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Fekete Points as Norming Sets
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Abstract

Suppose that K ⊂ Rd is compact. Fekete points of degree n are those points Fn ⊂ K that maximize the
determinant of the interpolation matrix for polynomial interpolation of degree n. We discuss some special
cases where we can show that Fekete points (of uniformly higher degree) are norming sets for K , i.e., for
any c > 1, there exists a constant C > 0 such that ‖p‖K ≤ C‖p‖Fcn

, for all polynomials of degree at most
n. It is conjectured that this is true for “general” K .

1 Introduction
Suppose that K ⊂ Rd is compact. We let Pn(K) denote the space of polynomials of degree ≤ n, restricted to K and Nn(K) =
dim(Pn(K)). Often, when no ambiguity is possible, we will abbreviate, Nn(K) = Nn, or even Nn(K) = N . Also, in case m≥ 0 is not
an integer, we will let

Nm(K) = Nm := Ndme(K).

We note that if K is polynomially determining, i.e., p(x) = 0 for ∀x ∈ K implies that p ≡ 0, then

Nn(K) =
�

n+ d
d

�

.

Otherwise the dimension may be smaller than this binomial expression. Indeed, for for K = Sd−1 ⊂ Rd , the unit sphere Pn(K) is
the space of spherical harmonics of degree at most n and then

Nn(K) =
�

n+ d
d

�

−
�

n− 2+ d
d

�

.

The corresponding polynomial interpolation problem may be formulated as follows. Given x1, x2, . . . , xN points in K and values
z1, z2, . . . , zN ∈ R, find p ∈ Pn(K) such that p(x i) = zi , i = 1, . . . , N . Its solution is accomplished by choosing a basis {p1, p2, . . . , pN}
for Pn(K), writing p =

∑N
j=1 a j p j and considering the associated linear system











p1(x1) p2(x1) · · pN (x1)
p1(x2) p2(x2) · · pN (x2)
· ·
· ·

p1(xN ) p2(xN ) · · pN (xN )











~a = ~z

corresponding to p(x i) = zi , 1≤ i ≤ N .
Hence, the interpolation problem has a unique solution for any set of values zi iff the associated, so-called vandermonde

determinant

vdm(x1, x2, · · · , xN ) :=

�

�

�

�

�

�

�

�

�

p1(x1) p2(x1) · · pN (x1)
p1(x2) p2(x2) · · pN (x2)
· ·
· ·

p1(xN ) p2(xN ) · · pN (xN )

�

�

�

�

�

�

�

�

�

is non-zero. If this is the case then one may form the so-called fundamental (cardinal) Lagrange polynomials,

`i(x) :=
vdm(x1, . . . , x i−1, x , x i+1, . . . , xN )

vdm(x1, . . . , xN )
, 1≤ i ≤ N .
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These are cardinal in the sense that `i(x j) = δi j . Further, the interpolation projection π : C(K)→ Pn(K) is given by

π( f )(x) =
n
∑

i=1

f (x i)`i(x)

with operator norm

‖π‖=max
x∈K

N
∑

i=1

|`i(x)|,

otherwise known as the Lebesgue constant.
Points f1, f2, . . . , fN ∈ K are said to be Fekete points of degree n if they maximize vdm(x1, . . . , xN ) over KN . Collecting Fekete

points for degrees n= 1,2, . . . we get a Fekete array, F1, F2, · · · . We note that they need not be unique!

Fekete points have the basic properties that max
x∈K
|`i(x)|= 1 and that the Lebesgue constant ‖π‖=max

x∈K

N
∑

i=1

|`i(x)| ≤ N .

Consequently, for p ∈ Pn(K),
‖p‖K ≤ N‖p‖Fn

. (1)

Here, for X ⊂ Cd , compact, and f ∈ C(X ),
‖ f ‖X :=max

z∈X
| f (z)|.

In words, the maximum norm of a polynomial of degree at most n, on all of K is at most N times its norm on Fn. A Norming Set
is one for which this upper bound factor N may be replaced by a constant. Specifically, an array of subsets Xn ⊂ K , n = 1, 2, · · · is
a Norming Set if there exists a constant C such that

‖p‖K ≤ C ‖p‖Xn
, ∀p ∈ Pn(K), n= 1,2, · · · .

Clearly, #(Xn)≥ N (= dim(Pn(K))) and a Norming Set is said to be optimal if #(Xn) = O(N).
The first theorem in this regard is that of Ehlich and Zeller [7].

Theorem 1.1 (Ehlich-Zeller 1964). For any a > 1 the Chebyshev points of degree dane form an optimal Norming Set for [−1, 1].

The proof is simple, yet informative, based on the fact that the Chebyshev points are well-spaced with respect to the arc-cosine
metric and uses an appropriate Markov-Bernstein inequality for the derivatives of polynomials. A rather general result, based on
the so-called Dubiner distance is as follows.
Definition 1. Suppose that K ⊂ Rd is compact. Then the Dubiner distance between any two points x , y ∈ K is defined as

dK(x , y) := sup
n≥1, p∈Pn(K),‖p‖K=1

1
n
| cos−1(p(x))− cos−1(p(y))|.

The Dubiner distance was introduced by Dubiner in [6] and extensively studied in [4] and [5]. In particular for K = [−1, 1] ⊂
R1,

dK(x , y) = | cos−1(x)− cos−1(y)|

is but the arc-cosine metric.

Proposition 1.2. (see [3] and [10, Prop. 1]) Suppose that K ⊂ Rd is compact and that Xn ⊂ K is a subset with the property that
there is some α < π/2,

min
y∈Xn

dK(x , y)≤
α

n
, ∀x ∈ K .

Then, for all p ∈ Pn(K),
‖p‖K ≤ sec(α)‖p‖Xn

.

Proof. Suppose that x ∈ K is such that |p(x)| = ‖p‖K , which we may assume without loss to be ‖p‖K = 1. We may further assume,
by normalizing by −1 if necessary, that p(x) = 1. By assumption there exists a point y ∈ Xn such that dK(x , y)≤ α/n. Hence

1
n

cos−1(p(y)) =
1
n
| cos−1(p(y))|

=
1
n
| cos−1(p(x))− cos−1(p(y))|

≤ dK(x , y)

≤
α

n

from which it follows that
cos−1(p(y))≤ α < π/2

and, in particular, p(y)> 0.
Consequently, as cos−1 is decreasing,

p(y)≥ cos(α)
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and thus

‖p‖K = 1≤
1

cos(α)
p(y)≤ sec(α)‖p‖Xn

. �

Remark. In the Ehlich-Zeller case, Xn is the set of Chebyshev points of degree m := dane (the zeros of Tm(x))). It is elementary

to verify that for every x ∈ K = [−1,1] there is a point y ∈ Xn such that

dK(x , y)≤
π

2m
≤
π

2a
n

i.e., Proposition 1.2 applies with α := π/(2a)< π/2 and the Norming Constant C = sec(π/(2a)). �

Proposition 1.2 may also be used to prove an analogous result for the Fekete points for K = [−1,1].

Proposition 1.3. Suppose that K = [−1, 1] and that a > 3/2. Then the Fekete points of degree m := dane, Fm, form a Norming Set
with norming constant C = sec(3π/(4a)).

Proof. The proof will be a simple consequence of Sündermann’s Lemma ([12, Lemma 1]) on the spacing of the Fekete points for
the interval.

Lemma 1.4. (Sündermann) Let fk = cos(θk), 1 ≤ k ≤ (m+ 1) denote the Fekete points of degree m for the interval [−1,1], in
decreasing order. Then

( j − 1)π
m+ 1/2

≤ θ j ≤
( j − 1/2)π

m+ 1/2
, j = 1, · · · , (m+ 1).

Proof. As the Sündermann paper [12] is not easily accessible, we will reproduce his proof here. First note that for ω(x) :=
∏m+1

k=1 (x − fk), we may write the Lagrange polynomials as

`k(x) =
ω(x)

(x − fk)ω′( fk)
, k = 1, · · · , (m+ 1).

Then, from the facts that f1 = +1, fm+1 = −1, and at the interior points maxx∈[−1,1] |`k(x)|= 1 and hence `′k(xk) = 0, 2≤ k ≤ m,
it follows easily that

(1− x2)ω′′(x) + n(n+ 1)ω(x) = 0.

We note that it then follows that ω(x) = c(x2 − 1)P ′m−1(x) for some constant c and where Pm(x) is the classical Legendre
polynomial of degree (m− 1).

For u(θ ) := (sin(θ ))−1/2ω(cos(θ )) we consequently have

u′′(θ ) +

�

(m+ 1/2)2 −
3

4sin2(θ )

�

u(θ ) = 0.

Now compare u(θ ) with a solution of the differential equation

v′′(θ ) + (m+ 1/2)2v(θ ) = 0.

Consider first 2≤ k ≤ (m− 1) and the particular solution

v(θ ) = sin((m+ 1/2)(θ − θk)).

By the Sturm Comparison Theorem (cf. [13, Thm. 1.82.1]) v(θ ) has a zero in the open interval (θk,θk+1). But the zeros of v are
just (θ − θk) = jπ/(m+ 1/2), j = 0,±1,±2, · · · , i.e., for θ = θk ± jπ/(m+ 1/2), j = 0, 1, 2, · · · . Then θ ∈ (θk,θk+1) implies that
j ≥ 1, i.e.,

θk < θk + jπ/(m+ 1/2)< θk+1

for some j ≥ 1. Consequently

θk+1 − θk >
π

m+ 1/2
, k = 2, · · · , (m− 1). (2)

We claim that (2) also holds for k = 1 and k = m. To see this, note that f2 = cos(θ2) is the largest zero of P ′m(x). By [13, Thm.
6.21.1] it follows that this is smaller than the largest zero of T ′m(x), i.e., θ2 > π/m. But as f1 = +1, θ1 = 0, and hence

θ2 − θ1 = θ2 > π/m> π/(m+ 1/2).

The k = m case follows by symmetry.
Summation of the inequalities (2) for k = 1 to k = j−1 yields θ j ≥ ( j−1)π/(m+1/2) and by summation from k = j through

m we obtain θ j ≤ ( j − 1/2)π/(m+ 1/2). �

Continuing with the proof of the Proposition, the Sündermann Lemma implies that

θ j+1 − θ j ≤
( j + 1/2)π

m+ 1/2
−
( j − 1)π
m+ 1/2

=
(3/2)π
m+ 1/2

, j = 1, · · · , m

from which it follows that for all x ∈ [−1, 1] there exists a Fekete point fk ∈ Fm of degree m such that

dK(x , fk)≤
(3/4)π
m+ 1/2

≤
(3/4)π

an+ 1/2
≤
α

n
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for α := 3π/(4a)< π/2 for a > 3/2. �

Remark. It is likely that the Proposition holds for any a > 1, but a proof would require a refinement of the Sündermann Lemma.
�

It is also interesting to note that a very simple argument shows that Fekete points for degree m = dlog(n)ne, i.e., with a
replaced by log(n), are always a near optimal Norming Set.

Proposition 1.5. ([2]) Suppose that K ⊂ Rd is a compact set for which there is an integer s ≤ d such that Nn(K) = O(ns) (as is the
case for compact subsets of algebraic varieties). Then the Fekete points Fm of degree m= ndlog(n)e and #(Xn) = O((n log(n))s) form
a Norming Set for K .

Proof. First note that for deg(p)≤ n, deg(pdlog(n)e)≤ m, and hence

‖p‖dlog(n)e
K = ‖pdlog(n)e‖K

≤ #(Fm)‖pdlog(n)e‖Fm

= #(Fm)‖p‖
dlog(n)e
Fm

and hence
‖p‖K ≤ (#(Fm))

1/dlog(n)e‖p‖Fm
.

Now note that
(#(Xn))

1/dlog(n)e = O((n log(n))s/ log(n))

where (n log(n))s/ log(n)→ es as n→∞, and hence is bounded. �

2 The Unit Sphere
Marzo and Ortega-Cerdà [9] have shown, as a special case of a more general result, that Fekete points of degree dane form a
Norming set for polynomials of degree at most n on the unit sphere.

Theorem 2.1 (Marzo and Ortega-Cerdà - 2010 [9]). For any a > 1 the Fekete points of degree m := dane form a Norming Set for
K = Sd−1 ⊂ Rd , the unit sphere.

Proof. We note that in the case of K = Sd−1, as already shown by Dubiner [6] (cf. [4, 5]), the Dubiner distance is just geodesic
distance on the sphere:

dK(x , y) = cos−1(x · y), x , y ∈ Sd−1.

Now, the key ingredients of their proof are:

1. The discrete equally-weighted measure based on the Fekete points is a bounded proxy for integrals of polynomials squared.
Specifically, there is a constant C > 0 such that

1
Nn

Nn
∑

k=1

P2( fk)≤ C

∫

Sd−1

P2(x)dσ(x),

for all P ∈ Pn(K), n = 1, 2, · · · , where dσ(x) is surface area measure on the sphere, normalized to be a probability measure.

2. For every point A∈ Sd−1 and every degree n, there is a peaking polynomial PA(x) ∈ Pn(K) such that PA(A) = 1 and that
∫

Sd−1

P2
A (x) dσ(x) = O(N−1).

Assuming these properties for the time being, their proof goes as follows.
Given Q ∈ Pn(Sd−1), let A∈ Sd−1 be such that

|Q(A)|= ‖Q‖Sd−1 .

Further, let PA(x) be the peaking polynomial for A∈ Sd−1 of degree m := d(a− 1)n/2e postulated by Ingredient 2. It is important
to note the specific degree of PA. Then

R(x) = RA(x) :=Q(x)P2
A (x)

is a polynomial of degree at most dane and has the property that ‖Q‖Sd−1 = |Q(A)|= |R(A)|.
We let { f1, f2, · · · , fNan

} denote a set of Fekete points for degree dane and `k(x) the associated Lagrange polynomials. Then

‖Q‖Sd−1 = |R(A)|

=

�

�

�

�

�

Nan
∑

k=1

R( fk)`k(A)

�

�

�

�

�

=

�

�

�

�

�

Nan
∑

k=1

Q( fk)P
2
A ( fk)`k(A)

�

�

�

�

�

≤
Nan
∑

k=1

|Q( fk)|P2
A ( fk)
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as ‖`k‖K = 1 for the Fekete points. Hence,

|‖Q‖Sd−1 ≤
§

max
1≤k≤Nan

|Q( fk)|
ª Nan
∑

k=1

P2
A ( fk)

=
§

max
1≤k≤Nan

|Q( fk)|
ª

Nan

¨

1
Nan

Nan
∑

k=1

P2
A ( fk)

«

≤
§

max
1≤k≤Nan

|Q( fk)|
ª

NanC

∫

Sd−1

P2
A (x)dσ(x)

by Ingredient 1.
Consequently, by the integral property of the peaking polynomial PA,

|‖Q‖Sd−1 ≤ C
§

max
1≤k≤Nan

|Q( fk)|
ª

Nan

N(a−1)n

≤ C ′
§

max
1≤k≤Nan

|Q( fk)|
ª

for some constant C ′, using the fact that Nan/N(a−1)n is bounded. �

For completeness sake we will provide the details of their proofs of the two Ingredients above.

Proposition 2.2. ([8, Cor. 4.6]) There is a constant C > 0 such that for n= 1, 2, · · · ,

1
Nn

Nn
∑

k=1

P2( fk)≤ C

∫

Sd−1

P2(x)dσ(x),

for all P ∈ Pn(K), where dσ(x) is surface area measure on the sphere, normalized to be a probability measure and Fn :=
{ f1, f2, · · · , fNn

} is a set of Fekete points for degree n.

Proof. We first note that Fekete points are well-spaced with respect to the Dubiner distance. Indeed, as shown by Dubiner [6],

dK( fi , f j)≥
π

2n
, i 6= j. (3)

The proof is quite simple – one just notes that

dK( fi , f j) = sup
n≥1, p∈Pn(K),‖p‖K=1

1
n
| cos−1(p( fi))− cos−1(p( f j))|

≥
1
n
| cos−1(`i( fi))− cos−1(`i( f j))|

=
1
n
| cos−1(1)− cos−1(0)|

=
π

2n
.

We will make use of the following notation:

• For z ∈ Rd , Br(z) := {x ∈ Rd : |x − z| ≤ r} will denote the Euclidean ball of radius r centred at z, and

• For z ∈ Sd−1, Br(z) := {x ∈ Sd−1 : dK(x , z)≤ r} will denote the spherical cap of radius r centred at z.

We note that

vold(Br(z)) = Cd rd , for some dimensional constant Cd , and (4)

vold−1(Br(z))≈ C ′d−1rd−1, z ∈ Sd−1 (5)

where here we mean that vold−1(Br(z))/rd−1 is bounded above and below by (positive) dimensional constants. We note also that
vold−1(Br(z)) is the same for any z ∈ Sd−1.

We make use of the following simple geometric facts.

Lemma 2.3. Suppose that x , y ∈ K = Sd−1 and that u ∈ Rd has Euclidean norm |u|= r > 0. Then

1. dK(x , y)≤
π

2
|x − y|,

2.

�

�

�

�

u
|u|
− x

�

�

�

�

≤
1
p

r
|u− x |.
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Proof. To see 1., note that this is equivalent to

θ 2 ≤
π2

4
2(1− cos(θ )), cos(θ ) = x · y ∈ [0,π]

⇐⇒ θ 2 ≤ π2 sin2(θ/2)

⇐⇒ sin(θ/2)≥
2
π

�

θ

2

�

, θ/2 ∈ [0,π/2],

a well-known elementary inequality.
To see 2., just note that this is equivalent to

�

�

�

�

u
|u|
− x

�

�

�

�

2

≤
1
r
|u− x |2

⇐⇒ 2
�

1−
u · x
|u|

�

≤
1
r
(|u|2 − 2(u · x) + 1)

⇐⇒ 2r(1− cos(θ ))≤ r2 − 2r cos(θ ) + 1, cos(θ ) = (u · x)/|u|

⇐⇒ 4r sin2(θ/2)≤ (r2 − 2r + 1) + 4r sin2(θ/2)

= (r − 1)2 + 4r sin2(θ/2). �

Now, from the spacing (3) we may easily conclude that for every 0< c there is a constant C = C(c)> 0 such that for every
0 6= u ∈ Rd and n= 1,2, · · ·

#(Fn ∩ Bc/n(u))≤ C . (6)

To see this, first note that by 2. of Lemma 2.3,

Bc/n(u)∩ Sd−1 ⊂ Bc′/n(u/|u|)∩ Sd−1

where c′ := c/
p

|u| and that then, by 1.,
�

Bc/n(u)∩ Sd−1
�

⊂
�

Bc′/n(u/|u|)∩ Sd−1
�

⊂ Bc′′/n(u/|u|)

where c′′ := (π/2)c′.
Suppose now that there are m distinct Fekete points f1, · · · , fm ∈ Bc/n(u). Necessarily then f1, · · · , fm ∈ Bc′′/n(x) where

x := u/|u| ∈ Sd−1.
Choose a < 1 so that ac < π/2. Then, we have

Bac/n( f j)∩Bac/n( fk) = ;, j 6= k.

Also, there is constant R0 = R0(c) so that

vold−1(Bc/n( fi)∩Bac/n( f j))≥ R0vold−1(Bac/n( f j)), j = 1, · · · , m.

Hence

vold−1(Bc/n(x))≥ R0vold−1

�

∪m
j=1Bac/n( f j)

�

≥ mC0(ac/n)d−1 (for some constant C0)

and so
m≤ vold−1(Bc/n(x))/(C0(ac/n)d−1)≤ C .

There is a further technical inequality that we will need. For 0< c < 1 we let

Tc,n := {x ∈ Rd : ||x | − 1| ≤ c/n}

denote the tubular neighbourhood of the unit sphere Sd−1, of “radius” c/n. Then, given a polynomial P ∈ Pn(Sd−1) it has a
harmonic extension to all of Rd . We denote this extension also by P.

Corollary 4.3 of [8] asserts (as a special case of a more general result) that there is a constant C such that
∫

Tc,n

P2(x)d x ≤
C
n

∫

Sd−1

P2(x)dσ(x). (7)

Their proof of this relies on the following lemma.

Lemma 2.4. ([8, Lemma 4.2]) For r > 0 let Sd−1
r ⊂ Rd denote the sphere of radius r, centred at the origin. Then for ρ > 1 and

P ∈ Pn(Sd−1) and any |r − 1| ≤ ρ/n there exists a constant C , depending only on ρ and d, such that
∫

Sd−1
r

P2(x)dσ(x)≤ C

∫

Sd−1

P2(x)dσ(x).
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Proof. Changing variables x ′ = r x , we have
∫

Sd−1
r

P2(x)dσ(x) =

∫

Sd−1

P2(r x)dσ(x)

(as the measures are both normalized to be probability measures).
We claim that in fact, for any r > 0,

∫

Sd−1

P2(r x)dσ(x)≤max{1, r}2deg(P)

∫

Sd−1

P2(x)dσ(x)

from which the result follows easily. To see this, expand

P(x) =
n
∑

k=0

akhk(x)

where hk(x) is a harmonic, homogeneous polynomial of degree k, as is always possible to do. The hk(x) are mutually orthogonal
and so

∫

Sd−1

P2(r x)dσ(x) =

∫

Sd−1

¨

n
∑

k=0

akhk(r x)

«2

dσ(x)

=

∫

Sd−1

¨

n
∑

k=0

ak rkhk(x)

«2

dσ(x)

=
n
∑

k=0

a2
k r2k

�∫

Sd−1

h2
k(x)dσ(x)

�

≤max{1, r}2n
n
∑

k=0

a2
k

�∫

Sd−1

h2
k(x)dσ(x)

�

=max{1, r}2n

∫

Sd−1

P2(x)dσ(x). �

We now state and prove (7) as a lemma.

Lemma 2.5. ([8, Cor. 4.3]) There is a constant C such that for any harmonic polynomial P(x) of degree at most n,
∫

Tc,n

P2(x)d x ≤
C
n

∫

Sd−1

P2(x)dσ(x).

Proof. First note that there is a dimensional constant Cd such that
∫

Tc,n

P2(x)d x = Cd

∫ r=1+c/n

r=1−c/n

∫

Sd−1
r

rd−1P2(x)dσ(x)

where again dσ(x) is normalized to be a probability measure., and hence by the preceeding Lemma,
∫

Tc,n

P2(x)d x = Cd

∫ r=1+c/n

r=1−c/n

¨

∫

Sd−1
r

rd−1P2(x)dσ(x)

«

dr

≤ C

∫ r=1+c/n

r=1−c/n

�

max{1, r}2n

∫

Sd−1

P2(x)dσ(x)

�

dr

≤ C
2c
n
(1+ c/n)2n

∫

Sd−1

P2(x)dσ(x)

≤ Ce2c 2c
n

∫

Sd−1

P2(x)dσ(x). �

We continue with the conclusion of the proof of Proposition 2.2. Indeed, by subharmonicity, there is a constant C such that for all
harmonic polynomials P(x) of degree at most n and and z ∈ Sd−1, we have

|P(z)|2 ≤ Cnd

∫

B(z,1/n)

P2(x) dm(x)
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where, as before, B(z, 1/n) denotes the Euclidean ball of radius 1/n centred at z and dm(x) denotes Lebesgue measure on Rd .
Hence

1
Nn

Nn
∑

k=1

P2( fk)≤ C
1
Nn

Nn
∑

k=1

¨

nd

∫

B( fk ,1/n)

P2(x)dm(x)

«

≤ Cnd

∫

C1,n

P2(x)

¨

1
Nn

Nn
∑

k=1

χB( fk ,1/n)(x)

«

dm(x)

= Cnd

∫

C1,n

P2(x)

¨

1
Nn

Nn
∑

k=1

χB(x ,1/n)( fk)

«

dm(x)

≤ Cnd

∫

C1,n

P2(x)
§

C
Nn

ª

dm(x) (by (6))

≤ C
nd

Nn(K)

∫

C1,n

P2(x)dm(x)

≤ C
nd

Nn(K)
1
n

∫

Sd−1

P2(x)dσ(x) (by Lemma 2.5)

≤ C

∫

Sd−1

P2(x)dσ(x)

as Nn(K) = O(nd−1). �

For Ingredient 2, we let for x , y ∈ Sd−1, Kn(x , y) denote the reproducing kernel for polynomials of degree at most n with
respect to the measure dσ(x) on Sd−1. As is well known (see e.g. [11, p. 69])

Kn(x , x)≡ Nn, x ∈ Sd−1.

Then, let

PA(x) :=
1
Nn

Kn(A, x).

We have PA(A) = Nn/Nn = 1 and
∫

PA(x)
2dσ(x) =

1
N 2

n

∫

Sd−1

Kn(A, x)Kn(A, x)dσ(x)

=
1

N 2
n

Kn(A, A) =
1
Nn

as required. �

Concluding Remarks. We emphasize that the results of Marzo and Ortega-Cerdà are for the comparison of general Lp norms of
polynomials with the corresponding discrete `p norms based on Fekete points. We have extracted the essentials of their proofs
necessary for the L∞ case, in which we are primarily concerned.

We conjecture that Fekete points of degree dane, a > 1, are norming sets for general “sufficiently regular” compact sets
K ⊂ Rd . Indeed it would be sufficient to show that K has the analogous properties of Ingredients 1 and 2 above. The cases of K a
ball or simplex will be discussed in a forthcoming paper.
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