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On the Uniqueness of an Orthogonality Property of the Legendre
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Abstract

Recently [1] gave a remarkable orthogonality property of the classical Legendre polynomials on the
real interval [−1,1]: polynomials up to degree n from this family are mutually orthogonal under the
arcsine measure weighted by the degree-n normalized Christoffel function. We show that the Legendre
polynomials are (essentially) the only orthogonal polynomials with this property.

1 Introduction
Let Πn(R) denote the real univariate polynomials of degree at most n and suppose that µ is a probability measure supported on
the interval [−1, 1]. With the inner-product

〈p, q〉 :=

∫ 1

−1

p(x)q(x)dµ(x),

the Gram-Schmidt process applied to the standard monomial polynomial basis results in a sequence Q i(x), i = 0,1,2, · · · , of
orthonormal polynomials

〈Q i ,Q j〉= δi j .

Here, as throughout, we assume that µ is non-degenerate in the sense that if 0 6= p is a polynomial, then∞> 〈p, p〉> 0.
The reproducing kernel for Πn(R), equipped with this inner-product, is then

Kn(x , y) :=
n
∑

i=0

Q i(x)Q i(y)

and the function

λn(x) :=
1

Kn(x , x)
(1)

is known as the associated Christoffel function; it plays an important role in the theory of orthogonal polynomials (see for example
the survey article by Nevai [2]).

It is well-known (see e.g. [4]) that

lim
n→∞

1
n+ 1

Kn(x , x)dµ=
1
π

1
p

1− x2
d x ,

the latter being the so-called arcsine measure which is also the equilibrium measure of complex potential theory for the interval
[−1, 1]. The convergence is, in general weak−∗, but in some circumstances even locally uniformly on (−1, 1). In other words

dµ= lim
n→∞

n+ 1
Kn(x , x)

1
π

1
p

1− x2
d x

or, equivalently,

dµ= lim
n→∞

(n+ 1)λn(x)
1
π

1
p

1− x2
d x .

Hence it would not be totally unexpected that
∫ 1

−1

Q i(x)Q j(x)
�

(n+ 1)λn(x)
1
π

1
p

1− x2

�

d x ≈ δi j , (2)
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at least asymptotically.
The result of [1] is that, in the case of dµ = (1/2)d x , so that the orthogonal polynomials Q j(x) = P∗j (x), the classical Legendre

polynomials suitably orthonormalized, the approximate identity (2) is actually an identity, i.e,
∫ 1

−1

P∗i (x)P
∗
j (x)
�

(n+ 1)λn(x)
1
π

1
p

1− x2

�

d x = δi j , 0≤ i, j ≤ n. (3)

Equivalent identities are
∫ 1

−1

P∗k (x)
�

(n+ 1)λn(x)
1
π

1
p

1− x2

�

d x = δ0,k, 0≤ k ≤ 2n. (4)

and
∫ 1

−1

p(x)
�

(n+ 1)λn(x)
1
π

1
p

1− x2

�

d x =

∫ 1

−1

p(x)
1
2

d x , deg(p)≤ 2n. (5)

The purpose of this note is to prove the following uniqueness results:

• Supposing that we have a family of polynomials {Q j} j=0,1,··· for which

∫ 1

−1

Qk(x)
�

(n+ 1)λn(x)
1
π

1
p

1− x2

�

d x = δ0,k, 0≤ k ≤ 2n. (6)

Theorem 2.1 below shows that, already for n= 1, the polynomials Q0(x) and Q1(x) must be the first two (normalized)
Legendre polynomials. Further, among all Jacobi measures (cf. (7) below) the Legendre case is the only one for which this
can be true.

• Theorem 2.4 shows that if (6) holds for n = 0, 1, · · · , N and the measure dµ(x) is symmetric, then the Q j , 0≤ j ≤ N , must
be the (normalized) Legendre polynomials.

• Finally, Theorem 2.5 shows that if we make, instead of symmetry, the assumption that (5) holds up to k = 2n+ 1 (instead
of up just 2n) then also the Q j , 0≤ j ≤ N , must be the (normalized) Legendre polynomials.

2 Uniqueness Results
The Legendre polynomials are the special case of α = β = 0 for the family of Jacobi polynomials. It is therefore natural to
consider the Jacobi measures

dµα,β = cα,β (1− x)α(1+ x)β , α,β > −1, (7)

with the constant cα,β chosen so that µα,β is indeed a probability measure.

Theorem 2.1. Suppose that for some probability measure the associated orthonormal polynomials satsify
∫ 1

−1

Qk(x)
�

(n+ 1)λn(x)
1
π

1
p

1− x2

�

d x = δ0,k, 0≤ k ≤ 2n

for n= 0 and n= 1. Then Q0(x) = P∗0 (x) = 1 and Q1(x) = P∗1 (x), the normalized Legendre polynomial. In other words, for n= 1
the only set of orthogonal polynomials {Q0(x),Q1(x)} that satisfy the identity is the set of orthonormalized Legendre polynomials
{P∗0 (x), P∗1 (x)}. Further, if the probability measure µ is a Jacobi measure (7), then the only case where Q1(x) = P∗1 (x) is for α = β = 0.
In other words, already for n= 1 the only set of orthogonal Jacobi polynomials that satisfy the identity is in the Legendre case.

Proof of Theorem 2.1. Since we are dealing with a probability measure, Q0(x) = 1. Hence, by assumption we have, for n= 1,

2
π

∫ 1

−1

1
1+Q2

1(x)
1

p
1− x2

d x = 1, (k = 0),

2
π

∫ 1

−1

Q1(x)
1+Q2

1(x)
1

p
1− x2

d x = 0, (k = 1).

With the substitution x = cos(θ ) these become

1
π

∫ 2π

0

1
1+Q2

1(cos(θ )
dθ = 1, (k = 0), (8)

1
π

∫ 2π

0

Q1(cos(θ ))
1+Q2

1(cos(θ ))
dθ = 0, (k = 1). (9)

Now suppose that Q1(x) = ax + b for some constants a 6= 0, b.
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Lemma 2.2. Let ω := (−b+ i)/a. Then we have

1
π

∫ 2π

0

1
1+Q2

1(cos(θ ))
dθ = −

2
a
ℑ
�

1
p
ω2 − 1

�

=
2v

p

(b2 − a2 − 1)2 + 4b2

where

v :=

√

√

√−(b2 − a2 − 1) +
p

(b2 − a2 − 1)2 + 4b2

2
.

Proof. It is easy to verify that the two zeros of 1+ (ax + b)2 are x =ω,ω. Hence

1
π

∫ 2π

0

1
1+Q2

1(cos(θ ))
dθ =

1
π

∫ 2π

0

1
1+ (a cos(θ ) + b)2

dθ

=
1
πa2

∫ 2π

0

1
(cos(θ )−ω)(cos(θ )−ω)

dθ

=
1
πa2

1
ω−ω

∫ 2π

0

§

1
cos(θ )−ω

−
1

cos(θ )−ω

ª

dθ .

But substituting z = eiθ and converting to a contour integral around the unit circle, one easily sees that

1
π

∫ 2π

0

1
cos(θ )−ω

dθ = −
2

p
ω2 − 1

where the branch of the square root is chosen so that |ω+
p
ω2 − 1|> 1. It follows directly then that

1
π

∫ 2π

0

1
1+Q2

1(cos(θ ))
dθ = −

2
a
ℑ
�

1
p
ω2 − 1

�

.

The rest of the Lemma follows upon confirming that

(u+ iv)2 = a2(ω2 − 1)

with v as defined above and u := −b/v. �

Lemma 2.3. With the above notation, we have

1
π

∫ 2π

0

cos(θ )
1+Q2

1(cos(θ ))
dθ = −2

b
a

v2 − 1

v
p

(b2 − a2 − 1)2 + 4b2
.

Proof. The proof is elementary, using the same technique as for the previous Lemma. We omit the details. �

From the two Lemmas, the two conditions (8) and (9) may be expressed as:

2v
p

D
= 1, (k = 0), (10)

− 2b
v2 − 1

v
p

D
+ b = 0, (k = 1). (11)

where we use the same notation as above for v and have introduced

D := (b2 − a2 − 1)2 + 4b2.

First of all, we claim that b = 0 for otherwise, if b 6= 0, then (11) simplifies to

2
v2 − 1

v
p

D
= 1.

Substituting
p

D = 2v (from (10)), then 2(v2 − 1)/(2v2) = 1, but this is clearly not possible. Hence b = 0, indeed. In this case
D = (a2 + 1)2, v =

p
a2 + 1 and the condition (10) becomes

2

p
a2 + 1

a2 + 1
= 1 ⇐⇒ a = ±

p
3,
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as is easily seen. Since we may assume, with out loss of generality, that a > 0, we have a =
p

3 and

Q1(x) =
p

3x = P∗1 (x).

The proof of the Theorem will be completed by verifying that in the Jacobi case Q1(x) = P∗1 (x) =
p

3x implies that α = β = 0.
But (see e.g. [3])

Q1(x) =

√

√ α+ β + 3
4(α+ 1)(β + 1)

{(α+ β + 2)x + (α− β)}.

Hence b = 0 iff α= β in which case
Q1(x) =

p
2α+ 3x

and
p

2α+ 3=
p

3 ⇐⇒ α= 0. �

Theorem 2.4. Suppose that µ is now a symmetric probability measure (i.e., invariant under x → −x) so that the associated
orthonormal polynomials are even or odd according to their degree. Suppose that

∫ 1

−1

Qk(x)
�

(n+ 1)λn(x)
1
π

1
p

1− x2

�

d x = δ0,k, 0≤ k ≤ 2n

for n= 0,1, 2, · · · , N . Then
Q j(x) = P∗j (x), 0≤ j ≤ N ,

the orthonormalized Legendre polynomials.

Proof of Theorem 2.4. The case N = 1 was done (in more generality) in Theorem 2.1. We proceed by induction. The idea of
the proof will be clear already from the the N = 2 case. Here Q0(x) = P∗0 (x) and Q1(x) = P∗1 (x) =

p
3x . We wish to show that

Q2(x) = P∗2 (x). Now, K1(x , x) = 12 + (
p

3x)2 = 1+ 3x2 and so from the n= 1 case we must have

2

∫ 1

−1

Q2(x)
1+ 3x2

1
π

1
p

1− x2
d x = 0.

But from the Legendre case we know that

2

∫ 1

−1

1
1+ 3x2

1
π

1
p

1− x2
d x = 1

while

2= 2

∫ 1

−1

1+ 3x2

1+ 3x2

1
π

1
p

1− x2
d x = 6

∫ 1

−1

x2

1+ 3x2

1
π

1
p

1− x2
d x + 1

implies that

2

∫ 1

−1

x2

1+ 3x2

1
π

1
p

1− x2
d x =

1
3

.

Then writing Q2(x) = ax2 + b (it is even by hypothesis) we have

0= 2

∫ 1

−1

Q2(x)
1+ 3x2

1
π

1
p

1− x2
d x = a/3+ b

so that b = −a/3. Consequently

Q2(x) =
a
3
(3x2 − 1) = cP∗2 (x)

for some constant c, as the Legendre polynomial P2(x) = 3x2 − 1.
Consequently,

K2(x , x) = 1+ 3x2 +Q2
2(x) = 1+ 3x2 + c2(P∗2 (x))

2.

If now,

3

∫ 1

−1

1
K2(x , x)

1
π

1
p

1− x2
d x = 1

then by the Legendre case,

1= 3

∫ 1

−1

1
1+ 3x2 + (P∗2 (x))2

1
π

1
p

1− x2
d x

= 3

∫ 1

−1

1
1+ 3x2 + c2(P∗2 (x))2

1
π

1
p

1− x2
d x .
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But if c2 > 1 then 1+3x2+c2(P∗2 (x))
2 > 1+3x2+(P∗2 (x))

2 (except at a finite set of points) and if c2 < 1 then 1+3x2+c2(P∗2 (x))
2 <

1+ 3x2 +(P∗2 (x))
2 (except at a finite set of points). Hence we must have c2 = 1 for these two integrals to be equal. It follows that

Q2(x) = P∗2 (x) (the sign is unimportant).
Now for the general case. Suppose then that the Theorem is true for a certain N ≥ 2. We will show that then it also is true for

N + 1. By the induction hypothesis

KN (x , x) = kN (x , x) :=
N
∑

k=0

(P∗k (x))
2,

the kernel for the Legendre case, and
KN+1(x , x) = kN (x) +Q2

N+1(x).

We claim that from our assumptions QN+1(x) = cP∗N+1(x) for some constant c. To see this just note that by the Gram-Schmidt
process

QN+1(x) = C{xN+1 −
N
∑

j=0

〈xN+1,Q j(x)〉Q j(x)}

for some normalization constant C . Since xN+1 is of opposite parity to QN (x),
〈xN+1,QN (x)〉= 0 and we actually have

QN+1(x) = C{xN+1 −
N−1
∑

j=0

〈xN+1,Q j(x)〉Q j(x)}.

But, from the induction hypothesis, Q j(x) = P∗j (x), 0≤ j ≤ N , and so

QN+1(x) = C{xN+1 −
N−1
∑

j=0

〈xN+1, P∗j (x)〉P
∗
j (x)}.

But on the one hand
∫ 1

−1

Qk(x)
�

(N + 1)
1

KN (x .x)
1
π

1
p

1− x2

�

d x = δ0,k, 0≤ k ≤ 2N

is equivalent to
∫ 1

−1

p(x)
�

(N + 1)
1

KN (x , x)
1
π

1
p

1− x2

�

d x =

∫ 1

−1

p(x)dµ, deg(p)≤ 2N

while KN (x , x) = kN (x , x) informs us that, for deg(p)≤ 2N ,
∫ 1

−1

p(x)dµ=

∫ 1

−1

p(x)
�

(N + 1)
1

KN (x , x)
1
π

1
p

1− x2

�

d x

=

∫ 1

−1

p(x)
�

(N + 1)
1

kN (x , x)
1
π

1
p

1− x2

�

d x

=

∫ 1

−1

p(x)
1
2

d x

by the Legendre case. It follows that for 0≤ j ≤ N − 1,

〈xN+1, P∗j (x)〉=
∫ 1

−1

xN+1P∗j (x)dµ=

∫ 1

−1

xN+1P∗j (x)
1
2

d x (12)

and hence

QN+1(x) = C{xN+1 −
N−1
∑

j=0

〈xN+1, P∗j (x)〉P
∗
j (x)}

= C{xN+1 −
N−1
∑

j=0

〈xN+1, P∗j (x)〉legendreP∗j (x)}

= C P∗N+1(x).

(for a possibility different constant C). The remainder of the argument is exactly as in the N = 1 case. �

Notice that for a symmetric measure the Christoffel function λn(x) is an even function. Hence the identity (5) also holds for
p(x) = x2n+1, both integrals being zero. In particular, for the Legendre case, (5) holds for deg(p)≤ 2n+ 1. If for a measure µ we
assume (5) deg(p)≤ 2n+ 1, then we also have uniqueness.
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Theorem 2.5. Suppose that µ is a probability measure supported on [−1,1] with the property that
∫ 1

−1

Qk(x)
�

(n+ 1)λn(x)
1
π

1
p

1− x2

�

d x = δ0,k, 0≤ k ≤ 2n+ 1

for n= 0,1, 2, · · · , N . Then
Q j(x) = P∗j (x), 0≤ j ≤ N ,

the orthonormalized Legendre polynomials.

Proof of Theorem 2.5. Just note that, with these assumptions, the inner product formula (12) holds also for j = N and hence
we have again QN+1(x) = C P∗N+1(x). The rest of the argument proceeds as before. �
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