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On the log-convexity of a Bernstein-like polynomials sequence

Adrian Girjoaba a

Dedicated to Professor Ioan Raşa on the occasion of his 70th birthday

Abstract

We prove that the sequence of the sum of the squares of the Bernstein polynomials is pointwise log-convex.
There are given two proofs of this result: one by relating our sequence to the Legendre polynomials
sequence and one by induction. I know of this problem from Professor Ioan Rasa, Cluj-Napoca. This
work was presented at the International Conference on Approximation Theory and its Applications, Sibiu,
2022, dedicated to the scientific work of Professor Ioan Rasa on the occasion of his 70th anniversary.

1 Introduction
Let {xn}n≥0 be a sequence of real nonnegative numbers. The sequence is called log-convex (resp. log-concave) if xk

2 ≤ xk−1 xk+1
(resp. xk−1 xk+1 ≤ xk

2) for any k. Log-convexity implies convexity, defined by 2 xk ≤ xk−1 + xk+1. On the other hand, concavity,
given by xk−1 + xk+1 ≤ 2 xk, for any k implies log-concavity. A function f : I −→ R (where I ⊂ R is an interval) is said to be
completely monotonic if f has derivatives of all orders and satisfies

0≤ (−1)k
dk

dx k
f (x) , k = 0, 1,2, ..., x ∈ I

If

0≤
dk

dx k
f (x) , k = 0,1, 2, ..., x ∈ I

then the function f is called absolutely monotonic. If f is a completely monotonic function then the sequence cn = f (n) is a
completely monotonic sequence i.e.

(−1)k(∆kc)n ≥ 0

where
(∆0c)n = cn, (∆c)n = cn+1 − cn,∆k+1 =∆(∆k)

A Hausdorff moment sequence is one of the form

hn =

1
∫

0

tndν(t)

where ν is a positive measure on [0, 1]. Hausdorff moment sequences were characterized as completely monotonic sequences by
Hausdorff in the fundamental paper [4]. These sequences are bounded Stieltjes moment sequences i.e. of the form

sn =

∞
∫

0

tndν(t)

for a positive measure ν on [0,∞)
Let q be an indeterminate. Given two real polynomials f (q) and g(q), write f (q) ⪯ g(q) if and only if g(q)− f (q) has only
nonnegative coefficients as polynomial in q. A sequence of polynomials {Pn (q)}, with n≥ 0, is called q-log-convex if

(Pn (q))
2 ⪯ Pn−1 (q) Pn+1 (q)

for all n≥ 1, that is Pn−1 (q) Pn+1 (q)− (Pn (q))
2 has only nonnegative coefficients as polynomial in q. Obviously, if the polynomial

sequence {Pn (q)}, with n≥ 0, is q-log-convex, then for each fixed positive number q, the sequence {Pn (q)} is log-convex, or the
polynomial sequence is pointwise log-convex. See [5]
There have been written a lot of papers concerned with the log-concavity of sequences (see the article of L. Liu and Y. Wang [5]
for some (fairly) recent developments and an extended bibliography related to the subject). However, the systematic study of the
log-convexity of polynomial sequences has more to show. Log-convexity is, in a sense, more challenging property than log-concavity.
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We denote by Sn (x) the sum of the squared Bernstein polynomials,

Sn (x) =
n
∑

k=0

(Bk (n, x))2 , x ∈ [0,1]

where

Bk (n, x) =
�

n
k

�

x k (1− x)n−k

In 2014 Gonska and al. [2] conjectured that the function Sn was convex on [0, 1], for any natural number n. In the same year
Gavrea and Ivan [3] and Nikolov [6] proved the conjecture true. Also in 2014, Rasa conjectured that Sn was even log-convex,
conjecture that has been proved true by Rasa himself in [7] in 2018. The proof is based on some properties of the Legendre
polynomials. In 2019 in [8] Rasa gave a simplified proof by using functional equations satisfied by Sn. Finally, in 2020 Alzer [1]
made use of an elegant representation of Sn, obtained by Rasa (in a slightly different form also by Gavrea and Nikolov) to prove
the log-convexity of Sn. In fact he proved that the function Sn is completely monotonic on [0, 1/2] and absolutely monotonic on
[1/2, 1]. As the author noticed, this (in many cases) stronger result does not imply the log-convexity since Sn is not completely
monotonic on (0,∞).

In this paper we prove the log-convexity in the other argument i.e. we present proofs of the fact that the sequence
{Sn (x)}n≥0 is log-convex for any x ∈ [0, 1]. This distinction between the log-convexity "in x" and the log-convexity "in n" is the
main feature of this paper. The first proof is based on some representation of Sn (x) in terms of Legendre polynomials and the
second one is a direct proof, by induction, that does not use any representation, coming from Legendre polynomials or not.

2 Log-convexity and Legendre polynomials
The main result in this section is the following representation:
Theorem 2.1.

Sn (x) = (−2 x + 1)n Pn

�

−2 x2 + 2 x − 1
2 x − 1

�

where

Pn (t) =

∑n
k=0

��n
k

��2
(t − 1)n−k (t + 1)k

2n

are the Legendre poynomials.
The proof is straightforward and consists in replacing in the above representation of Legendre polynomials t with

t =
−2 x2 + 2 x − 1

2 x − 1

followed by t − 1= 2 x2 (−2 x + 1)−1 and t + 1= 2 (x − 1)2 (−2 x + 1)−1.

Remark 2.1. The representation above is also obtained in [7] and [8].

The following graph gives us the dependence of t by x .

One can see that, for x ∈ [0, 1/2) , t ∈ [1,∞) and for x ∈ (1/2, 1] , t is in the interval (−∞,−1). Let’s make the following
notation

∆n (x) = (Sn (x))
2 − Sn−1 (x)Sn+1 (x) .
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We have to prove that ∆n (x)≤ 0 for any x ∈ [0, 1].
For t ∈ [1,∞) a proof will be given, for x = 1/2 a direct computation will reach to the same conclusion and for t ∈ (−∞,−1)
the symmetry relation Pn (−t) = (−1)n Pn (t) will be used.
The main result above directly leads to:
Theorem 2.2.

∆n (x) = (−2 x + 1)2 n
�

(Pn (t))
2 − Pn−1 (t) Pn+1 (t)

�

with the above notations.
It follows that ∆n (x) has the same sign with

(Pn (t))
2 − Pn−1 (t) Pn+1 (t) .

Proof. The Turan inequality:
0≥ (Pn (x))

2 − Pn−1 (x) Pn+1 (x)

for x ∈ (−1, 1) is well known (see [13]).
On the other hand there is no real x such that t ∈ (−1,1).

1. Now, for t ∈ [1,∞) the Legendre polynomials have the integral representation:

Pn (t) =

∫ π

0

�

t − cos (θ )
p

t2 − 1
�n

dθ

π
.

It is a simple consequence of the Cauchy-Buneacovski-Schwartz inequality the fact that any sequence, as above, defined by

pn =
∫ b

a
( f (θ ))n dθ , with positive f , is log-convex.

Remark 2.2. The integral representation of Legendre polynomials together with the log-convexity of the sequences of the form

pn =

∫ b

a

( f (θ ))n

provide a very simple, almost straightforward proof of the log-convexity of the sequence Sn (see Remark 2 bellow).

2. For x = 1/2, Sn (1/2) =
Γ (n+1/2)p
πΓ (n+1) .

Indeed, the sum
n
∑

k=0

�n
k

�2
is a Vandermonde binomial sum type and, after it is written in the form

n
∑

k=0

�n
k

�� n
n−k

�

, one can see that its

value is
�2 n

n

�

or, for better simplifications, Γ (1+2 n)
(Γ (n+1))2

.
Therefore, after some simplification computations,

∆n (1/2) = −
4n (n+ 1) (Γ (n+ 1/2))2

π (−1+ 2 n) (Γ (n+ 2))2

hence ∆n (1/2)≤ 0.

3. For t ∈ (−∞,−1), (Pn (−t))2 − Pn−1 (−t) Pn+1 (−t) = (Pn (t))
2 − Pn−1 (t) Pn+1 (t), so, again, ∆n (x)≤ 0.

In conclusion, ∆n (x)≤ 0 for any x ∈ [0,1] that is, the sequence of polynomials is pointwise log-convex.

Remarks:
1. The sequence of polynomials is NOT x-log-convex in the terminology of L. Liu and Y. Wang from [5].
In our case, the 16 degree polynomial ∆8 (x)≤ 0 has nonnegative coefficients and negative coefficients as well, as one can see
below, where this polynomial has been expanded.
−140 x16 + 1120 x15 − 4256 x14 + 10192 x13 − 17228 x12 + 21832 x11 − 21532 x10 + 16976 x9 − 10906 x8 + 5744 x7 − 2440 x6 +
800 x5 − 188 x4 + 28 x3 − 2 x2.
2. Using the formulas:

Sn (x) = (−2 x + 1)n Pn

�

−2 x2+2 x−1
2 x−1

�

and Pn (t) =
∫π

0

�

t−cos(θ )
p

t2−1
�n

dθ

π we obtain the following integral representation where
x ∈ [0, 1/2).

Sn (x) =

∫ π

0

�

2 x2 − 2 x + 1+
�

2 x2 − 2 x
�

cos (y)
�n

dy

π
.

For x = 1
2 we have

Sn (1/2) =
Γ (n+1/2)p
πΓ (n+1) that agrees with

∫π
0 (1/2−1/2 cos(y))n dy

π .
This tells us that the above integral representation is valid, for x ∈ [0,1/2]. Therefore, the sequence Sn (x) is, at least for any
x ∈ [0, 1/2], very close to be a Hausdorff moment sequence, that is much more than log-convex!
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3 Log-convexity by induction
The main result of this section is presented below.
Theorem 3.1. The sequence of polynomials {Sn (x)}n≥0 satisfies the following three terms recurrence.

(n+ 1)Sn+1 (x) =
�

2 x2 − 2 x + 1
�

(2 n+ 1)Sn (x)− (2 x − 1)2 nSn−1 (x)

for n≥ 1. The first terms are S0 (x) = 1 and S1 (x) = 2 x2 − 2 x + 1.

To prove this just notice that if t = −2 x2+2 x−1
2 x−1 then t (1− 2 x) = 2 x2 − 2 x + 1. Using the representation of Sn (x) in terms of

Pn (t) from the previous section, the recurrence we have to prove comes to the well known:

(n+ 1) Pn+1 (t) = (2 n+ 1) tPn (t)− nPn−1 (t)

and the initial terms are the same.

Remark. This recurrence is of the type

an (x)Sn+1 (x) = bn (x)Sn (x)− cn (x)Sn−1 (x)

for n≥ 1, where the sequences: Sn, an, bn, cn are all positive (see [5]).

Theorem 3.2. The sequence {Sn (x)}n≥0 is log-convex for any x ̸= 1/2.

Proof. Let’s make the (standard) notation qn (x) =
Sn+1(x)
Sn(x)

and notice that all we have to do is to prove that the sequence
qn (x) is increasing for any x . In what follows we’ll drop x from qn (x), and from all other sequences, and we’ll simply write qn.
The recurrence satisfied by qn, coming from the recurrence of Sn, is

qn+1 =

�

2 x2 − 2 x + 1
�

(2 n+ 3)

n+ 2
−
(1− 2 x)2 (n+ 1)
(n+ 2)qn

with q0 = 2 x2 − 2 x + 1.
The argument for the induction step comes from the result below:

qn+1 − qn =
[
�

2 x2 − 2 x + 1
�

qn − (1− 2 x)2]

(n+ 2) (n+ 1)qn
+
(1− 2 x)2 n (qn − qn−1)
(n+ 1)qnqn−1

.

One can see that if
0≤
�

2 x2 − 2 x + 1
�

qn − (1− 2 x)2

then, from 0≤ qn − qn−1 it follows that 0≤ qn+1 − qn, meaning that the sequence qn is increasing. We’ll prove, by induction, that

0≤
�

2 x2 − 2 x + 1
�

qn − (1− 2 x)2

for any n≥ 0.

For n = 0 we’ll have to prove that 0≤
�

2 x2 − 2 x + 1
�2
−(1− 2 x)2 that is obvious. Now, let’s suppose that 0≤

�

2 x2 − 2 x + 1
�

qn−
(1− 2 x)2 or, in a more useful form,

−
2 x2 − 2 x + 1

(1− 2 x)2
≤ −qn

−1.

From the recurrence satisfied by qn we have

�

2 x2 − 2 x + 1
�

qn+1 =
2 x2 − 2 x + 1

n+ 2
[
�

2 x2 − 2 x + 1
�

(2 n+ 3)−
(1− 2 x)2 (n+ 1)

qn
].

Using the induction hypothesis, the above bracket is greater than

�

2 x2 − 2 x + 1
�

(2 n+ 3)−
(1− 2 x)2 (n+ 1)

�

2 x2 − 2 x + 1
�

(1− 2 x)2
=
�

2 x2 − 2 x + 1
�

(n+ 2)

so, the left hand side from the above equality, containing qn+1, is greater than
�

2 x2 − 2 x + 1
�2

. Hence,

�

2 x2 − 2 x + 1
�2
− (1− 2 x)2 ≤
�

2 x2 − 2 x + 1
�

qn+1 − (1− 2 x)2 .

In conclusion, 4 x2 (x − 1)2 ≤
�

2 x2 − 2 x + 1
�

qn+1 − (1− 2 x)2 and the proof is completed.
Remarks:

1. In this second proof is easier to see that the sequence Sn (x) is log-convex for any real x different from 1/2.
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2. For x = 1/2 we can not just replace x with 1/2 in the three terms recurrence above. This gives us nSn (1/2) =
1/2 (−1+ 2 n)Sn−1 (1/2), with S1 (1/2) = 1/2, whereas the definition of the polynomial sequence from the beginning gives us the
recurrence nSn (1/2) = (−1+ 2 n)Sn−1 (1/2), S1 (1/2) = 1. In this case is easy to prove, by induction, that Sn (1/2) is log-convex.

3. For any natural number n the function, in x , Sn (x) is one solution of some Heun differential equation, see [9].

4. Following an idea of G. Polya, G. Szego proved the point wise log-concavity of some polynomial sequences showing that
their generating function is of certain type. These are precisely entire functions that are limits of polynomials with real roots
only. On the other hand if the generating function of a real numbers sequence is a Pick function then the sequence is log-convex
(see [10]). In fact, these sequences are even Hausdorff moment sequences! In [5] there are given some conditions for the point
wise log-convexity but not an explicit generating function for log-convex polynomial sequences; such an analogous to the Polya
functions but for point wise log-convex polynomial sequences, even for (numerical) sequences, would have been of great interest.

5. This problem is similar, from one point of view, with the following problem, coming also from Professor Ioan Rasa: prove
that the sequence

c(n, k) = (2n
k )
−2

k
∑

j=0

(nj )
2(nk− j)

2

is convex in k for any n. Numerical computations seem to lead to the fact that this sequence is, in fact, a Hausdorff moment
sequence, or completely monotone sequence. Both sequences are "probabilistic" sequences i.e. the sums of the unsquared terms is

1. Indeed,
n
∑

k=0
(nk)(1− x)n−k x k = 1 for any x in [0, 1] and, similarly, (2n

k )
−1

k
∑

j=0
(nj )(

n
k− j) = 1 for any n. So, the sequences are convex

combinations of a particular type! The general problem would be: suppose the positive terms sequence {a (n, k)}k≥0 satisfies
∑n

k=0 a (n, k) = 1 for any n. In what conditions the sequence An =
∑n

k=0 (a (n, k))2 would be: convex, log-convex, Hausdorff
moment sequence? This can be formulated in probabilistic terms.

Acknowledgements.
I thank Professor I. Rasa for the valuable remarks and advices made after the careful readings of this paper.

References
[1] H. Alzer, Remarks on a Convexity Theorem of Rasa, Results Math (2020) 75: 29.

[2] Gonska, H., Rasa, I., Rusu, M.D, Chebyshev-Grüss-type inequalities via discrete oscillations., Bul. Acad. Stiinte Repub. Mold. Mat. 1, 63-89
(2014).

[3] Gavrea I., Ivan M., On a conjecture concerning the sum of the squared Bernstein polynomials, Appl. Math. Comput. 241, 70-74, (2014).

[4] F. Hausdorff, "Summationsmethoden und momentfolgen I", Mathematische Zeitschrift, vol. 9, no. 1-2, pp. 74-109, 1921.

[5] L. Liu, Y. Wang, On the log-convexity of combinatorial sequences, Advances in Applied Mathematics 39(4) (2007), 453-476.

[6] Nikolov, G., Inequalities for ultraspherical polynomials. Proof of a conjecture of I. Rasa, J. Math. Anal. Appl. 418, 852-860, (2014).

[7] Rasa,I., Convexity Properties of Some Entropies, Results Math (2018) 73: 105.

[8] Rasa,I., Convexity Properties of Some Entropies II, Results Math (2019) 74: 154.

[9] Rasa, I., Special functions associated to positive linear operators, arXiv:1409.1015v2 [Math.CA] 2014.

[10] O.Roth, S. Ruscheweyh, L. Salinas, A note on generating functions for Hausdorff moment sequences , Proc. Amer. Math. Soc., 136(9),
3171-3176.

[11] G. Szego, On an inequality of P. Turan concerning Legendre polynomials, Bull. Amer. Math. Soc. 54(1948), 401-405.

[12] G. Szego, Orthogonal Polynomials, A.M.S. Colloquium Publications, vol, 23, N.Y., 1939.

[13] H. Skovgaard, On the inequalities of the Turan type, MATH. SCAND. 2(1954), 65-73.

[14] http://mathworld.wolfram.com/Legendre.html

[15] https://en.wikipedia.org/wiki/Legendre polynomials

Dolomites Research Notes on Approximation ISSN 2035-6803


	Introduction
	Log-convexity and Legendre polynomials
	Log-convexity by induction

