of m-subharmonic functions.

1.1 Linear algebra.

Denote by Mn the set of all Hermitian symmetric n× n matrices. Fix a matrix M ∈Mn. By λ(M) = (λ1,λ2, ...,λn) denote its
eigenvalues arranged in the decreasing order.

Definition 1.1. The m-th symmetric polynomial associated to M is defined by

Sm(M) = Sm(λ(M)) =
∑

0< j1<...< jm≤n

λ j1 λ j2 ...λ jm .

We recall that S1(M) is the trace of M , whereas Sn(M) is the determinant of M .
Next one can define the positive cones Γm as follows

Γm = {λ ∈ Rn| S1(λ)> 0, · · · , Sm(λ)> 0}. (1.1)

The following two properties of these cones are classical:

1. (Maclaurin’s inequality) If λ ∈ Γm then (
S j

(nj)
)

1
j ≥ ( Si

(ni)
)

1
i for 1≤ j ≤ i ≤ m;

2. (Gårding’s inequality, [Ga]) Γm is a convex cone for any m and the function S
1
m

m is concave when restriced to Γm;

We refer the Reader to [Bl1] or [W] for further properties of these cones.

1.2 Potential theoretic aspects of m-subharmonic functions.

We restirct our considerations to a relatively compact domain Ω ⊂ Cn. We assume n≥ 2 in what follows.
Denote by d = ∂ + ∂̄ and

d c := i(∂̄ − ∂ ) the standard exterior differentiation operators. By β := dd c |z|2 we denote the canonical Kähler form in Cn.
We now define the smooth m-subharmonic functions.

Definition 1.2. Given a C2(Ω) function u we call it m-subharmonic in Ω if for any z ∈ Ω the Hessian matrix ∂ 2u
∂ zi∂ z̄ j

(z) has
eigenvalues forming a vector in the closure of the cone Γm.

The geometric properties of the eigenvalue vector can be stated more analytically in the language of differential forms: u is
m-subharmonic if and only if the following inequalities hold:

(dd cu)k ∧ β n−k ≥ 0, k = 1, · · · , m.

Note that these inequalities depend on the background Kähler form β if n − k ≥ 1. Thus it is meaningful to define m-
subharomicity with respect to a general Kähler form ω (see [DK1] for details). In this survey however we shall deal only with the
standard Kähler form β .

In ([Bl1]) Z. Błocki proved, one can relax the smoothness requirement on u and develop a non linear version of potential
theory for Hessian operators just as Bedford and Taylor did in the case of plurisubharmonic functions ([BT1], [BT2]).

In general m-sh functions are defined as follows:

Definition 1.3. Let u be a subharmonic function on a domain Ω ∈ Cn. Then u is called m-subharmonic (m-sh for short) if for
any collection of C2-smooth m-sh functions v1, · · · , vm−1 the inequality

dd cu∧ dd c v1 ∧ · · · ∧ dd c vm−1 ∧ β n−m ≥ 0

holds in the weak sense of currents.
The set of all m−ω-sh functions is denoted by SHm(Ω).

Remark 1. In the case m = n the m-sh functions are simply plurisubharmonic ones. Also it is enough to test m-subharmonicity of
u against a collection of m-sh quadratic polynomials (see [Bl1]).
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Using the approximating sequence u j from the definition one can follow the Bedford and Taylor construction from [BT2] of
the wedge products of currents given by locally bounded m-sh functions. They are defined inductively by

dd cu1 ∧ · · · ∧ dd cup ∧ β n−m := dd c(u1 ∧ · · · ∧ dd cup ∧ β n−m).

It can be shown (see [Bl1]) that analogously to the pluripotential setting these currents are continuous under monotone or
uniform convergence of their potentials.

Given an m-sh function u one can always construct locally a dereasing sequence of smooth m-sh approximants through the
standard regularizations u ∗ρε with ρε being a family of smooth mollifiers.

Unlike classical elliptic PDEs one cannot apply the maximum principle for m-sh functions directly as we deal with non-smooth
functions in general. Instead one can use the so-called comparison principles which are standard tools in pluripotential theory.
Their proofs follow essentially from the same arguments as in the plurisubharmonic case m= n (see [K]):

Theorem 1.1. Let u, v be continuous m-sh functions in a domain Ω ⊂ Cn. Suppose that lim infz→∂Ω(u− v)(z)≥ 0 then
∫

{u<v}
(dd c v)m ∧ β n−m ≤

∫

{u<v}
(dd cu)m ∧ β n−m.

Theorem 1.2. Let u, v be continuous m-sh functions in a domain Ω ⊂ Cn. Suppose that lim infz→∂Ω(u− v)(z)≥ 0 and (dd c v)m ∧
β n−m ≥ (dd cu)m ∧ β n−m. Then v ≤ u in Ω.

In particular the Dirichlet problem associated to the m-Hessian operator can have at most one solution. As for the existence
we have the following fundamental existence theorem due to S. Y. Li ([Li]):

Theorem 1.3. Let Ω be a smoothly bounded relatively compact domain in Cn. Suppose that ∂Ω is (m−1)-pseudoconvex (that means
that the Levi form at any point p ∈ ∂Ω has its n− 1 eigenvalues in the cone Γm−1). Let ϕ be a smooth function on ∂Ω and f a strictly
positive and smooth function in the closure of Ω. Then the Dirichlet problem







u ∈ SHm(Ω)∩ C(Ω̄);
(dd cu)m ∧ β n−m = f ;
u|∂Ω = ϕ

has a smooth solution u.

m-sh functions, just as plurisubharmonic ones may not be bounded from below. Indeed it can be checked by direct computation
that the function

G(z) := −
1

|z|2n/m−2
(1.2)

is m-sh on Cn if m< n and is obviously unbounded at 0. It can also be checked that the Hessian measure

(dd c G)m ∧ β n−m

is up to a normalizing constant equal to the Dirac delta at zero.
In pluripotential theory there are different tools for measuring the pointwise singularities of plurisubharmonic functions.

Among the basic ones (see [De]) is the Lelong number:

Definition 1.4 (Lelong number). Let u be a plurisubharmonic function defined in a neighbourhood of a point z0 ∈ Cn. Then the
limit l imr→0+ of the quantity

∫

|z−z0 |≤r

dd cu∧ (dd c log|z − z0|)n−1 =
1

r2n−2

∫

|z−z0 |≤r

dd cu∧ β n−1

is called a Lelong number of the function u at z0.

Remark 2. There are many other equivalent definitions of the Lelong numbers. We have chosen this one since it is easily adjustable
to m-sh functions.

Note that unless u is unbounded near z0 the Lelong number vanishes. This is however not a sufficient condition as the
plurisubharmonic function
−log(−log|z|) near zero shows. Intuitively speaking the Lelong number measures whether u has logarithmic singularity at

z0- these are the strongest singularities that plurisubharmonic functions can have.
The equality (whose proof can be found in [De]) in particular implies that the quantity 1

r2n−2

∫

|z−z0 |≤r
dd cu∧β n−1 (which is up

to a universal multiplicative constant equal to 1
r2n−2

∫

|z−z0 |≤r
∆u) is increasing with r. This implies that the set

Ec(u) := {z|u has a Lelong number at least c at z}

is small for any c > 0. More precisely for any ε > 0 it has zero 2n− 2+ ε Hausdorff measure.
It turns out however that more is true: a deep theorem of Siu [S] states that the sets Ec(u) are always analytic for c > 0:

Theorem 1.4 (Siu). Let u be a plurisubharmonic function in a domain
Ω ⊂ Cn. Then for any c > 0 the set Ec(u) is an analytic subset of Ω.

Returning to m-sh functions the following definition of an m-sh Lelong number is natural:
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Definition 1.5 (m-sh Lelong number). let u be an m-sh function defined in a neighbourhood of a point z0 ∈ Cn. Then the limit
l imr→0+ of the quantity

∫

|z−z0 |≤r

dd cu∧ (dd c −1
|z − z0|2n/m−2

)m−1 ∧ β n−m

is called the m-sh Lelong number of the function u at z0.

Just as in the plurisubharmonic case integration by parts implies the equality
∫

|z−z0 |≤r

dd cu∧ (dd c −1
|z − z0|2n/m−2

)m−1 ∧ β n−m = (1.3)

1
r2n−2n/m

∫

|z−z0 |≤r

dd cu∧ β n−1.

In particular the latter quantity is increasing in r.
We also define the level sets of m-sh Lelong numbers:

Definition 1.6. let u be an m-sh function defined in a domain Ω ⊂ Cn. We define the set

Em
c (u,Ω) = Em

c (u) := {z ∈ Ω|u has a m− sh Lelong number at least c at z}.

The properties of the set Em
c (u) will be studied in Section 3.

Definition 1.7. An m-sh function u is called maximal in a domian Ω ⊂ Cn if for every m-sh function v the implication v ≤ u off a
compact subset K of Ω implies v ≤ u in the whole Ω.

Remark 3. For m= 1 maximal subharmonic functions are of course the harmonic ones. For m> 1 any bounded maximal m-sh
function u satisfies

(dd cu)m ∧ β n−m = 0.

On the other hand there exist maximal m-sh functions for which the m-Hessian measure is not well defined.

1.3 Uniformly elliptic PDEs

Hessian equations just like the Monge-Ampère one are examples of degenerate elliptic equations. Recall that an equation

S(x , D2u(x)) = 0

is said to be degenerate elliptic at (x , D2u(x)) if for any positive semidefinite Hermitian matrix M ≥ 0 one has

S(x , D2u(x) +M)≥ 0. (1.4)

The operator is degenerate elliptic for a class F of functions if it is degenerate elliptic for any u ∈ F . Note that complex m-Hessian
equation is degenerate elliptic for the class of m-subharmonic functions.

A great deal of problems in the regularity theory of the solutions to the complex Hessian equations are caused by the lack of
more quantitive control in the inequality (1.4). We shall need the notion of a uniformly elliptic operator. We define it in the
Hermitian setting which is the one we shall need later on. Recall that Mn is the set of Hermitian n× n matrices.

Definition 1.8. An operator F : Mn → R is said to be uniformly elliptic at A if there are constants c, C > 0, such that for any
matrix P ≥ 0 one has

c × t race(P)≤ F(A+ P)− F(A)≤ C × t race(P).

The equation S(x , D2u(x)) = 0 is said to be uniformly elliptic if there are constants c, C > 0 such that the operator S(x , · ) is
uniformly elliptic with constants c, C for any x .
Remark 4. It is straightforward to verify that the Laplacian operator is uniformly elliptic whereas the n-th root of the Monge-Ampère
operator is uniformly elliptic at a fixed strictly positive matrix A but is not globally uniformly elliptic.

The m-Hessian operator and the associated m-subharmonic functions admit a very effective theory of weak solutions based
on pluripotential theory. This however relies on many properties of the Hessian operator, the most basic one being the ability of
reformulating the operator in the language of exterior powers of closed differential forms. As this is impossible for a general
operator there is no natural way to develop a pluripotential theory for non-smooth solutions of the equation S(D2u) = 0. Instead
a very general machinery of viscosity solutions can be used. We shall briefly list the most relevant notions and refer to [CC] for
the details:

Let Ω be a bounded domain in Cn. Consider the following equation:

S[u] := S(x , D2u(x)) = 0, (1.5)

where we assume that S is a uniformly elliptic operator.
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Definition 1.9. An upper semicontinuous function u ∈ L∞(Ω) is a viscosity subsolution of (1.5) if for any z0 ∈ Ω, q ∈ C2(Ω)
satisfying u ≤ q, u(z0) = q(z0), we have S[q](z0) ≥ 0. We also say that S[u] ≥ 0 in the viscosity sense and q is an upper
(differential) test for u at z0.

A lower semicontinuous function v ∈ L∞(Ω) is a viscosity supersolution of equation (1.5) if for any z0 ∈ Ω, q ∈ C2(Ω)
satisfying u≥ q, u(z0) = q(z0), we have S[q](z0)≤ 0. We also say that S[u]≤ 0 in the viscosity sense and q is a lower (differential)
test for u at z0.

A viscosity solution is a function which is both a sub- and supersolution.

Remark 5. In [CC] it is already assumed that sub- and supersolutions are continuous. In our applications it is however important
to relax these conditions. Note however that viscosity solutions are by definition continuous.
Remark 6. If S is merely degenerate elliptic the analogous definition still works. However if S is elliptic with respect to a class of
functions F (such as the m-Hessian operator) the subsolution is defined as above but the notion of a supersolution is much more
subtle- we refer to [DDT] for details.

We state the following important result about solutions of uniformly elliptic equations without proof. We refer to [CC] for the
details:

Theorem 1.5. Let the locally bounded function u solve in viscosity sense the uniformly elliptic equation

S(D2u) = 0.

Then u ∈ C1 and the local Lipschitz constant depends on S and the domain where u is defined. In particular the set of locally uniformly
bounded solutions is (locally) equicontinuous.

Just like for m-sh and plurisubharmonic functions one can naturally coin a notion of maximality for any elliptic operator (see
[HL1]):

Definition 1.10. An upper semicontinuous function u defined on a domain Ω ⊂ Cn is said to be maximal with respect to an
operator S(x , · ) if it is a viscosity subsolution, and for any compact set K ⊂ Ω and any subsolution v if v ≤ u on Ω \ K then v ≤ u
in Ω.

Note that maximal functions need not be (viscosity) solutions to the equation S(x , D2u(x)) = 0, since a priori they are merely
upper semicontinuous. It follows from standard arguments however that if u is a viscosity solution to S(x , D2u(x)) = 0, then it is
maximal with respect to S.

All this is in line with standard pluripotential theory where locally bounded maximal plurisubharmonic functions have
vanishing Monge-Ampère measures.

The following theorem shows that if S is uniformly elliptic, then locally bounded maximal functions are continuous (in sharp
contrast to pluripotential theory). This suffices to show that they are indeed viscosity solutions.

Theorem 1.6. Let S(x , · ) be an uniformly elliptic operator. Then any locally bounded maximal function u is continuous. Additionally
it is a solution to S(x , D2u(x)) = 0 in the viscosity sense.

Proof. We follow the argument from [HL1]. Assume that u is a function defined on a domain Ω which is locally bounded and
maximal there. Fix a closed ball B = Br(z) contained in Ω. There is a sequence ϕ j ∈ C(∂ B) decreasing on ∂ B to u|∂ B. Let
u j ∈ C(B) be the Perron envelope defined by

u j(x) = sup{v(x)|v is S − subsolution, l imsupw→w0∈∂ B v(w)≤ ϕ j(w0)}.

Using the Perron method (see [HL1]) in a standard way it is easy to check that S(x , D2u j(x)) = 0 in the viscosity sense in the
ball B. Furthermore u j ∈ C(B) and u j |∂ B = ϕ j . But then u j is maximal, hence u ≤ u j . Also u j form a decreasing sequence of
continuous subsolutions, so the limit v(x) = l im j→∞u j(x) is a subsolution with respect to S. Therefore u≤ v on B with equality
in ∂ B. Thus the function

v̄ =

�

u on Ω \ B;
v on B

is a global S-subsolution, such that v̄ ≤ u off a compact set. By the maximality of u it follows that u= v in B, hence u is locally a
decreasing limit of continuous S-solutions.

All this works for plurisubharmonic functions and the Monge-Ampère operator as well. Now we invoke Theorem 1.5 which
says in particular that the sequence u j is equicontinuous on B r

2
(z). Hence the limit u has to be continuous in B r

2
(z). The ball B

was chosen arbitrarily, hence u ∈ C(Ω).
It remains to show that u is a supersolution in Ω. Suppose the contrary. Then there exists a point z0 ∈ Ω and a C2 smooth

function q such that u ≥ q with equality at z0 and S(z0, D2q(z0)) > 0. Note that qε(z) := q(z)− ε|z − z0|2 will also be a lower
differental test for u at z0 and taking ε sufficiently small we still have S(z0, D2qε(z0))> 0. By the smoothness of qε this inequality
remains true at least in a small ball Bδ(z0) for some δ > 0. On ∂ Bδ(z0) a strict inequality u> qε holds, hence there is an η > 0,
such that u≥ qε +η there but then the function

q̄ =

�

u on Ω \ Bδ(z0);
max{qε +η, u} on Bδ(z0)
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will be a subsolution which is majorized by u off a compact set. Thus, by the maximality of u once again q̄ ≤ u everywhere.
Then at z0 we end up with

u(z0)< η+ u(z0) = (q− ε|z − z0|2 +η)|z=z0
= (q̄)(z0)≤ u(z0),

a contradiction.
Thus u is a continous solution.

2 Interpolating between subharmonicity and
plurisubharmonicity

Up to now we have seen numerous properties shared for all m-sh functions 1≤ m≤ n. In this section we will focus on properties
which differ from the extreme (i.e. m= 1 and m= n) cases.

2.1 Symmetries of m-subharmonic functions

The role of plurisubharmonic functions in complex analysis is emphasized by the fact that they are preserved by holomorphic
mappings- a composition of a plurisubharmonic function and a holomorphic mapping is still plurisubharmonic. In a sense the
holomorphic mappings play the role of symmetries in pluripotential theory.

Definition 2.1 (Symmetry). A bijective mapping F : Ω1→ Ω2, Ω1, Ω2 ⊂ Cn is called a symmetry for m-sh functions (1≤ m≤ n)
if for every m-sh function u defined on Ω2 the composition u ◦ F is m-sh on Ω1.

A natural question arises how to describe all the symmetries of m-sh functions for fixed m. The answer is known for the
extreme cases m = 1 and m = n: namely in the second case all the functions satisfying this property are precisely the holomorphic
and antiholomorphic diffeomorphisms, while in the first case all the maps F are described by the following two properties:

1. If F = (F1, F2, · · · , F2n) (in real notation), then the (real) Jacobian is an orthogonal matrix at every point,

2. 4 F j = 0, j = 1, 2, · · · , 2n.

For more details we refer to [BI] or [IM]. We only mention that there exist many functions satisfying the above conditions which
are neither holomorphic or antiholomorphic and vice versa.

In general there is no reason why there should be inclusions for the sets of maps preserving m-sh functions. Nevertheless it is
interesting to have such a description also for the intermediate cases. One reason for that is the study of global diffeomorphisms
between domains or automorphisms of a given domain. In particular if the group of smooth diffeomorphisms preserving m-sh
functions in the unit ball was transitive, this would come in handy in proving interior C1,1- estimates for solutions of Monge-Ampère
type equations (as in [BT1] for plurisubharmonic functions)- this was pointed out in [Bl1], where however a conjecture was
made that this should hold only in the m= n case. The results in this subsection confirm this conjecture. On the other hand it is
rather surprising that the group is the same for all intermediate cases 1< m< n.

Our first result in this vein is quite unexpected and in drastic contrast with the subharmonic case:

Theorem 2.1. Let F = (F1, F2, · · · , F n) ∈ C2(Cn,Cn) is a germ of a smooth mapping that preserves r-subharmonic functions for
r > 1. Then F is holomorphic or antiholomorphic.

Proof. Let u ∈ r-sh be a smooth function (so S1(u)≥ 0, S2(u)≥ 0, · · · , Sr(u)≥ 0). F preserves r-subharmonicty, hence
S1(u ◦ F)≥ 0, S2(u ◦ F)≥ 0, · · · , Sr(u ◦ F)≥ 0.

Let us compute S1. We shall write uk := ∂ u
∂ zk

, uk := ∂ u
∂ zk

.

S1(u ◦ F)(z) =
∑

j

(u ◦ F) j j(z) =
∑

j

∑

k

(uk(F(z))F
k
j
+ uk(F(z))F

k

j ) j (2.1)

=
∑

j

(
∑

k

uk F k
j j
+ uk F

k

j j) +
∑

j

(
∑

k,s

uks F
k
j
F s

j + uks F
k
j
F

s

j + uks F
k

j F s
j

+uks F
k

j F
s

j)≥ 0.

This should hold for any u ∈ r-sh. Take in particular u1 =ℜ(amzm), where am ∈ C is an arbitrary constant and ℜ(w) stands for
the real part of w. Then (2.1) simplifies to

∑

j

1
2

amF m
j j
+

1
2

amF
m

j j =ℜ
∑

j

amF m
j j
≥ 0.

Now, since am is arbitrary we get
∑

j

F m
j j
= 0, m ∈ {1, · · · , n}. (2.2)

Take then u2 =ℜ(akszkzs) (again aks are complex constants). Then (2.1) (using (2.2)) simplifies to
∑

j

1
2

aks F
k
j
F s

j +
1
2

aks F
k

j F
s

j +
1
2

aks F
s
j
F k

j +
1
2

aks F j
k
F

s

j =

=ℜaks(
∑

j

F k
j
F s

j + F s
j
F k

j )
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and as in (2.2) we get
∑

j

F k
j
F s

j + F s
j
F k

j = 0, for any k, s ∈ {1,2, · · · , n}, (2.3)

so that (2.1) simplifies to
∑

j

∑

k,s

uks F
k
j
F

s

j + uks F
k

j F s
j ≥ 0. (2.4)

Now we turn our attention to S2(u ◦ F). By definition

S2(u ◦ F) =
∑

i< j

{(u ◦ F)ii(u ◦ F) j j − (u ◦ F)i j(u ◦ F) ji}= (2.5)

=
1
2

∑

i, j

{(u ◦ F)ii(u ◦ F) j j − (u ◦ F)i j(u ◦ F) ji} ≥ 0.

>From (2.4) the first term is equal to
∑

i, j

∑

k,s

∑

m,n

(uksumnF k
j
F

s

j F
m
i

F
n

i + uksumnF k
j
F

s

j F
m

i F n
i + (2.6)

+uksumnF
k

j F s
j F

m
i

F
n

i + uksumnF
k

j F s
j F

m

i F n
i ).

Before we compute the second term of (2.5) let us make some observations. First of all the only term in (2.5) that does not
involve second order derivatives of u is

−
∑

i, j

∑

k

∑

m

(uk F k
i j
+ uk F

k

i j)(umF m
ji
+ umF

m

ji) (2.7)

Note that using again u3 :=ℜ(apzp) the quantity (2.7) (and hence (2.5)) simplifies to

−
∑

i, j

1
4
(ap F p

i j
+ ap F

p

i j)(ap F p

ji
+ ap F

p

ji) = −
∑

i, j

1
4
|ap F p

i j
+ ap F

p

i j |
2 ≥ 0,

but this clearly implies
F p

i j
= 0 for all i, j, p ∈ {1, 2, · · · , n}. (2.8)

Now, due to (2.8) and (2.3) the second term of (2.6) is equal to

−
∑

i, j

∑

k,s

∑

m,n

(uksumnF k
j
Fi

s
F

m

i F
n

j + uksumnF k
j
F

s

i F
m
i

F j
n
+

+ uksumnF
k

j F s
i F

m

i F n
j + uksumnF

k

j Fi
s
F m

i
F n

j ).

Let us investigate the terms that do not involve mixed derivatives. Take u4 := ℜ(apqzpzq). Note that all terms with mixed
derivatives vanish and (2.5) turns into

−
∑

i j

1
4
|apq F p

j
F q

i + apq F q

j
F p

i + apq F
p

j F
q

i + apq F
q

j F
p

i |
2 ≥ 0,

so
F p

j
F q

i + F q

j
F p

i = 0 for all i, j, p, q ∈ {1,2, · · · , n}. (2.9)

Now put p = q in the above equation. We obtain F p

j
F p

i = 0. Also if we put i = j we get F p

j
F q

j + F q

j
F p

j = 0. Suppose now that for

some p, j we have F p

j
6= 0. Then we have F p

i = 0 and hence F q
i = 0 for all i, q ∈ {1, 2, · · · , n}, so F is antiholomorphic. Otherwise

F is holomorphic and that finishes the proof.

Remark 7. Note that in the proof we have used in fact only 2-subharmonicity, since all the testing functions were plurisubharmonic
(pluriharmonic in fact). Until now we have not used the whole information we have.

Having the above result in mind, we now can describe the diffeomorphisms completely:

Theorem 2.2. Let F be a C2 smooth diffeomorphism that preserves m-sh functions, and 1 < m < n. Then F is holomorphic or
antiholomorphic and its complex Hessian is a pointwise orthogonal matrix. Conversely all mappings satisfying these two conditions
are symmetries for m-sh functions.
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Proof. We shall work with the assumption that F is holomorphic (the antiholomorphic case is analogous). Before we proceed
further recall again that until now we have used only plurisubharmonic testing functions, hence information we gained is not
enough to prove the claimed result. Indeed, the picture for plurisubharmonic functions is different (one does not need the
orthogonality).

Since F ∈O we have a simplified formula for the complex Hessian of u ◦ F for u ∈ m− sh which in matrix notation takes the
form

[(u ◦ F)′′(z)]i, j = [F ′(z)
T
]i,r[u

′′(z)](F(z))r̄,l[F
′(z)]l, j . (2.10)

By the algebraic properties of the k-th symmetric functions of the eigenvalues we know that

Sk(A) = Sk(BAB−1)

for any invertible matrix B. Now since F is a holomorphic diffeomorphism by a classical result in complex analysis we know that
F ′ is pointwise invertible. Using this we get

Sk([(u ◦ F)′′(z)]) = Sk([u
′′](F(z))[F ′(z)][F ′(z)

T
]). (2.11)

Take u(z) := (
∑k

t=1 |zit |
2)− 1

k |zik+1
|2. To simplify the notation we assume {i1, · · · , ik+1} = {1,2, · · · , k + 1} and the general

result will follow with obvious modifications.
Note that u ∈ k-sh\(k+ 1)-sh (here k < n).
By elementary calculations

[u′′](F(z))[F ′(z)][F ′(z)
T
] =



















(F1, F1) · · · (F1, F n)
...

...
(F k, F1) · · · (F k, F n)

− 1
k (F

k+1, F1) · · · − 1
k (F

k+1, F n)
0 · · · 0

...



















,

where

(F i , F j) := 〈∇F i ,∇F j〉=
n
∑

t=1

F i
t Ft

j
.

Denote by V (F ; i1, · · · , ik) the Gramm determinant

V (F ; i1, · · · , ik) = det







(F i1 , F i1) · · · (F i1 , F ik )
...

...
(F ik , F i1) · · · (F ik , F ik )






.

Then we have

Sk((u ◦ F)′′(z)) = V (F ; i1, · · · , ik)−
k
∑

j=1

1
k

V (F ; i1, · · · , bi j , · · · , ik+1). (2.12)

As Sk((u ◦ F)′′(z))≥ 0 the formula (2.12) implies that V (F ; i1, · · · , ik) = const is independent of the choice of i1 < i2 < · · ·< ik.
The second testing function we choose is

u(z) = |zi1 |
2 + · · ·+ |zik |

2 + 2ℜ(λ
1

p
k− 1

zis z ik+1
), s ∈ {1, · · · , k},

λ ∈ C, |λ |= 1.

Again u ∈ k-sh\(k+ 1)-sh for k < n. Assume, just as before, that {i1, · · · , ik+1}= {1,2, · · · , k+ 1} and s = 1. The Hessian of u is
















1 · · · 0 λp
k−1

0

0
...

... 0
...

... · · · 1
...

λp
k−1

0 · · · 0
0 · · · 0
















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and

Sk((u ◦ F)′′(z)) = Sk(

















1 · · · 0 λp
k−1

0

0
...

... 0
...

... · · · 1
...

λp
k−1

0 · · · 0
0 · · · 0

















×

×













(F1, F1) · · · (F1, F n)
...

...

(F n, F1) · · · (F n, F n)













) = Sk(bi j),

where

bi j =















(F1, F j) + λp
k−1
(F k+1, F j), for i = 1;

(F i , F j), for 1< i ≤ k;
λp
k−1
(F1, F j), for i = k+ 1;

0, for k+ 1< i ≤ n.

So one can compute

Sk((u ◦ F)′′(z)) = V (F ; 1, · · · , k)

+
λ

p
k− 1

det









(F k+1, F1) · · · (F k+1, F k)
(F2, F1) (F2, F k)

...
...

(F k, F1) · · · (F k, F k)









−
1

k− 1

k
∑

i=2

V (F ; 1, · · · ,bi · · · , k+ 1)

+
λ

p
k− 1

det









(F2, F2) · · · (F2, F k+1)
...

...
(F k, F2) (F k, F k+1)
(F1, F2) · · · (F1, F k+1)









.

By (2.12) and since λ is arbitrary point from the unit circle we get that both determinants (which are complex conjugate to each
other) must vanish.

In general we obtain

det









(F ik+1 , F i1) · · · (F ik+1 , F ik )
(F i2 , F i1) (F i2 , F ik )

...
...

(F ik , F i1) · · · (F ik , F ik )









= 0. (2.13)

Note however that V (F ; i1, · · · , ik) 6= 0 (otherwise det F ′(z) = 0 contrary to the fact that F is a holomorphic diffeomorphism).
Summing up

A= [(F i , F j)]i, j=1··· ,n

is a matrix whose all main k-minors are equal to a nonzero positive constant b and all minors which are formed by rows
i1, i2, · · · , ik and columns i2, i3, · · · , ik+1 are 0. This means that the vector

vk+1 := ((F ik+1 , F i1), · · · , (F ik+1 , F ik ))

belongs to all spaces spanned by (v1, · · · , bvi , · · · , vk), where

vs := ((F is , F i1), · · · , (F is , F ik )).

But since v1, · · · , vk are linearly independent we get that vk+1 is the zero vector. So all entries of A except those on the diagonal
are 0. Those on the diagonal are equal to kpb so A is proportional to Id and hence F ′ is an orthogonal matrix.

On the other hand if F ′ is orthogonal using (2.11) we get

Sk((u ◦ F)′′) = bSk([u
′′](F(z)))≥ 0.

Using the result above we can easily confirm a conjecture from [Bl1]:
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Theorem 2.3. The group of smooth diffeomorphisms of the unit ball
f ∈ C∞(Bn,Bn) preserving m-sh functions is not transitive for 1≤ m< n.

Proof. For m = 1 the result can be easily deduced from results in [BI] or [IM], as it was mentioned in [Bl1]. For m> 1, we know
that F must be holomorphic or antiholomorphic. It suffices to check the holomorphic authomorphisms. These automorphisms of
the unit ball are known (see e.g. [Ru]) and their form is

Ta,φ(z) := U ◦ eiφ
( 〈z,a〉a
||a||2 ) +

p

1− ||a||2(z − 〈z,a〉a
||a||2 )

1− 〈z, a〉
(2.14)

where a ∈ Bn, φ ∈ (0,2π) and U is an orthogonal complex linear isomorphism. It is straightforward to check which of these
diffeomorphisms have the property of pointwise orthogonal Jacobians: in fact it is enough to check the Jacobian at 0. Since U
does not change orthogonality it is sufficient to check this when U = Id is the identity. By elementary calculations

T k
a,φ; j(0) = eiφ(

a j ak(1− ||a||2)
||a||2

−
a j ak

p

1− ||a||2

||a||2
+δ j,k

Æ

1− ||a||2)

with δ j,k denoting the Cronecker delta. Hence

<∇T k(0),∇T s(0)>=
∑

j

T k
j (0)T

s
j (0) = · · ·= (1− ||a||

2)akas +δk,s(1− ||a||2).

This should be equal to Cδk,s, and so akas = 0 for k 6= s, and |ak|= const. Hence a = 0. One can check that T0,φ(z) = eiφz has
pointwise orthogonal Jacobians, but these functions are not enough to give transitivity (in paricular they all send 0 to 0).

Remark 8. In a very recent preprint Ahag, Czyz and Hed ([ACH]) investigated more generally maps from Cn1 to Cn2 which
preserve m-sh functions.

2.2 The Laplacian and the Levi form

The Laplacian operator is the canonical operator associated to subharmonic functions. In the plurisubharmonic case there is no
such single linear operator but instead plurisubharmonicity is characterized in the distributional sense (see [Ho]) through the
nonnegativity of the Levi form L(u; X )≥ 0, where

L(u; X ) :=
∑

i, j

∂ 2u
∂ zi∂ z j

(z)X i X j ,

(X ∈ Cn is an arbitrary vector).
Is there a similar characterization of m-subharmonicity? Below we give a partial answer. We shall construct a linear operator

Lm (mixing the Laplacian and the Levi form) such that every m-sh function u satisfies Lm(u, X )≥ 0. Note however that contrary
to the plurisubharmonic case this does not
characterize m-subharmonicity.

Theorem 2.4. Let u be an m-sh C2 smooth function. Then

(
n
m
− 1)∆u(z)|X |2 + (n−

n
m
)L(u(z); X )≥ 0

for any X ∈ Cn.

Remark 9. in the m= 1 and m= n cases we discover the natural linear conditions of the Laplacian and Levi form, respectively.
Thus such an inequality shows that indeed m-sh functions serve as a bridge between subharmonic and plurisubharmonic functions
not only in set-theoretic aspects. The constants in the claim are sharp in the sense that we can get equality if we let m of the
eigenvalues of the complex Hessian to be equal to 1, one to be equal to − 1

m−1 and the rest to be equal to 0.

Proof. Let us fix a point in the domain of u and let λ1, · · · ,λn be the eigenvalues of the complex Hessian at this point labelled in
decreasing order. Without loss of generality we assume λn < 0, otherwise the claim is trivial. Also assume 1< m< n. Note that

(
n
m
− 1)∆u(z)|X |2 + (n−

n
m
)L(u(z); X )

≥ ((
n
m
− 1)S1(λ1, · · · ,λn) + (n−

n
m
)λn)|X |2

= ((
n
m
− 1)S1(λ1, · · · ,λn−1) + (n− 1)λn))|X |2,

hence it is enough to prove that the last quantity is nonnegative. Using the inequality

Sk(λ1, · · · ,λn) = λn Sk−1(λ1, · · · ,λn−1) + Sk(λ1, · · · ,λn−1)≥ 0, (2.15)

by easy induction we get
Sk(λ1, · · · ,λn−1)≥ 0, for k ∈ {1, · · · , m}.
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Using the Maclaurin inequality twice we obtain

Sm(λ1, · · · ,λn−1)≤

�n−1
m

�

S
m

m−1
m−1

�n−1
m−1

�
m

m−1
≤

�n−1
m

�

Sm−1S1
�n−1

m−1

�

(n− 1)
= Sm−1S1

n−m
m(n− 1)

.

Plugging this inequality in (2.15) we obtain

λn+
n−m

m(n− 1)
S1(λ1, · · · ,λn−1)≥ 0,

which is equivalent to the inequality we wanted to prove.

The inequality that we have shown above holds for every vector X ∈ Cn. Notice also that if u ∈ C2 it is satisfied pointwise i.e.
it would still hold for any vector field defined over the domain of definition of u. Taking the infimum of the Levi form over all unit
vectors at each point we construct the following nonlinear operator:

Definition 2.2. Let Pm be an operator defined on n× n Hermitian matrices by

Pm(A) =
n−m

n(m− 1)
t r(A) +λmin(A),

where λmin(A) denotes the smallest eigenvalue of A.

Remark 10. As defined the operator makes sense for m> 1 only. For m= 1 we can simply take the trace of A.
Our dicussion above yields the following result:

Proposition 1. Let u be a smooth m-sh function. Then Pm(
∂ 2u
∂ z j∂ z̄k

(z))≥ 0.

Later on we shall need to define Pm also for nonsmooth functions u. To this end we need to check ellipticity of Pm.
Proposition 2. If 1< m< n then Pm is a uniformly elliptic operator i.e. for any Hermitan matrix A any Hermitian matrix M ≥ 0

δt r(M)≤ Pm(A+M)−Pm(A)≤ (1+δ)t r(M).

Here δ = n−m
n(m−1) .

Proof. The left inequality is simply the fact that λmin(A+M)≥ λmin(A) while the right one follows from evaluating X̄ T (A+M)X
for X ∈ Cn being a non zero eigenvector of A associated to its minimum eigenvalue.

This shows that C2 smooth m-sh functions are subsolutions to the uniformly elliptic equation Pm(
∂ 2u
∂ z j∂ z̄k

(z)) = 0. As every
locally bounded m-sh function is locally a decreasing limit of smooth m-sh functions it will be a Pm subsolution in the viscosity
sense.

m-sh functions are of course subsolutions to many uniformly elliptic equations, the Laplacian being the most trivial example.
The reason why Pm is special is that the fundamental solution Gm(z) = −

1

|z|
2n
m −2

is a solution to Pm(G) = 0 (i.e. it is Pm- maximal)

on Cn \{0}, as a short computation shows.

Lemma 2.5. Let m< n. Then

Pm(
∂ 2Gm

∂ z j∂ z̄k
) = 0

on Cn \{0}.
Remark 11. In the plurisubharmonic case the problem is that Pn(A) = λmin(A) is not a uniformly elliptic operator anymore.

The next proposition shows that equation (1.3) is applicable not only to m-sh functions but also to Pm subsolutions:
Proposition 3. Let u be a viscosity subsolution to the equation

Pm(
∂ 2u
∂ z j∂ z̄k

)≥ 0.

Then
dd cu∧ (dd c Gm)

m−1 ∧ β n−m ≥ 0

in Cn \{0}.

Proof. We shall prove the result for smooth u, the general case will follow by approximation. Pick a point z0 ∈ Cn \{0}. Rotating
the coordinates if necessary we may assume that dd c Gm is diagonal at z0 i.e.

dd c Gm(z0) = θ1idz1 ∧ dz̄1 + · · ·+ θnidzn ∧ dz̄n,

with θ j ’s being the eigenvalues of the Hessian matrix of G ordered in the decreasing order. By computation θ1 = · · ·= θn−1 > 0,
while θn = (1−

n
m )θ1 < 0.
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Of course β =
∑n

j=1 idz j ∧ dz̄ j regardless of the rotations and we denote β ′ :=
∑n−1

j=1 idz j ∧ dz̄ j . Then

dd cu∧ (dd c Gm)
m−1 ∧ β n−m(z0)

= θm−1
1 dd cu∧ [β ′m−1 − (n/m− 1)(m− 1)idzn ∧ dz̄n ∧ β ′m−2]∧ [β ′n−m

+(n−m)idzn ∧ dz̄n ∧ β ′n−m−1]
= θm−1

1 dd cu∧ [(n/m− 1)idzn ∧ dz̄n ∧ β ′n−2 + β ′n−1]

= θm−1
1 (n− 2)![(n/m− 1)

n−1
∑

j=1

∂ 2u
∂ z j∂ z̄ j

+ (n− 1)
∂ 2u
∂ zn∂ z̄n

]dV.

Notice that the latter quantity is nonnegative, since the term in the brackets is equal to

(n/m− 1)∆u(z0) + (n− n/m)
∂ 2u
∂ zn∂ z̄n

≥ (n/m− 1)∆u(z0) + (n− n/m)λmin(
∂ 2u
∂ z j∂ z̄k

(z0)).

Integrating by parts just as for m-sh functions we obtain the following corollary:
Corollary 2.6. For viscosity subsolutions u of Pm (which are also subharmonic) the quantity

1
r2n−2n/m

∫

|z−z0 |≤r

∆u

is increasing in r for any point z0 in the domain of definition of u.

3 Local behavior near a singularity
Recall the notion of a tangential flow which was coined by Harvey and Lawson (see [HL1, HL2]):
Definition 3.1 (Tangential flow). Let u be a m-sh function defined near a point z0 ∈ Cn. For any r > 0 the tangential flow at z0
is defined by

�

uz0 ,r(w) := r2n/m−2u(z0 + rw) if m< n;
uz0 ,r(w) := u(z0 + rw)−max|w−z0 |≤ru if m= n.

(3.1)

Any L1
loc limit of the flow along some subsequence r j ↘ 0+ is called a tangent at z0.

Intuitively the tangential flow zooms the domain around z0. The exponents in the definition are chosen so that in the limit
we get the zero function unless u has an essential singularity at z0. Thus the tangents capture the information about the local
behavior of u around a singular point z0.

Of course any tangent ϕ is defined as an equivalence class in L1
loc . Taking however the standard upper semicontinuous

regularizations
ϕ∗(z) := l imr→0+ ess supBr (z)ϕ

(with ess sup denoting the essential supremum) produces a representative that is an entire m-subharmonic function. Indeed,
classical theory (see [Ho], Theorem 3.2.13) shows that the limit is subharmonic, and the nonnegativity of

dd cϕ ∧α1 ∧ · · · ∧αm−1 ∧ β n−m

for any suitable testing (1,1)-forms α j follows from the m-subharmonicity of uz0 ,r ’s and the continuity of the distributional
differentiation with respect to L1

loc convergence.
>From now on by tangent we shall mean the upper semicontinuous representative described above and we shall drop the ∗

sign in the notation.
The next example shows that in the case of plurisubharmonic functions the tangents can have different shapes:

Example 3.1. Let z0 be the zero vector in Cn. Fix j ∈ {1, · · · , n} and consider the functions u j(z) = log(
∑ j

k=1 |zk|2). Then for
each u j the unique tangent at 0 reads

ũ j(w) = log(
j
∑

k=1

|zk|2) (= u j(w)).

The example shows that there are many ways how a plurisubharmonic function may look like around a point with the positive
Lelong number.

It is thus quite surprising that in the case of m-sh functions, m< n, there is only one local model of behavior:
Theorem 3.1 (Strong uniqueness of tangent cones [HL1]). Let u be an m-sh function for some m< n which is defined near 0 ∈ Cn.
Then the tangential flow of u converges in L1

loc to the function

−
K

|z|2n/m−2

for some constant K ≥ 0.
The constant K is equal to the generalized m-sh Lelong number at 0.
In the following subsections we prove this important result and then collect some of its implications.
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3.1 Proof of the strong uniqueness theorem

This subsection is devoted to the proof of Theorem 3.1. The proof consists of several steps. The first one is the monotonicity
property of spherical averages.

Definition 3.2. Let u be an m-sh function defined in some ball BR(z0). Then for any r ∈ (0, R) the spherical r-average centered
at zero is the quantity

S(u, z0, r) :=
1

σ2n−1

∫

|ξ|=1

u(z0 + rξ)dS(ξ), (3.2)

with dS denoting the Lebesgue measure on the unit sphere and σ2n−1 the total area of the unit sphere in Cn.

Just as in classical pluripotential theory spherical averages are not only increasing with r but also have certain convexity
properties.
Proposition 4. Let u be as above for s ∈ (−∞, −1

R
2n
m −2
) define the function r(s) := (− 1

s )
m/(2n−2m). Then the function

f (s) := S(u, z0, r(s))

is convex.

Proof. The proof is standard. We provide the details for the sake of completeness. We assume that u is smooth (the general case
follows from approximation since u is in particular subharmonic and for a sequence of smooth subharmonic approximants u j we
have l im j→∞S(u j , z0, r) = S(u, z0, r)).

By computation, using Stokes’ theorem, and denoting by ξ the real coordinates, we get

f ′(s) =
r ′(s)
σ2n−1

∫

|ξ|=1

∑

k

∂ u
∂ ξk
(z0 + r(s)ξ)ξkdS(ξ)

=
r ′(s)r(s)
σ2n−1

∫

|v|≤1

∆u(z0 + r(s)v)dV (v)

=
r ′(s)

σ2n−1r(s)2n−1

∫

|w−z0 |≤r(s)

∆u(w)dV (w)

=
m

2n− 2m
1

σ2n−1r(s)2n−2n/m

∫

|w−z0 |≤r(s)

∆u(w)dV (w),

where we have used the explicit formula of r to get the last equality. Recalling now equality (1.3) and its implication together
with the fact that r(s) is increasing we get that f ′(s) is increasing in s.

Remark 12. Using Corollary 2.6 the same result holds for any Pm subsolution.
This proposition has a standard application which says that the slopes of secant segments for a convex function are increasing

(see [HL1]);

Corollary 3.2. If 0< t1 < t2 < R then
S(u, z0, t2)− S(u, z0, t1)
(1/t1)2n/m−2 − (1/t1)2n/m−2

is increasing in both t1 and t2.

Another immediate corollary is that the ratio
S(u, z0, t)
−(1/t)2n/m−2

(3.3)

has a (nonnegative) limit as t ↘ 0+ for any non positive m-subharmonic function in a neighborhood of z0.
Fix now an m-subharmonic function u defined near a point z0, which we assume to be the coordinate origin. Without loss of

generality assume that u is negative close to the origin. Consider the tangential flow of u at the coordinate center. Then for any
sufficiently small r we have

S(ur,0, 0, t) =
r2n/m−2

σ2n−1

∫

|ξ|=1

u(r tξ)dS(ξ) =
S(u, z0, r t)
−(1/r t)2n/m−2

(−1/t2n/m−2).

But S(u,z0 ,r t)
−(1/r t)2n/m−2 converges to some constant K as r ↘ 0+ by the argument above. Hence passing to a limit (along a subsequence)

we obtain for any tangent ϕ at zero

S(ϕ, 0, t) = −
K

t2n/m−2
(3.4)

for some constant K ≥ 0. The constant K is independent of the choice of the subsequence. Note that this equality holds for any
t > 0 since for any fixed t we can choose r so small so that ur,0 is defined near the sphere of radius t centered at zero.

Equality (3.4) implies that ϕ is a maximal m-subharmonic function on Cn \{0}.
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Indeed, suppose that there is a function v which is m-subharmonic inCn \{0}which is not larger thanϕ except on some compact
set K which we assume to be contained in an annular region A := {R1 < |z|< R2}. Consider the function u(z) :=max{ϕ(z), v(z)}
defined on Cn (even if v is a priori defined only on Cn \{0}). Obviously S(u, 0, t)≥ S(ϕ, 0, t) for any t ∈ (R1, R2) with equality
close to the endpoints of this segment. Note however that S(ϕ, 0, r(p)) (recall that r(p) := (− 1

p )
m/(2n−2m)) is linear on (−∞, 0)

while S(u, 0, r(p)) is convex in p and matches S(ϕ, 0, r(p)) ar r−1(R1) and r−1(R2).) This is only possible if S(ϕ, 0, t) = S(u, 0, t)
for all t ∈ [R1, R2] which in turn implies v ≤ ϕ in K .
Remark 13. The analogous reasoning yields the following stronger statement: ϕ is maximal for the operator Pm.

The argument up to now works, modulo technical details, also for plurisubharmonic functions.
The argument that follows (taken from [HL1]) is broken into two cases:
Case 1. Assume that ϕ is locally bounded in Cn \{0}.
Let g be any complex rotation of Cn around the origin. Define

ug(z) := max{u(z), u(g(z))}.

Observe that ug is also locally bounded in Cn \{0}. It is straightforward to verify that the function ϕg := max{ϕ(z),ϕ(g(z))} is
tangent to ug and is also locally bounded on Cn \{0}.

Repeating the reasoning above we obtain that ϕg is maximal. At this moment we recall the crucial observation from Remark
13: ϕg is also maximal with respect to Pm!

Now using Theorem 1.6 we get that

Pm(
∂ 2ϕg

∂ z j∂ z̄k
) = 0 (3.5)

in the viscosity sense in Cn \{0}. But then Theorem 1.5 implies that ϕg is C1 on Cn \{0}. In particular ϕg =max{ϕ(z),ϕ(g(z))}
is C1 on any sphere
Sr := {z : |z| = r}. Observe that this holds for every complex rotation. As an easy calculus lemma shows (compare Lemma 13.7 in
[HL1]) ϕ has to be constant on every Sr . This together with equation (3.4) implies that

ϕ(z) = −
K

|z| 2n
m −2

and the uniqueness of tangents is proven in this case.
Case 2. If ϕ is not locally bounded on Cn \{0}, then we consider the function

u(N)(z) := max{u(z),−
N

|z| 2n
m −2
}

for each N ∈ N. It is easy to see that ϕ(N)(z) = max{ϕ(z),− N

|z|
2n
m −2
} is the tangent obtained from the subsequence that yields the

tangent ϕ for u. But ϕ(N) is locally bounded on Cn \{0}, hence it is a multiple of the fundamental solution. Taking N →∞, we
see that ϕ(N)’s converge decreasingly to ϕ, hence ϕ is also a multiple of the fundamental solution.

This finishes the proof.

3.2 Applications of the strong uniqueness theorem

The strong uniqueness theorem has deep implications in the study of singular sets of m-sh functions. The following counterpart
of Siu’s theorem is due to Harvey and Lawson ([HL1]):

Theorem 3.3 (Harvey-Lawson). Let u be an m-sh function defined on a domain Ω ⊂ Cn. Assume m < n. Then the set Em
c (u) is

discrete in Ω for any c > 0.

A more quantitive version of this result has been obtained by Chu ([Ch]):

Theorem 3.4 (Chu). Let u be an m-sh function defined on the ball B2(0) ⊂ Cn. Suppose that ||u||L1(B2(0)) ≤ Λ. If m< n then there
exists a constant C = C(m, n, c,λ) such that

][Em
c (u)∩ B1(0)]≤ C .

In the sequel we shall follow the argument of Chu from [Ch]. To this end we need a couple of definitions which are simplified
versions of the ones from [Ch].

Definition 3.3. A function h : Cn→ R is called homogeneous at a point z0 ∈ Cn if the following conditions are satisfied:
(a) h is m-subharmonic;
(b) the tangential flow hr,z0

(w) leaves h invariant i.e. hr,z0
(w) = h(z0 +w) for any r > 0 and w ∈ Cn;

The conditions roughly say that h is a model for tangents. Of course once the strong uniqueness for tangents has been
established we know that h(z) = − K

|z|
2n
m −2

but our reasoning below does not depend on this fact.

The next definition captures functions that are close to such models in L1 sense:

Definition 3.4. A function u : B2r(z0) ⊂ Cn→ R is said to be (ε, r, z0) homogeneous if there is a homogeneous function h at zero
such that

||ur,z0
− h||B1(0) < ε.
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Now we state a crucial lemma (Lemma 6.5 in [Ch]):

Lemma 3.5. Let u be an m-sh function on the ball B2(0) ∈ Cn. Suppose that ||u||L1(B2(0)) ≤ Λ<∞. For any c > 0 there exists an
ε > 0 dependent on c,Λ, m and n, such that if u is (ε, 1, 0) homogeneous, then

Em
c (u)∩ {1/16≤ |z| ≤ 1/2}=∅.

Proof. The proof proceeds by contradiction. Suppose that for any j ∈ N we have a function u j which is m-subharmonic in the
ball B2(0), such that ||u j ||L1

B2(0)
≤ Λ, u j is (1/ j, 1, 0) homogeneous and there is a point

z j ∈ Em
c (u j)∩ {1/16≤ |z| ≤ 1/2}.

u j ’s are in particular subharmonic, hence form a compact subset with respect to the L1
loc topology. Thus after passing to a

subsequence u j ’s converge in L1
loc to an m-sh function u. We can also assume, passing once again to a subsequence if necessary,

that z j ’s converge to some z̃ ∈ {1/16≤ |z| ≤ 1/2}. It is easy to see that z̃ ∈ Em
c (u). In particular u(z̃) = −∞.

We claim that u is equal to a homogeneous function on B1(0). If this is true then u is its own tangent at zero (recall that the
tangential flow preserves u). Hence by the strong uniqueness theorem

u(w) = −K/|w|2n/m−2

for some K ≥ 0, but this is a contriadiction with u(z̃) = −∞.
We proceed to prove the claim. By definition there are homogeneous functions h j such that ||u j − h j ||L1

B1(0)
≤ 1/ j. Obviously

h j converge to u on B1(0). We claim that in fact h j ’s converge in L1
loc topology to a global homogeneous function h.

To this end note that for any fixed R> 1
∫

BR(0)

|hi(z)− h j(z)|dV (z) =

∫

BR(0)

|(hi)1/R,0(z)− (h j)1/R,0(z)|dV (z)

=

∫

BR(0)

(1/R)2n/m−2|hi(z/R)− h j(z/R)|dV (z)

=

∫

B1(0)

R2n−2n/m+2|hi(w)− h j(w)|dV (w).

Note that h j ’s form a Cauchy sequence in L1(B1(0)), so the computation above shows that they also form a Cauchy sequence in
L1(BR(0)). Thus extracting a diagonal limit the existence of a global h is shown. Now it is straightforward to check that h is
homogeneous.

The lemma in particular proves the discreteness of the set Em
c (u) for any positive c.

Now we are ready to prove Theorem 3.4:

Proof. Without loss of generality we assume that u≤ 0 near B1(0). Denote by S0 the quantity ][Em
c (u)∩ B1(0)].

Following [Ch] we consider a Vitali type covering of Em
c (u)∩ B1(0) by balls B1/2(x j), such that B1/4(x j) are pairwise disjoint

and x j ∈ Em
c (u)∩ B1(0). Suppose, without loss of generality, that the ball B1/2(x1) contains the largest number of the points in

Em
c (u)∩ B1(0). Denote this largest number by S1.

Two cases may occur: either S0 = S1 or S1 < S0. In the latter case recall that the balls in the covering B1/2(x j) are chosen so
that B1/4(x j)’s are disjoint and thus their joint volume is less than the volume of B1+1/4(0). This shows that S0 ≤ 52nS1.

Assume still that the second case occurs and pick a point z ∈ B1/2(x1). If z ∈ B1/4(x1) then B2(z) \ B1/4(z) contains a point
from Em

c (u)∩ B1(0) which is outside B1/2(x1). If in turn z /∈ B1/4(x1) then B2(z) \ B1/4(z) contains x1.
In any case we obtain that

[B2(z) \ B1/4(z)]∩ Em
c (u)∩ B1(0) 6=∅

for all z ∈ B1/2(x1).
Now we repeat the process by covering Em

c (u)∩ B2− j (x j) (x j being chosen at the previous step as the center of the ball with
largest number of points from Em

c (u)∩ B1(0)) with balls of radius 2− j−1 so that the concentric balls of radius 2− j−2 are pairwise
disjoint.

The discreteness of Em
c (u)∩ B1(0) yields that at some stage S j0 = 1. S0 can be estimated by S j0 provided one controls how

many times along the process we have S j+1 < S j . Obviously if this number is I , then

S0 ≤ S j0 52nI = 52nI .

Thus we are left with bounding I . Note that from the construction for any j for which S j < S j−1 we have

(Em
c (u)∩ B1(0))∩ (B2− j+2(x j0) \ B2− j−1(x j0)) 6=∅. (3.6)

Consider now the function u2− j+3 ,x j0
(z). Each point in Em

c (u)∩ B1(0) corresponds to a point in Em
c (u2− j+3 ,x j0

)∩ B2 j−3(0) after
the rescaling.

But then (3.6) implies that
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Em
c (u2− j+3 ,x j0

)∩ {1/16≤ |z| ≤ 1/2} 6=∅.

Invoking Lemma 3.5 we obtain that for some universal ε dependent only on c, n, m and ||u2− j+3 ,x j0
||L1(B2(0)) (which is bounded

independently of j) the function u2− j+3 ,x j0
is not (ε, 1, 0)-homogeneous. But this is impossible for large j as u2− j+3 ,x j0

converges in

L1
loc to the tangent.

In conclusion any j such that S j < S j−1 has a universal bound dependent merely on c, n, m and ||u||B2(0) and the proof is
complete.
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