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Abstract

We deal with multivariate Brass-Stancu-Kantorovich operators depending on a non-negative integer
parameter and defined on the space of all Lebesgue integrable functions on a unit hypercube. We prove
Lp-approximation and provide estimates for the Lp-norm of the error of approximation in terms of a
multivariate averaged modulus of continuity and of the corresponding Lp-modulus.
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1 Introduction and Historical Notes
The fundamental functions of the well-known Bernstein operators are defined by

pn,k(x) =

� �n
k

�

x k(1− x)n−k; 0≤ k ≤ n
0; k < 0 or k > n

, x ∈ [0,1]. (1)

In [23], using a probabilistic method, Stancu generalized Bernstein’s fundamental functions as

wn,k,r(x) :=

(

(1− x) pn−r,k (x) ; 0≤ k < r
(1− x) pn−r,k (x) + x pn−r,k−r (x) ; r ≤ k ≤ n− r
x pn−r,k−r (x) ; n− r < k ≤ n

, x ∈ [0, 1], (2)

where r is a non-negative integer parameter, n is any natural number such that n> 2r, for which each pn−r,k is given by (1), and
therefore, constructed and studied Bernstein-type positive linear operators as

Ln,r ( f ; x) :=
n
∑

k=0

wn,k,r(x) f
�

k
n

�

, x ∈ [0, 1], (3)

for f ∈ C[0, 1]. In doing so Stancu was guided by an article of Brass [8]. This is further discussed by Gonska [11]. Among others,
estimates in terms of the second order modulus of smoothness are given there for continuous functions.

It is clear that for x ∈ [0, 1] Stancu’s fundamental functions in (2) satisfy

wn,k,r(x)≥ 0 and
n
∑

k=0

wn,k,r(x) = 1,

hence the operators Ln,r can be expressed as

Ln,r ( f ; x) :=
n−r
∑

k=0

pn−r,k (x)
�

(1− x) f
�

k
n

�

+ x f
�

k+ r
n

��

, (4)

are defined for n≥ r and satisfy the end point interpolation Ln,r ( f ; 0) = f (0) , Ln,r ( f ; 1) = f (1). It is thus justified to call the
Ln,r Brass-Stancu-Bernstein (BSB) operators.

In [24] Stancu gave uniform convergence limn→∞ Ln,r ( f ) = f on [0, 1] for f ∈ C[0,1] and presented an expression for the
remainder Rn,r( f ; x) of the approximation formula f (x) = Ln,r( f ; x) + Rn,r( f ; x) by means of second order divided differences
and also obtained an integral representation for the remainder. Moreover, the author estimated the order of approximation by
the operators Ln,r ( f ) via the classical modulus of continuity. He also studied the spectral properties of Ln,r .

In the cases r = 0 and r = 1, the operators Ln,r reduce to the classical Bernstein operators Bn, i.e.,

Bn ( f ; x) =
n
∑

k=0

pn,k(x) f
�

k
n

�

.
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What also has to be mentioned: Stancu himself in his 1983 paper observed that "we can optimize the error bound of the
approximation of the function f by means of Ln,r f if we take r = 0 or r = 1, when the operator Ln,r reduces to Bernstein’s." So
there is a shortcoming.

Since Bernstein polynomials are not appropriate for approximation of discontinuous functions (see [14, Section 1.9]),
by replacing the point evaluations f

�

k
n

�

with the integral means over small intervals around the knots k
n , Kantorovich [12]

generalized the Bernstein operators as

Kn ( f ; x) =
n
∑

k=0

pn,k (x) (n+ 1)

k+1
n+1
∫

k
n+1

f (t) d t, x ∈ [0,1], n ∈ N, (5)

for Lebesgue integrable functions f on [0, 1].
On p. 239 of his mathematical memoirs [13] Kantorovich writes: "While I was waiting for a student who was late, I was

looking over vol. XIII of Fundamenta Math. and saw in it a note from the Moscow Mathematician Khlodovskii related to Bernstein
polynomials. In it I first caught sight of Bernstein polynomials, which he proposed in 1912 for an elementary proof of the well
known Weierstrass theorem ... I at once wondered if it is not possible in these polynomials to change the values of the function at
certain points into the more stable average of the function in the corresponding interval. It turned out that this was possible, and
the polynomials could be written in such a form not only for a continuous function but also for any Lebesgue-summable function."

Lorentz [14] proved that lim
n→∞
∥Kn( f )− f ∥p = 0, f ∈ Lp[0,1], 1≤ p <∞.

There are a lot of articles dealing with classical Kantorovich operators, and, in particular, their degree of approximation and
the importance of second order moduli of different types. See, e.g., the work of Berens and DeVore [5], [6], Swetits and Wood
[25] and Gonska and Zhou [10]. It is beyond the scope of this note to further discuss this matter. As further work on the classical
case here we only mention the 1976 work of Müller [16], Maier [15], and Altomare et al. [1], see also the references therein.

Similarly to Kantorovich operators Bodur et al. [7] constructed a Kantorovich type modification of BSB operators as

Kn,r ( f ; x) :=
n
∑

k=0

wn,k,r(x)






(n+ 1)

k+1
n+1
∫

k
n+1

f (t) d t






, x ∈ [0,1], (6)

for f ∈ L1 [0, 1], where r is a non-negative integer parameter, n is a natural number such that n> 2r and wn,k,r(x) are given by (2).
And, it was shown that If f ∈ Lp[0,1], 1≤ p <∞, then lim

n→∞



Kn,r( f )− f




p = 0. In addition, it was obtained that each Kn,r is

variation detracting as well [7]. Throughout the paper, we shall call the operators Kn,r given by (6) "Brass-Stancu-Kantorovich",
BSK operators.

Note that from the definition of wn,k,r , Kn,r ( f ; x) can be expressed as

Kn,r ( f ; x) =
n−r
∑

k=0

pn−r,k (x) (n+ 1)






(1− x)

k+1
n+1
∫

k
n+1

f (t) d t + x

k+r+1
n+1
∫

k+r
n+1

f (t) d t







and in the cases r = 0 and r = 1 they reduce to the Kantorovich operators; Kn,0 = Kn,1 = Kn given by (5). Again they are defined
for all n≥ r.

MULTIVARIATE SITUATION
Some work has been done in the multivariate setting for BSB and BSK operators. For the standard simplex this was done, e.g.,

by Yang, Xiong and Cao [27] and Cao [9], For example, Cao proved that multivariate Stancu operators preserve the properties of
multivariate moduli of continuity and obtained the rate of convergence with the help of Ditzian-Totik’s modulus of continuity.

In this work, motivated by the work Altomare et al. [3], we deal with a multivariate extension of the BSK operators on a
d-dimensional unit hypercube and we study Lp -approximation by these operators. For the rate of convergence we provide an
estimate in terms of the so called first order multivariate τ-modulus, a quantity coming from the Bulgarian school of Approximation
Theory. Also, inspired by Müller’s approach in [17], we give estimates for differentiable functions and such in terms of the
Lp-modulus of smoothness, using properties of the τ-modulus. Here the work of Quak [20], [21] was helpful.

2 Preliminaries
Consider the space Rd , d ∈ N. Let ∥x∥∞ denote the max-norm of a point x= (x1, . . . , xd) ∈ Rd ;

∥x∥∞ := ∥x∥max = max
i∈{1,...,d}

|x i |

and let 1 denote the constant function 1 : Rd → R such that 1 (x) = 1 for x ∈ Rd . And, for each j = 1, . . . , d, let

pr j : Rd → R

stand for the jth coordinate function defined for x ∈ Rd by

pr j (x) = x j .
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Definition 2.1. A multi-index is a d-tuple α= (α1, . . . ,αd) of non-negative integers. Its norm (length) is the quantity

|α|=
d
∑

i=1

αi .

The differential operator Dα is defined by
Dα f = Dα1

1 · · ·D
αd
d f ,

where Di , i = 1, . . . , d, is the corresponding partial derivative operator (see [4, p. 335]).

Throughout the paper Qd := [0, 1]d , d ∈ N, will denote the d-dimensional unit hypercube and we consider the space

Lp (Qd) = { f : Qd → R | f p-integrable on Qd} , 1≤ p <∞,

with the standard norm ∥.∥p. Recall the following definition of the Lp-modulus of smoothness of first order:

Definition 2.2. Let f ∈ Lp (Qd) , 1≤ p <∞, h ∈ Rd and δ > 0. The modulus of smoothness of the first order for the function f
and step δ in Lp-norm is given by

ω1 ( f ;δ)p = sup
0<∥h∥∞≤δ





∫

Qd

| f (x+ h)− f (x)|p dx





1/p

if x,x+ h ∈Qd [21].

Let M (Qd) := { f | f bounded and measurable on Qd}. Below, we present the concept of the first order averaged modulus of
smoothness.

Definition 2.3. Let f ∈ M (Qd) , h ∈ Rd and δ > 0. The multivariate averaged modulus of smoothness, or τ-modulus, of the first
order for function f and step δ in Lp-norm is given by

τ1 ( f ,δ)p := ∥ω1 ( f , .;δ)∥p , 1≤ p <∞,

where
ω1 ( f ,x;δ) =
sup

�

| f (t+ h)− f (t)| : t, t+ h ∈Qd , ∥t− x∥∞ ≤
δ
2 ,∥t+ h− x∥∞ ≤

δ
2

	

is the multivariate local modulus of smoothness of first order for the function f at the point x ∈Qd and for step δ. [21].

For our future purposes, we need the following properties of the first order multivariate averaged modulus of smoothness:
For f ∈ M (Qd) , 1≤ p <∞ and δ,λ,γ ∈ R+, there hold

τ1) τ1 ( f ,δ)p ≤ τ1 ( f ,λ)p for 0< δ ≤ λ,

τ2) τ1 ( f ,λδ)p ≤ (2 ⌊λ⌋+ 2)d+1 τ1 ( f ,δ)p, where ⌊λ⌋ is the greatest integer less than or equal to λ,

τ3) τ1 ( f ,δ)p ≤ 2
∑

|α|≥1
δ|α| ∥Dα f ∥p , αi = 0 or 1, if Dα f ∈ Lp (Qd) for all multi-indices α with |α| ≥ 1 and αi = 0 or 1 (see [19]

or [21]).

For a detailed knowledge concerning averaged modulus of smoothness, we refer to the book of Sendov and Popov [22].
Now, consider the Sobolev space W p

1 (Qd) of functions f ∈ Lp (Qd) , 1 ≤ p <∞, with (distributional) derivatives Dα f
belonging to Lp (Qd), where |α| ≤ 1, with seminorm

| f |W p
1
=
∑

|α|=1

∥Dα f ∥p

(see [4, p. 336]). Recall that for all f ∈ Lp (Qd) the K-functional, in Lp-norm, is defined as

K1,p ( f ; t) := inf
¦

∥ f − g∥p + t |g|W p
1

: g ∈W p
1 (Qd)

©

(t > 0) . (7)

K1,p ( f ; t) is equivalent with the usual first order modulus of smoothness of f , ω1 ( f ; t)p; namely, there are positive constants c1
and c2 such that

c1K1,p ( f ; t)≤ω1 ( f ; t)p ≤ c2K1,p ( f ; t) (t > 0) (8)

holds for all f ∈ Lp (Qd) (see [4, Formula 4.42 in p. 341]).
The following result due to Quak [21] is an upper estimate for the Lp-norm of the approximation error by the multivariate

positive linear operators in terms of the first order averaged modulus of smoothness. Note that this idea was used first by Popov
for the univariate case in [18].

Theorem 2.1. Let L : M (Qd)→ M (Qd) be a positive linear operator that preserves the constants. Then for every f ∈ M (Qd) and
1≤ p <∞, the following estimate holds:

∥L( f )− f ∥p ≤ Cτ1

�

f , 2dpA
�

p
,

where C is a positive constant and
A := sup

�

L
�

(pri ◦ψx)
2 ;x

�

: i = 1, . . . , d, x ∈Qd

	

,

in which ψx (y) := y− x for fixed x ∈Qd and for every y ∈Qd and A≤ 1 [21].
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3 Multivariate BSK Operators
In this section, motivated by Altomare et al. ([1], [3]), we consider the multivariate extension of BSK operators on Lp (Qd) and
study approximation properties of these operators in Lp-norm. We investigate the rate of the convergence in terms of first order
τ-modulus and the usual Lp-modulus of smoothness of first order.

Let r be a given non-negative integer. For any n ∈ N such that n> 2r, k = (k1, . . . , kd) ∈ {0, . . . , n}d and x = (x1, . . . , xd) ∈Qd ,
we set

wn,k,r(x) :=
d
∏

i=1

wn,ki ,r(x i), (9)

where, wn,ki ,r(x i) is Stancu’s fundamental function given by (2), written for each i = 1, . . . , d, 0≤ ki ≤ n and x i ∈ [0,1]. Thus,
for x ∈Qd , we have

wn,k,r(x)≥ 0 and
∑

k∈{0,...,n}d
wn,k,r(x) = 1. (10)

For f ∈ L1 (Qd) and x= (x1, . . . , xd) ∈Qd we consider the following multivariate extension of the BSK operators Kn,r given
by (6):

Kd
n,r ( f ;x) =

n
∑

k1 ,...,kd=0

d
∏

i=1

wn,ki ,r(x i)

∫

Qd

f
�

k1 + u1

n+ 1
, . . . ,

kd + ud

n+ 1

�

du1 · · · dud .

Notice that from (9), and denoting, as usual, any f ∈ L1 (Qd) of x= (x1, . . . , xd) ∈Qd by f (x) = f (x1, . . . , xd), we can express
these operators in compact form as

Kd
n,r ( f ;x) =

∑

k∈{0,...,n}d
wn,k,r(x)

∫

Qd

f
�

k+ u
n+ 1

�

du. (11)

It is clear that multivariate BSK operators are positive and linear and the cases r = 0 and 1 give the multivariate Kantorovich
operators on the hypercube Qd , which can be captured from [1] as a special case.

Lemma 3.1. For x ∈Qd , we have

Kd
n,r (1;x) = 1,

Kd
n,r (pri;x) =

n
n+ 1

x i +
1

2 (n+ 1)
,

Kd
n,r

�

pr2
i ;x

�

=
n2

(n+ 1)2

�

x2
i +

�

1+
r (r − 1)

n

�

x i (1− x i)
n

�

+
3nx i + 1

3 (n+ 1)2
,

for i = 1, . . . , d.

Taking this lemma into consideration, by the well-known theorem of Volkov [26], we immediately get that

Theorem 3.2. Let r be a non-negative fixed integer and f ∈ C (Qd). Then lim
n→∞

Kd
n,r ( f ) = f uniformly on Qd .

Now, we need the following evaluations for the subsequent result: For 0≤ x i ≤ 1, i = 1, . . . , d, we have

1
∫

0

(1− x i) pn−r,ki
(x i) d x i =

�

n− r
ki

�

1
∫

0

x ki
i (1− x i)

n−r−ki+1 d x i

=
n− r − ki + 1

(n− r + 2) (n− r + 1)

when 0≤ ki < r and

1
∫

0

x i pn−r,ki−r (x i) d x i =
�

n− r
ki − r

�

1
∫

0

x ki−r+1
i (1− x i)

n−ki d x i

=
ki − r + 1

(n− r + 2) (n− r + 1)

when n− r < ki ≤ n. Thus, from (1) and (2), it follows that

1
∫

0

wn,ki ,r(x i)d x i =







n−r−ki+1
(n−r+2)(n−r+1) ; 0≤ ki < r

n−2r+2
(n−r+2)(n−r+1) ; r ≤ ki ≤ n− r

ki−r+1
(n−r+2)(n−r+1) ; n− r < ki ≤ n

. (12)
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Note that we have the following estimates:

n− r − ki + 1≤ n− r + 1 when 0≤ ki < r,

n− 2r + 2≤ n− r + 1 when r ≤ ki ≤ n− r,

ki − r + 1≤ n− r + 1 when n− r < ki ≤ n (13)

for each i = 1, . . . , d, where in the middle term, we have used the hypothesis n> 2r. Making use of (13), (12) and (9), we obtain

∫

Qd

wn,k,r(x)dx=
d
∏

i=1

1
∫

0

wn,ki ,r(x i)d x i ≤
1

(n− r + 2)d
. (14)

Lp-approximation by the sequence of multivariate BSK operators is presented in the following theorem.

Theorem 3.3. Let r be a non-negative fixed integer and f ∈ Lp (Qd) , 1≤ p <∞. Then lim
n→∞





Kd
n,r( f )− f







p
= 0.

Proof. Since the cases r = 0 and 1 correspond to the multivariate Kantorovich operators (see [1] or [3]), we consider only

the cases r > 1, which is taken as fixed. From Theorem 3.2, we obtain that lim
n→∞





Kd
n,r( f )− f







p
= 0 for any f ∈ C (Qd). Since

C (Qd) is dense in Lp (Qd), denoting the norm of the operator Kd
n,r acting on Lp (Qd) onto itself by





Kd
n,r





, it remains to show that

there exists an Mr , where Mr is a positive constant that maybe depends on r, such that




Kd
n,r





≤ Mr for all n> 2r. Now, as in [3,

p.604], we adopt the notation

Qn,k :=
d
∏

i=1

�

ki

n+ 1
,

ki + 1
n+ 1

�

⊂Qd ;
⋃

k∈{0,...,n}d
Qn,k =Qd .

Making use of the convexity of the function ϕ (t) := |t|p , t ∈ R, 1≤ p <∞ (see, e.g., [2]), and (10), for every f ∈ Lp (Qd) , n>
2r, and x ∈Qd , we obtain

�

�

�Kd
n,r ( f ;x)

�

�

�

p
≤

∑

k∈{0,...,n}d
wn,k,r(x)

∫

Qd

�

�

�

�

f
�

k+ u
n+ 1

�

�

�

�

�

p

du

=
∑

k∈{0,...,n}d
wn,k,r(x) (n+ 1)d

∫

Qn,k

| f (v)|p dv.

Taking (14) into consideration, this yields
∫

Qd

�

�

�Kd
n,r ( f ;x)

�

�

�

p
dx≤

∑

k∈{0,...,n}d

�

n+ 1
n− r + 2

�d
∫

Qn,k

| f (v)|p dv.

Since sup
n>2r

�

n+1
n−r+2

�d
=
�

2r+2
r+3

�d
:= Mr for r > 1, where 1< 2r+2

r+3 < 2, we get

∫

Qd

�

�

�Kd
n,r ( f ;x)

�

�

�

p
dx≤ Mr

∫

Qd

| f (v)|p dv,

which implies that




Kd
n,r ( f )







p
≤ M1/p

r ∥ f ∥p. Note that for the cases r = 0 and 1; we have Mr = 1 (see [3]). Therefore, the proof

is completed.

4 The rate of convergence
In [17], Müller studied Lp-approximation by the sequence of the Cheney-Sharma-Kantorovich operators (CSK). The author gave
an estimate for this approximation in terms of the univariate τ-modulus and moreover, using some properties of the τ-modulus,
he also obtained upper estimates for the Lp-norm of the error of approximation for first order differentiable functions as well as

for continuous ones. In this part, we show that similar estimates can also be obtained for




Kd
n,r ( f )− f







p
in the multivariate

setting. Our first result is an application of Quak’s method in Theorem 2.1

Theorem 4.1. Let r be a non-negative fixed integer, f ∈ M (Qd) and 1≤ p <∞. Then





Kd
n,r ( f )− f







p
≤ Cτ1

 

f , 2d

√

√

√
3n+ 1+ 3r (r − 1)

12 (n+ 1)2

!

p

(15)

for all n ∈ N such that n> 2r, where the positive constant C does not depend on f .
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Proof. According to Theorem 2.1; by taking ψx (y) = y− x for fixed x ∈Qd and for every y ∈Qd , and defining

An,r := sup
¦

Kd
n,r

�

(pri ◦ψx)
2 ;x

�

: i = 1, . . . , d, x ∈Qd

©

,

where (pri ◦ψx)
2 = pr2

i − 2x i pri + x2
i 1, i = 1, . . . , d, we get the following estimate





Kd
n,r ( f )− f







p
≤ Cτ1

�

f ; 2d
Æ

An,r

�

for any f ∈ M (Qd), under the condition that An,r ≤ 1. Now, applying the operators Kd
n,r and making use of Lemma 3.1, for every

i = 1, . . . , d and x ∈Qd , we obtain

Kd
n,r

�

(pri ◦ψx)
2 ;x

�

=
n− 1+ r (r − 1)

(n+ 1)2
x i (1− x i) +

1

3 (n+ 1)2

≤
n− 1+ r (r − 1)

4 (n+ 1)2
+

1

3 (n+ 1)2

=
3n+ 1+ 3r (r − 1)

12 (n+ 1)2

for all n ∈ N such that n > 2r, where r ∈ N ∪ {0}. Therefore, since we have n ≥ 2r + 1, we take r ≤ n−1
2 and obtain that

An,r ≤
3n+1+3r(r−1)

12(n+1)2
≤ 1 is satisfied, which completes the proof.

Now, making use of the properties τ1)-τ3) of the multivariate first order τ-modulus, we obtain

Theorem 4.2. Let r be a non-negative fixed integer, f ∈ Lp (Qd) , 1 ≤ p <∞, and Dα f ∈ Lp (Qd) for all multi-indices α with
|α| ≥ 1, αi = 0 or 1. Then





Kd
n,r ( f )− f







p
≤ 2Cr

∑

|α|≥1

�

1
2dpn+ 1

�|α|

∥Dα f ∥p ,

for all n ∈ N such that n> 2r, where Cr is a positive constant depending on r.

Proof. Since n> 2r, we immediately have n+ 1≥ 2 (r + 1). Thus, the term appearing inside the 2dth root in the formula (15)
can be estimated, respectively, for r > 1, and r = 0,1, as

3n+ 1+ 3r (r − 1)

12 (n+ 1)2
=

3n+ 3+ 3r (r − 1)− 2
12(n+ 1)2

=
1

n+ 1

�

1
4
+

3r (r − 1)− 2
12(n+ 1)

�

≤
1

n+ 1

�

1
4
+

3r (r − 1)− 2
24(r + 1)

�

=
1

n+ 1

�

3r2 + 3r + 4
24(r + 1)

�

and

3n+ 1

12 (n+ 1)2
=

1
n+ 1

3n+ 1
4 (3n+ 3)

<
1

4 (n+ 1)
.

Now, defining

Br :=

�

3r2+3r+4
24(r+1) ; r > 1,

1
4 ; r = 0, 1,

and making use of the properties τ1)-τ3) of τ-modulus, from (15), we arrive at





Kd
n,r ( f )− f







p
≤ Cτ1

 

f , 2d

√

√

√
3n+ 1+ 3r (r − 1)

12 (n+ 1)2

!

p

≤ Cτ1

�

f , 2d
p

Br
1

2dpn+ 1

�

p

≤ C
�

2
�

2d
p

Br

�

+ 2
�d+1

τ1

�

f ,
1

2dpn+ 1

�

p

≤ 2Cr

∑

|α|≥1

�

1
2dpn+ 1

�|α|

∥Dα f ∥p ,

where the positive constant Cr is defined as Cr := C
�

2
�

2d
p

Br

�

+ 2
�d+1

.
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For non-differentiable functions we have the following estimate in terms of the first order modulus of smoothness, in Lp-norm.

Theorem 4.3. Let r be a non-negative fixed integer and f ∈ Lp (Qd) , 1≤ p <∞. Then




Kd
n,r ( f )− f







p
≤ c2Cr,pω1

�

f ;
1

2dpn+ 1

�

p
,

where ω1 is the first order multivariate modulus of smoothness of f and Cr,p is a constant depending on r and p.

Proof. By Theorem 3.3, since Kd
n,r is bounded, with





Kd
n,r







p
≤ M1/p

r , for all n ∈ N such that n > 2r, we have




Kd
n,r (g)− g







p
≤

�

M1/p
r + 1

�

∥g∥p for g ∈ Lp (Qd). Moreover, from Theorem 4.2, we can write





Kd
n,r (g)− g







p
≤ 2Cr

∑

|α|≥1

�

1
2dpn+ 1

�|α|

∥Dαg∥p

for those g such that Dαg ∈ Lp (Qd), for all multi-indices α with |α| ≥ 1 and αi = 0 or 1. Hence, for f ∈ Lp (Qd), it readily follows
that





Kd
n,r ( f )− f







p
≤




Kd
n,r ( f − g)− ( f − g)







p
+




Kd
n,r (g)− g







p

≤
�

M1/p
r + 1

�

(

∥ f − g∥p + 2Cr

∑

|α|≥1

�

1
2dpn+ 1

�|α|

∥Dαg∥p

)

.

Passing to the infimum for all g ∈W p
1 (Qd) in the last formula, since the infimum of a superset does not exceed that of subset, we

obtain





Kd
n,r ( f )− f







p
≤
�

M1/p
r + 1

�

inf

(

∥ f − g∥p +
2Cr

2dpn+ 1

∑

|α|=1

∥Dαg∥p : g ∈W p
1 (Qd)

)

=
�

M1/p
r + 1

�

inf
§

∥ f − g∥p +
2Cr

2dpn+ 1
|g|W p

1
: g ∈W p

1 (Qd)
ª

=
�

M1/p
r + 1

�

K1,p

�

f ;
2Cr

2dpn+ 1

�

, (16)

where K1,p is the K-functional given by (7). The proof follows from the equivalence (8) of the K-functional and the first order
modulus of smoothness in Lp-norm and the non-decreasingness property of the modulus. Indeed, we get

K1,p

�

f ;
2Cr

2dpn+ 1

�

≤c2ω1

�

f ;
2Cr

2dpn+ 1

�

p

≤c2 (2Cr + 1)ω1

�

f ;
1

2dpn+ 1

�

p
. (17)

Combining (17) with (16) and defining Cr,p :=
�

M1/p
r + 1

�

(2Cr + 1), where M1/p
r and Cr are the same as in Theorems 3.3 and

4.2, respectively, we obtain the desired result.
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[16] M. W. Müller. Die Güte der Lp-Approximation durch Kantorovič-polynome. Math. Z., 151: 243–247, 1976.
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