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Abstract

The aim of the paper is to develop some representation formulae for strongly continuous operator
semigroups on Banach spaces, in terms of limits of integrated means with respect to some given family
of probability Borel measures and other parameters.
The cases where these limits hold true pointwise or uniformly on compact subintervals are discussed
separately. In order to face them different methods have been required: the former case has been
studied by using purely functional-analytic methods, the latter one by involving methods arising from
Approximation Theory.
The paper also contains some estimates of the rate of convergence in terms of the rectified modulus of
continuity and the second modulus of continuity.
In a final section some illustrative examples and applications are provided.

Introduction
The representation (or the approximation) formulae for strongly continuous operator semigroups (in short, C0-semigroups) are
of interest both from a theoretical point of view and from an applied one, especially when they are involved, for instance, in the
numerical analysis of the partial differential equations governed by such C0-semigroups.

Various methods and results are known in this field, often accompanied by a through study of the rate of convergence of the
given representations.

Other than functional-analytic methods, several other approaches have been developed in order to establish representations
formulae for C0-semigroups. With no claim of completeness, we quote [9, 17, 19] as general references and [12, 14, 15, 16, 24]
for more specialized results. A fruitful probabilistic approach has been developed, among others, by [10, 11] and [21, 22, 23].
More recently, in [18] a unifying approach has been proposed in terms of functional calculus and Bernstein functions, while in
[2] and [3] and in the references therein, approximation formulae have been established by involving iterates of positive linear
operators.

Actually, many classical approximation processes acting on function spaces have suggested representation formulae for
C0-semigroups and, conversely, from them it is possible to recover approximation processes by properly specializing the underlying
Banach space and the relevant C0-semigroup (see, e.g, [9, 10, 12, 20, 22, 24]).

In the present paper we discuss some representation formulae which find their roots in some recent papers ([4, 5]) where the
authors introduced and studied a new sequence of positive linear operators which act on continuous function spaces on convex
compact subsets and which, among other things, generalize the classical Kantorovich operators.

The representation formulae are expressed in terms of limits of integrated means with respect to some given families of
probability Borel measures and other parameters.

We discuss both the cases where these limits hold true pointwise or uniformly on compact subintervals.
The former case is developed by using purely functional-analytic methods. The latter one is tackled by involving more direct

methods arising from Approximation Theory. In particular, the path we followed naturally led us to introduce a sequence of
positive linear operators which extend to arbitrary intervals those studied in [4, 5, 6].

A particular case of the representation formulae developed in the present paper, can be considered as a transposition of the
approximation properties of Bernstein-Schnabl operators (see [2, 3, 7]) in the semigroup theory setting.

Actually, although expressed in completely different terms, this last representation formula is, indeed, the same given in [10]
but here we completely overcome the probabilistic background involved in that paper, thus by furnishing a new proof and some
improvements.

However, the probabilistic background of [10] fully enters into play in Section 4 where we give some estimates of the rate of
convergence in terms of the rectified modulus of continuity and the second modulus of continuity.

We end the paper with some illustrative examples and applications concerning both compact and unbounded intervals.
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1 Preliminaries and notation
Throughout the paper we shall consider an arbitrary subinterval I of [0,+∞[; the symbol M+(I) (resp., M1

+(I)) stands for the
space of all Borel measures (resp., probability Borel measure) on I .

If a ∈ I , ϵa will designate the probability Borel measure on I defined by

ϵa(B) =

�

1 if a ∈ B;
0 if a ̸∈ B,

for all Borel subset B of I .
For a given Banach space X , we shall denote by L(X ) the Banach space of all bounded linear operators from X into X endowed

with the usual operator norm ∥ · ∥.
If T ∈ L(X ) and n≥ 1, T n stands for the n-th iterate of T , i.e., T n = T ◦ T ◦ . . . ◦ T

︸ ︷︷ ︸

n−times

.

If ϕ : I → X is a continuous and bounded mapping and µ ∈ M1
+(I), then ϕ is Bochner integrable since

∫

I

∥ϕ(s)∥ dµ(s)< +∞

(see, e.g. [19, Theorem 3.7.4] or [9, Appendix, p. 292]). We shall denote by
∫

I

ϕ(s) dµ(s) ∈ X

its Bochner integral (see, e.g., [19, Section 3.7]).
We recall that









∫

I

ϕ(s) dµ(s)









≤
∫

I

∥ϕ(s)∥ dµ(s).

Moreover, if T ∈ L(X ), then ([19, Theorem 3.7.12])

T

�∫

I

ϕ(s) dµ(s)

�

=

∫

I

T (ϕ(s)) dµ(s). (1)

In particular, if f : I → R is continuous and µ-integrable and u ∈ X , then the mapping s ∈ I 7→ f (s)u is µ-integrable and
∫

I

f (s)u dµ(s) =

�∫

I

f (s) dµ(s)

�

u. (2)

If (T (t))t≥0 is a C0-semigroup of bounded linear operators on X (see, e.g., [17, 19] for more details on the relevant theory),
we shall denote by (A, D(A)) its generator. We recall that

D(A) :=
§

u ∈ X | there exists lim
h→0+

T (h)u− u
h

∈ X
ª

and

Au := lim
h→0+

T (h)u− u
h

(3)

for every u ∈ D(A). Moreover, D(A) is dense in X .
A semigroup is said to be bounded if there exists M ≥ 0 such that, for every t ≥ 0,

∥T (t)∥ ≤ M .

We also recall that, if (T (t))t≥0 is a C0-semigroup with generator (A, D(A)), then, for every u ∈ D(A), the function

ζu : t ≥ 0 7→ T (t)u ∈ X

is differentiable and, for every t ≥ 0, ζ′u(t) = T (t)Au. In particular, if (T (t))t≥0 is bounded by some constant M ≥ 0, then

∥ζ′u(t)∥= ∥T (t)Au∥ ≤ M∥Au∥.

In such a case, taking the mean value theorem into account (see, e.g., [13, Theorem 8.5.1]) we have that ζu is Lipschitz-continuous
with Lipschitz constant M∥Au∥. More precisely,

∥T (s)u− T (t)u∥ ≤ M∥Au∥|s− t| (4)

for every s, t ≥ 0.
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2 Integrated means of operator semigroups
In the present section we shall introduce and study some special sequences of integrated means of a given C0-semigroup which,
as a matter of fact, guarantee a representation/approximation of the C0-semigroup itself.

From now on we shall fix a Banach space X and a C0-semigroup of operators (T (t))t≥0 on X with generator (A, D(A)).
In order to make the exposition simpler, we shall assume that the semigroup (T (t))t≥0 is bounded by some constant M ≥ 0

(see, however, Remark 4 for the general case).
Consider a parameter a ≥ 0 and two families of measures (µt)t∈I and (µn)n≥1 in M1

+(I) and assume that for every t ∈ I and
n≥ 1 the function e1 defined by e1(s) := s (s ∈ I) is both µt -integrable and µn-integrable. Furthermore, assume that there exists
C ≥ 0 such that

∫

I

s dµn(s)≤ C for every n≥ 1 (5)

and that
∫

I

s dµt(s) = t for every t ∈ I . (6)

Note that, if 0 ∈ I , then (6) implies that µ0 = ϵ0.
We observe that, if µ ∈ M1

+(I), α≥ 0 and u ∈ X , then the function

s ∈ I 7→ T (αs)u ∈ X

is continuous and bounded and hence µ-integrable. We shall make use of the symbol
∫

I
T (αs) dµ(s) to denote the linear operator

u ∈ X 7→
∫

I

T (αs)u dµ(s)

which is bounded because








∫

I

T (αs)u dµ(s)









≤ M∥u∥.

Note that, if µ,ν ∈ M1
+(I), α,β ≥ 0 and u ∈ X , then, taking also Fubini’s theorem into account (see, e.g., [19, Theorem

3.7.13]), we get
∫

I

dµ(t)

∫

I

T (αt + βs)u dν(s) =

∫

I

T (αt)

�∫

I

T (βs)u dν(s)

�

dµ(t)

=

∫

I

T (βs)

�∫

I

T (αt)u dµ(t)

�

dν(s) =

∫

I

dν(s)

∫

I

T (αt + βs)u dµ(t).

By induction similar identities can be stated for finitely many probability Borel measures on I .
Accordingly, for every n≥ 1 and t ∈ I , we can consider the bounded linear operator Kn(t) : X → X defined by

Kn(t)u :=

�∫

I

T
� s

n+ a

�

dµt(s)

�n

◦
�∫

I

T
� as

n+ a

�

dµn(s)

�

(u)

=

∫

I

dµt(s1) . . .

∫

I

dµt(sn)

∫

I

T
� s1 + . . .+ sn + asn+1

n+ a

�

u dµn(sn+1)

(7)

for every u ∈ X .
In the special case a = 0 the operators Kn(t) will be denoted by Bn(t), i.e.,

Bn(t)u=

�∫

I

T
� s

n

�

dµt(s)

�n

(u)

=

∫

I

dµt(s1) . . .

∫

I

dµt(sn−1)

∫

I

T
� s1 + . . .+ sn

n

�

u dµt(sn).

(8)

The idea of introducing the operators Kn(t) was suggested by some recent papers ([4, 5]) where the authors introduced
and studied a similar (in spirit) sequence of positive linear operators on continuous function spaces which, among other things,
generalize the classical Kantorovich operators. A similar parallelism connects the operator Bn(t) with the sequence of the so-called
Bernstein-Schnabl operators which have been extensively studied in the last three decades (see, e.g., [2, 3, 4] and the reference
therein).

Theorem 2.1. Under the assumptions that (T (t))t≥0 is bounded and that (5)-(6) hold true, for every u ∈ X and t ∈ I ,

T (t)u= lim
n→∞

Kn(t)u. (9)

In particular,
T (t)u= lim

n→∞
Bn(t)u. (10)
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Proof. If 0 ∈ I , the statement is obvious for t = 0 since µ0 = ϵ0. Fix t ∈ I , t > 0. For any n ≥ 1, consider the bounded linear
operators Qn(t) : X → X and Rn : X → X defined, for every u ∈ X , by

Qn(t)u :=

∫

I

T
� s

n+ a

�

u dµt(s) (1)

and

Rn(u) :=

∫

I

T
� as

n+ a

�

u dµn(s). (2)

Thus, for every 0≤ p ≤ n, we have that
∥Qp

n(t)∥ ≤ M . (3)

Preliminarily, we proceed to show (9) in the special case when u ∈ D(A).
In such a case we need first to show that

lim
n→∞

Rn(u) = u. (4)

Actually, taking (4) into account, for any n≥ 1 and s ∈ I ,




T
� as

n+ a

�

u− u




≤ M∥Au∥
as

n+ a
.

Thanks to (5), for all n≥ 1,

∥Rn(u)− u∥ ≤
∫

I





T
� as

n+ a

�

u− u




 dµn(s)≤
M∥Au∥a

n+ a
C

and this completes the proof of (4).
Proceeding further, we point out that

Kn(t) =Qn
n(t) ◦ Rn = Rn ◦Qn

n(t)

and hence we can write
Kn(t)u− T (t)u=Qn

n(t)u− Cn
n (t)u+Qn

n(t)(Rn(u)− u), (5)

where Cn(t) := T (t/n) (t ∈ I , n≥ 1).
Therefore, on account of (4) and (3), it is enough to show that

lim
n→∞

(Qn
n(t)u− Cn

n (t)u) = 0.

Since Qn(t) and Cn(t) commute, we get

∥Qn
n(t)u− Cn

n (t)u∥=











n−1
∑

p=0

Qp
n(t)C

n−1−p
n (t) (Qn(t)u− Cn(t)u)











≤ nM∥Qn(t)u− Cn(t)u∥.

On the other hand

n (Qn(t)u− Cn(t)u) =

∫

I

n
�

T
� s

n+ a

�

u− T
� t

n

�

u
�

dµt(s). (6)

If s, t ∈ I , s > 0, we have

n
�

T
� s

n+ a

�

u− T
� t

n

�

u
�

= n
�

T
� s

n+ a

�

u− u
�

− n
�

T
� t

n

�

u− u
�

=
n

n+ a
s
�

T (s/(n+ a))u− u
s/(n+ a)

�

− t
�

T (t/n)u− u
t/n

�

and hence
lim

n→∞
n
�

T
� s

n+ a

�

u− T
� t

n

�

u
�

= (s− t)Au. (7)

Obviously, formula (7) holds true for s = 0 as well, in the case 0 ∈ I .
Moreover, for s, t ∈ I and u ∈ D(A), taking (4) into account, we have that

n




T
� s

n+ a

�

u− T
� t

n

�

u




≤ nM∥Au∥
�

�

�

s
n+ a

−
t
n

�

�

�

≤ M∥Au∥(s+ t).

Taking (7), (6) and the Lebesgue dominated convergence theorem into account, we get that

lim
n→∞

n(Qn(t)u− Cn(t)u) =

∫

I

(s− t)Au dµt(s) = 0. (8)
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Accordingly, from (4), (5) and (8), it follows that (9) holds true if u ∈ D(A).
Fix now u ∈ X and ϵ > 0. Then, there exists v ∈ D(A) such that ∥u− v∥ ≤ ϵ. Moreover, there exists ν ∈ N such that, if n≥ ν,

∥Kn(t)(v)− T (t)v∥ ≤ ϵ.

Therefore, recalling that ∥Kn(t)∥ ≤ M and ∥T (t)∥ ≤ M for any n≥ 1, we obtain

∥Kn(t)u− T (t)u∥ ≤ ∥Kn(t)u− Kn(t)v∥+ ∥Kn(t)v − T (t)v∥
+ ∥T (t)v − T (t)u∥ ≤ (2M + 1)ϵ

and hence the result follows.

3 On the uniform representation on compact subintervals
In the present section we are aiming for finding some additional hypotheses under which the representation formulae given by
Theorem 2.1 hold true uniformly on compact subintervals of I .

In order to achieve our result, we follow a different approach from the one of the proof of Theorem 2.1. We introduce, indeed,
a sequence of positive linear operators acting on spaces of real-valued continuous functions with at most quadratic growth, whose
analytic expressions are formally the same as the ones of the operators Kn(t), n≥ 1. By means of them and a suitable device, we
obtain the result.

Let I be a real interval (not necessarily contained in [0,+∞[) and denote by E2(I) the linear subspace of all continuous
functions f ∈ C(I ,R) satisfying | f (s)| ≤ M(1+ s2) (s ∈ I) for some M ≥ 0.

Clearly, E2(I) contains the functions 1, e1(s) := s, e2(s) := s2 (s ∈ I). Moreover, E2(I) also contains the subspace Cb(I ,R) of
all real-valued bounded continuous functions on I .

Consider two families of measures (µt)t∈I and (µn)n≥1 in M+
1 (I), together with a positive constant a. Assume that

e2 ∈ L1(µt)∩L1(µn) for every t ∈ I and n≥ 1. (11)

From the inequality |e1| ≤ 1+ e2 it also follows that e1 ∈ L1(µt)∩L1(µn) (t ∈ I , n≥ 1).
For every n≥ 1, f ∈ E2(I), and t ∈ I set

Cn( f )(t) :=

∫

I

dµt(s1) . . .

∫

I

dµt(sn)

∫

I

f
� s1 + . . .+ sn + asn+1

n+ a

�

dµn(sn+1). (12)

The multiple integral in (12) is convergent because, considering a constant M such that | f | ≤ M(1+e2), for every s1, . . . , sn+1 ∈
I , we have

�

�

� f
� s1 + . . .+ sn + asn+1

n+ a

�
�

�

�≤ M
�

1+
� s1 + . . .+ sn + asn+1

n+ a

�2�

≤ M

�

1+
s2
1 + . . .+ s2

n + as2
n+1

n+ a

�

and hence
∫

I

dµt(s1) . . .

∫

I

dµt(sn)

∫

I

�

�

� f
� s1 + . . .+ sn + asn+1

n+ a

�
�

�

� dµn(sn+1)

≤ M

�

1+
1

n+ a

�

n

∫

I

s2 dµt(s) + a

∫

I

s2 dµn(s)

��

.

In the case a = 0, the operators Cn (n≥ 1) turn into the operators

Bn( f )(t) =

∫

I

dµt(s1) . . .

∫

I

f
� s1 + . . .+ sn

n

�

dµt(sn) (13)

( f ∈ E2(I), t ∈ I).
The operators Bn extend to the framework of arbitrary intervals the sequence of Bernstein-Schnabl operators and they have

been first studied in [6].
The operators Cn extend to the setting of arbitrary intervals the generalized Kantorovich operators which have been introduced

and studied in [4] and [5] in the context of compact real intervals (actually, in the more general context of convex compact
subsets of locally convex spaces).

In the case I = [0,1], under a special choice of the measure µt (0≤ t ≤ 1), the operators Bn and Cn turn into the classical
Bernstein operators and the Kantorovich operators, respectively (see the final Section 5).

From now on, together with (6), we shall further assume that

sup
t∈J

∫

I

s2 dµt(s)< +∞ for every compact subinterval J of I (14)
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and

sup
n≥1

∫

I

s2 dµn(s)< +∞. (15)

As pointed out before, from (15) it also follows that

sup
n≥1

∫

I

|s| dµn(s)< +∞.

In the present framework a useful role is played by the family of functions (ψt)t∈I defined by

ψt(s) = |s− t| (s, t ∈ I). (16)

Clearly, ψ2
t ∈ E2(I) for every t ∈ I .

Proposition 3.1. Assume that (6) and (11) hold true. Under the further assumption (14) if a = 0 and (14)-(15) if a > 0, the
following properties hold true:

(1) lim
n→∞

Cn(ψ2
t )(t) = 0 uniformly on compact subintervals of I .

(2) If f ∈ Cb(I ,R), then lim
n→∞

Cn( f ) = f uniformly on compact subintervals of I .

Proof. As regards Part (1), direct calculations show that, for every n≥ 1 and t ∈ I ,

Cn(1) = 1,

Cn(e1)(t) =
n

n+ a
t +

a
n+ a

∫

I

s dµn(s),

and

Cn(e2)(t) =
a2

(n+ a)2

∫

I

s2 dµn(s) +
2nat
(n+ a)2

∫

I

s dµn(s)

+
n

(n+ a)2

∫

I

s2 dµt(s) +
n(n− 1)
(n+ a)2

t2.

Therefore,

Cn(ψ
2
t )(t) =

a2

(n+ a)2

∫

I

s2 dµn(s)−
2a2 t
(n+ a)2

∫

I

s dµn(s)

+
n

(n+ a)2

∫

I

s2 dµt(s)−
n− a2

(n+ a)2
t2

and hence the result follows.
Part (2) is an immediate consequence of Part (1) and Theorem 3.5 of [1].

Remark 1.
1. As the proof above shows, in the case a > 0, Part (1) of Proposition 3.1 (and hence Part (2) as well) continue to hold true
by replacing condition (15) with the weaker one

lim
n→∞

1
n2

∫

I

s2 dµn(s) = 0,

which in turn also implies that

lim
n→∞

1
n2

∫

I

|s| dµn(s) = 0.

2. Actually, solely under the assumptions (5) and (6) and for I = [0,+∞[, we get that for every f ∈ UCb([0,+∞[) and
t ≥ 0

lim
n→∞

Cn( f )(t) = f (t)

and, in particular,
lim

n→∞
Bn( f )(t) = f (t).

These convergence formulas can be easily proved as follows. Consider the Banach space X := UCb([0,+∞[) of all uniformly
continuous and bounded functions on [0,+∞[ endowed with the sup-norm and denote by (T (t))t≥0 the translation semigroup
defined on it, i.e., for every t ≥ 0, f ∈ UCb([0,+∞[) and x ≥ 0,

T (t) f (x) = f (x + t).
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If (µt)t≥0 and (µn)n≥1 are families of probability Borel measures on [0,+∞[ satisfying (5)-(6), from Theorem 2.1 it follows
that, for any f ∈ UCb([0,+∞[ and t ∈ [0,+∞[,

f (x + t) = lim
n→∞

∫ +∞

0

dµt(s1) . . .

∫ +∞

0

f
�

x +
s1 + . . .+ sn

n

�

dµt(sn) (17)

and

f (x + t)

= lim
n→∞

∫ +∞

0

dµt(s1) . . .

∫ +∞

0

dµt(sn)

∫ +∞

0

f
�

x +
s1 + . . .+ sn + asn+1

n+ a

�

dµn(sn+1)
(18)

uniformly w.r.t. x ≥ 0.
In particular, for x = 0, we obtain

f (t) = lim
n→∞

∫ +∞

0

dµt(s1) . . .

∫ +∞

0

f
� s1 + . . .+ sn

n

�

dµt(sn) = lim
n→∞

Bn( f )(t) (19)

and

f (t) = lim
n→∞

∫ +∞

0

dµt(s1) . . .

∫ +∞

0

dµt(sn)

∫ +∞

0

f
� s1+. . .+sn+asn+1

n+ a

�

dµn(sn+1)

= lim
n→∞

Cn( f )(t).
(20)

Thus, in addition to the operators Bn which have been already studied in [6], the operators Cn, n ≥ 1, represent another
approximation process and they seem to have an independent interest on their own. Their study will be throughly deepened in a
forthcoming paper.

Proposition 3.1 and the next result play a key role to obtain a uniform representation of bounded C0-semigroups on compact
subintervals.

Lemma 3.2. Consider a normed space (X ,∥ · ∥) and a real interval I . If F : I → X is continuous and bounded, then for every ϵ > 0
and for every compact subinterval J of I there exists δ > 0 such that

∥F(s)− F(t)∥ ≤ ϵ +
2∥F∥∞
δ2

ψ2
t (s) (21)

for every t ∈ J and s ∈ I , where ∥F∥∞ = sup
s∈I
∥F(s)∥.

Proof. Given ϵ > 0 and a compact subinterval J ⊂ I , we first proceed to show that there exists δ > 0 such that

∥F(s)− F(t)∥ ≤ ϵ for every s ∈ I , t ∈ J , |s− t| ≤ δ. (1)

Suppose, on the contrary, that (1) is not true. Then there exist two sequences (sn)n≥1 in I and (tn)n≥1 in J such that

|sn − tn| ≤
1
n

and ∥F(sn)− F(tn)∥> ϵ for every n≥ 1. (2)

Because of the compactness of J , there exists a subsequence (tk(n))n≥1 converging to some t0 ∈ J . Then necessarily (sk(n))n≥1
converges to t0 as well, since, for every n≥ 1,

|sk(n) − t0| ≤ |sk(n) − tk(n)|+ |tk(n) − t0| ≤
1
n
+ |tk(n) − t0|.

The continuity of F at t0 implies that F(tk(n))→ F(t0) and F(sk(n))→ F(t0) as n→∞ which contradicts (2).
Now, it is clear that, if t ∈ J and s ∈ I , then ∥F(s)− F(t)∥ ≤ ϵ if |s− t| ≤ δ, whereas, if |s− t| ≥ δ, then

∥F(s)− F(t)∥ ≤ 2∥F∥∞ ≤
2∥F∥∞
δ2

ψ2
t (s)

and so the result follows.

We are now in the position to state and prove the result we are aiming for, which concerns the uniform representation on
compact subintervals in terms of the integrated means introduced in Section 2.

Theorem 3.3. Let (T(t))t≥0 be a bounded C0-semigroup on a Banach space X and let I ⊂ [0,+∞[ be a real interval. Consider
some sequences (µn)n≥1 and (µt)t∈I of probability Borel measures on I satisfying (6) and (11), a real number a ≥ 0, and consider the
relevant operator (Kn(t))n≥1 and (Bn(t))n≥1 defined by (7) and (8) for every t ∈ I .

Given u ∈ X and a compact subinterval J of I , the following properties hold true:

1) If a = 0, under the further assumption (14), then

T (t)u= lim
n→∞

Bn(t)u uniformly w.r.t. t ∈ J .
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2) If a > 0, under the further assumptions (14)-(15), then

T (t)u= lim
n→∞

Kn(t)u uniformly w.r.t. t ∈ J .

Proof. Given u ∈ X , the function F : I → X defined by F(t) := T(t)u (t ∈ I) is continuous and bounded and ∥F∥∞ ≤ M∥u∥,
where M is a bound for the semigroup (T (t))t≥0.

By Lemma 3.2, given ϵ > 0, there exists δ > 0 such that (21) is satisfied.
Therefore, for every t ∈ J and n≥ 1 we get (in both cases a = 0 and a > 0)

∥Kn(t)u− T (t)u∥

≤
∫

I

dµt(s1) . . .

∫

I

dµt(sn)

∫

I





F
� s1 + . . . sn + asn+1

n+ a

�

− F(t)




 dµn(sn+1)

≤ ϵ +
2M∥u∥
δ2

∫

I

dµt(s1) . . .

∫

I

dµt(sn)

∫

I

ψ2
t

� s1 + . . . sn + asn+1

n+ a

�

dµn(sn+1)

= ϵ +
2M∥u∥
δ2

Cn(ψ
2
t )(t).

Now the conclusion can be easily achieved by using Part (1) of Proposition 3.1. We omit the details for the sake of brevity.

4 Estimates of the rate of convergence
In this section we present some estimates of the rate of convergence for the representation formulae given in Theorem 2.1 (resp.,
Theorem 3.3) in the special case e2 ∈

⋂

t∈I
L1(µt).

To this end we shall make use of a probabilistic representation of the operators Bn(t) in terms of the expected values of the
arithmetic means of suitable random variables together with an estimate given in [10] in such setting.

The estimates will be given in terms of the rectified modulus of continuity and the modulus of continuity of order two defined,
respectively, by

ω1(u,δ) := sup
s,t≥0
|s−t|≤δ

∥T (t)u− T (s)u∥ (22)

and
ω2(u,δ) := sup

0≤t≤δ
∥(T (t)− IX )

2u∥ (23)

(u ∈ X , δ ≥ 0) (see [9, p. 19], [10, formula (2.1)]) where IX denotes the identity operator on X . The next lemma will simplify
the proof of the main result of this section.

Lemma 4.1. Under the same assumptions of Theorem 2.1, consider the bounded linear operators Qn(t) and Rn defined within the
proof of Theorem 2.1 (see formulae (1) and (2), respectively) and Bn(t) (see (8)). Then, for every n≥ 1, t ∈ I , δ ≥ 0 and u ∈ X , the
following estimates hold true:

(i) ∥Qn(t)
nu− Bn(t)u∥ ≤ (1+ t) ω1

�

u,
a

n+ a

�

;

(ii) ω1(Rn(u),δ)≤ω1(u,δ);

(iii) ω2(Rn(u),δ)≤ Mω2(u,δ);

(iv) ∥Rn(u)− u∥ ≤
�

1+

∫

I

s dµn(s)

�

ω1

�

u,
a

n+ a

�

.

Proof. (i) If a = 0 we have nothing to show as, in such a case, Qn(t)n = Bn(t). If a > 0, we have that

∥Qn(t)
nu− Bn(t)u∥ ≤

≤
∫

I

dµt(s1) . . .

∫

I





T
� s1 + . . .+ sn

n+ a

�

u− T
� s1 + . . .+ sn

n

�

u




 dµt(sn)

≤ω1

�

u,
ta

n+ a

�

≤ (1+ t)ω1

�

u,
a

n+ a

�

.

(ii) For ξ,η≥ 0, |ξ−η| ≤ δ, we have

∥T (ξ)Rn(u)− T (η)Rn(u)∥ ≤

≤
∫

I





T
�

ξ+
as

n+ a

�

u− T
�

η+
as

n+ a

�

u




 dµn(s)≤ω1(u,δ)
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and hence the result follows.
(iii) If 0≤ ξ≤ δ, then

∥(T (ξ)− IX )
2Rn(u)∥=








∫

I

(T (ξ)− IX )
2
�

T
� as

n+ a

�

u
�

dµn(s)









=









∫

I

T
� as

n+ a

�

(T (ξ)− IX )
2u dµn(s)









≤
∫

I





T
� as

n+ a

�








(T (ξ)− IX )
2u


 dµn(s)≤ Mω2(u,δ),

which establishes the formula.
(iv) Estimate (iv) easily follows because

∥Rn(u)− u∥ ≤
∫

I





T
� as

n+ a

�

u− u




 dµn(s)

and




T
� as

n+ a

�

u− u




≤ω1

�

u,
sa

n+ a

�

≤ (1+ s) ω1

�

u,
a

n+ a

�

.

Remark 2. We point out that, if I = [0,1], then Statement (i) in the above lemma can be replaced by

∥Qn(t)
nu− Bn(t)u∥ ≤ ω1

�

u,
a

n+ a

�

(t ∈ [0,1], n≥ 1).

In the same way, Statement (iv) turns into

∥Rn(u)− u∥ ≤ω1

�

u,
a

n+ a

�

(n≥ 1).

Next we proceed to show the main result of the present section. For its proof we shall make use of the probabilistic background
and the main result of [10]. For unexplained probabilistic terminology we refer, e.g., to [8].

Theorem 4.2. Under the assumptions of Theorem 2.1, further assume that e2 ∈ L1(µt) for every t ∈ I . Then, for every u ∈ X , n≥ 1
and t ∈ I , the following estimates hold true:

∥Bn(t)u− T (t)u∥ ≤ M1ω2

�

u,

√

√β2(t) + t2

n

�

(24)

and

∥Kn(t)u− T (t)u∥

≤ M1ω2

�

u,

√

√β2(t) + t2

n

�

+M

�

2+ t +

∫

I

s dµn(s)

�

ω1

�

u,
a

n+ a

�

,
(25)

where M1 is a constant independent of u, n and t and β2(t) :=

∫

I

s2 dµt(s) (t ∈ I).

Proof. At first we assume that (T(t))t≥0 is contractive, i.e., ∥T(t)∥ ≤ 1 for every t ≥ 0, and hence M ≤ 1. For a given t ∈ I
consider a sequence (Xn,t)n≥1 of independent identically distributed random variables from a suitable probability space (Ω,F , P)
into I such that all the distributions PXn,t

are equal to µt (see, e.g., [8, Corollary 9.5]).

Then the expected values E(Xn,t) of Xn,t are equal to

∫

I

s dµt(s) = t and E(X 2
n,t) =

∫

I

s2 dµt(s) = β2(t).

Setting Sn,t :=
1
n

n
∑

k=1

Xk,t (n≥ 1), for every u ∈ X we get

E
�

T
�Sn,t

n

�

u
�

=

∫

Ω

T

�

1
n

n
∑

k=1

Xk,t(ω)

�

u dP(ω)

=

∫

I

dPX1,t
(s1) . . .

∫

I

T
� s1 + . . .+ sn

n

�

u dPXn,t
(sn) = Bn(t)u .

Therefore, formula (24) directly follows from [10, Theorem 1, formula (3.2)].
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In order to show (25), introducing the operators Qn(t) and Rn as in the proof of Theorem 2.1, we get

Kn(t)u− T (t)u=Qn(t)
n(Rn(u))− T (t)u

=Qn(t)
n(Rn(u))− Bn(t)(Rn(u))

+ Bn(t)(Rn(u))− T (t)(Rn(u)) + T (t)(Rn(u)− u);

hence, taking (24) and Lemma 4.1 into account, and recalling that M ≤ 1, we get

∥Kn(t)u− T (t)u∥ ≤

≤ ∥Qn(t)
n(Rn(u))− Bn(t)(Rn(u))∥+M1ω2

�

Rn(u),

√

√β2(t) + t2

n

�

+ ∥Rn(u)− u∥ ≤ (1+ t)ω1

�

Rn(u),
a

n+ a

�

+M1ω2

�

u,

√

√β2(t) + t2

n

�

+

�

1+

∫

I

s dµn(s)

�

ω1

�

u,
a

n+ a

�

≤ M1ω2

�

u,

√

√β2(t) + t2

n

�

+

�

2+ t +

∫

I

s dµn(s)

�

ω1

�

u,
a

n+ a

�

,

and the proof of (25) is now complete, for the contractive case.
In the general case where (T (t))t≥0 is bounded, it is enough to consider the new norm on X defined by

∥|u∥| := sup
0≤t
∥T (t)u∥ (u ∈ X ) .

The norm ∥| · ∥| is equivalent to ∥ · ∥ because, for every u ∈ X ,

∥u∥ ≤ ∥|u∥| ≤ M∥u∥. (1)

Moreover, each T (t) is contractive with respect to ∥| · ∥|. By applying (24) and (25) with respect to the norm ∥| · ∥|, we get the
result by taking (1) into account and by observing that the moduli of continuity ω1 and ω2 do not change up to the multiplicative
constant M .

Remark 3. Under the same assumptions of Theorem 4.2, if I = [0,1], then the estimate (25) can be simplified as:

∥Kn(t)u− T (t)u∥ ≤ M1ω2

�

u,

√

√β2(t) + t2

n

�

+ 2Mω1

�

u,
a

n+ a

�

.

Remark 4. If (T (t))t≥0 is an arbitrary C0-semigroup on X , then there exist M ≥ 0 andω ∈ R such that ∥T (t)∥ ≤ Meωt (t ≥ 0) (see,
e.g. [17, Proposition 5.5]). Therefore, by applying Theorem 2.1 and Theorem 4.2 to the bounded C0-semigroup S(t) := e−ωt T (t)
(t ≥ 0), it is also possible to obtain estimates for T (t) = eωtS(t) (t ≥ 0) in terms of the approximating operators

eKn(t) := eωt

�∫

I

e−
ωs

n+a T
� s

n+ a

�

dµt(s)

�n

◦
�∫

I

e−
ωas
n+a T
� as

n+ a

�

dµn(s)

�

and the moduli of continuity eω1 and eω2 defined by means of the C0-semigroup (S(t))t≥0. We omit the details for the sake of
simplicity.

5 Examples and applications
In this final section we apply the main results of the previous sections in order to show some new representation formulae which
are obtained by specifying the measures µt , t ∈ I , and µn, n≥ 1. For the sake of brevity we chose few examples but, obviously,
many other ones can be furnished due to the generality of our approach.

To make the examples more transparent, it is useful to give a description of the representing operators Bn(t) and Kn(t) in
terms of another sequence of linear operators acting on spaces of vector valued continuous functions.

More precisely, by referring to the same notation of Section 2, for every continuous and bounded function F : I → X , n≥ 1,
and t ∈ I , set

B∗n(F)(t) :=

∫

I

dµt(s1) . . .

∫

I

F
� s1 + . . .+ sn

n

�

dµt(sn).

Then, for a given u ∈ X , we get
Bn(t)u= B∗n(T (·)u)(t) (26)

and
Cn(t)u= B∗n(In,u)(t), (27)

where

In,u(t) =

∫

I

T
�nt + as

n+ a

�

u dµn(s) (t ∈ I). (28)

The usefulness of formulae (26) and (27) relies on the fact that the operators B∗n are the transposition of Bernstein-Schnabl
operators ([2, 3, 6, 7]) from the setting of real-valued continuous functions to the vector valued one. This new setting does not
affect their formal analytic expressions which, therefore, can be used to describe both the operators Bn(t) and Kn(t).
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5.1 Compact intervals

Let’s start our analysis by assuming that I is a compact interval, for example I = [0,1].
Consider the family of probability Borel measures (µt)0≤t≤1 defined by

µt := (1− t)ϵ0 + tϵ1 (0≤ t ≤ 1). (29)

Then for every continuous function F : [0,1]→ X , B∗n(F) turns into the n-th Bernstein operator attached to F , i.e.,

B∗n(F)(t) =
n
∑

k=0

�

n
k

�

tk(1− t)n−k F
�

k
n

�

,

(see, e.g., [3, Section 3.1.1] or [2, pp. 295–298]) and hence, for every t ∈ [0, 1], n≥ 1 and u ∈ X ,

Bn(t)u=
n
∑

k=0

�

n
k

�

tk(1− t)n−k T
�

k
n

�

u (30)

and

Kn(t)u=
n
∑

k=0

�

n
k

�

tk(1− t)n−k

∫ 1

0

T
�

k+ as
n+ a

�

u dµn(s). (31)

In particular, if all the measures µn are equal to the Borel-Lebesgue measure on [0,1], we obtain, for a > 0,

Kn(t)u=
n
∑

k=0

�

n
k

�

tk(1− t)n−k n+ a
a

∫
k+a
n+a

k
n+a

T (ξ)u dξ.

which, for a = 1, are the formal analog of Kantorovich operators (see, e.g., [2, pp 333-335] or [4, Example 3.1]).
Another special case of (31) can be obtained considering µn := ϵbn/a (n≥ 1), where (bn)n≥1 is an arbitrary sequence in ]0, a].

In such a case, we get

Kn(t)u=
n
∑

k=0

�

n
k

�

tk(1− t)n−k T
�

k+ bn

n+ a

�

u (32)

(n≥ 1, 0≤ t ≤ 1, u ∈ X ).
We remark that (5) and (6) are satisfied because β2(t) = t (0≤ t ≤ 1). Therefore Theorems 2.1, 3.3 and 4.2 apply. Within

this same framework Part 1) of Theorem 3.3 has been first obtained in [20].
Estimates (24) and (25) become, respectively,

∥Bn(t)u− T (t)u∥ ≤ M1ω2

�

u,

√

√ t + t2

n

�

(33)

and

∥Kn(t)u− T (t)u∥ ≤ M1ω2

�

u,

√

√ t + t2

n

�

+ 2Mω1

�

u,
a

n+ a

�

(34)

(see also Remark 3). Estimates (33) has been first obtained in [10, p. 263, Corollary 1].

5.2 Unbounded intervals

1. Assume I = [0,+∞[ and consider the family of probability Borel measures (µt)t≥0 defined by setting

µt := e−t
∞
∑

k=0

tk

k!
ϵk (t ≥ 0). (35)

Then, for each continuous and bounded function F : [0,+∞[→ X ,

B∗n(F)(t) = e−nt
∞
∑

k=0

(nt)k

k!
F
�

k
n

�

(t ≥ 0) (36)

(Szász-Mirakjan vector valued operators) (see, e.g., [6, Examples 3.1,2]) and hence, for every t ≥ 0, n≥ 1 and u ∈ X ,

Bn(t)u= e−nt
∞
∑

k=0

(nt)k

k!
T
�

k
n

�

u (37)

and

Kn(t)u= e−nt
∞
∑

k=0

(nt)k

k!

∫ +∞

0

T
�

k+ as
n+ a

�

u dµn(s). (38)
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In particular, if µn is the density measure, having density the characteristic function 1[0,1] of the interval [0, 1], with respect to
the Borel-Lebesgue measure λ1 on [0,+∞[, then

Kn(t)u= e−nt
∞
∑

k=0

(nt)k

k!
n+ a

a

∫
k+a
n+a

k
n+a

T (ξ)u dξ. (39)

The family (µt)t≥0 satisfies assumptions (6) and (14)-(15). In particular, β2(t) = t2 + t for all t ≥ 0. Hence, for every u ∈ X ,

T (t) = lim
n→∞

Bn(t)u= lim
n→∞

e−nt
∞
∑

k=0

(nt)k

k!
T
�

k
n

�

u (40)

uniformly on compact subintervals of [0,+∞] and (see (24))

∥Bn(t)u− T (t)u∥ ≤ M1ω2

�

u,

√

√2t2 + t
n

�

. (41)

Similarly, for every u ∈ X ,

T (t) = lim
n→∞

Kn(t)u= lim
n→∞

e−nt
∞
∑

k=0

(nt)k

k!
n+ a

a

∫
k+a
n+a

k
n+a

T (ξ)u dξ (42)

uniformly on compact subintervals of [0,+∞] and (see (25))

∥Kn(t)u− T (t)u∥ ≤ M1ω2

�

u,

√

√2t2+ t
n

�

+M
�

5
2
+ t
�

ω1

�

u,
a

n+a

�

. (43)

Formula (40) is the well-known first exponential formula and estimate (41) has been first established in [10, Theorem 3].
2. For every t ≥ 0 set

µt :=

(

ϕ(t, ·)λ1 if t > 0;

ϵ0 if t = 0,
(44)

where λ1 denotes the Borel-Lebesgue measure on [0,+∞[ and the function ϕ(t, ·) is defined on [0,+∞[ by

ϕ(t, s) :=







e−s/t

t if s > 0;

ϵ0 if s = 0,
(45)

for every t ≥ 0.
Then for every continuous and bounded function F : [0,+∞[→ X and for every t ≥ 0,

B∗n(F)(t) :=







nn

tn(n−1)!

∫ +∞
0

xn−1e−
nx
t F(x) d x if t > 0;

F(0) if t = 0,
(46)

(Post-Widder vector valued operators) (see, e.g., [6, Examples 3.1,4]).
Therefore, for every u ∈ X , n≥ 1 and t ≥ 0,

Bn(t)u :=







nn

tn(n−1)!

∫ +∞
0

xn−1e−
nx
t T (x)u d x if t > 0;

u if t = 0,
(47)

and

Kn(t)u :=







nn

tn(n−1)!

∫ +∞
0

d x
∫ +∞

0
xn−1e−

nx
t T
�

nx+as
n+a

�

u dµn(s) if t > 0;

∫ +∞
0

T
�

as
n+a

�

u dµn(s) if t = 0.
(48)

In this case, (6) and (14) are satisfied since β2(t) = 2t2 (t ≥ 0).
If, for instance, we choose µn = ϵbn

, where bn ≥ 0 and sup
n≥1

bn < +∞ (resp., sup
n≥1

b2
n < +∞), then (5) (resp., (15)) is satisfied.

In such a case we have

Kn(t)u :=







nn

tn(n−1)!

∫ +∞
0

xn−1e−
nx
t T
� nx+abn

n+a

�

u d x if t > 0;

T
� abn

n+a

�

u if t = 0
(49)

and

∥Bn(t)u− T (t)u∥ ≤ M1ω2

�

u, t

√

√3
n

�

, (50)
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as well as

∥Kn(t)u− T (t)u∥ ≤ M1ω2

�

u, t

√

√3
n

�

+M(2+ t + bn)ω1

�

u,
a

n+ a

�

. (51)

Estimate (50) has been first obtained in [10, Theorem 4].
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