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Abstract

We show that the property of a planar parametric curve of being simple, is preserved
by an approximation when the curve is piecewise smooth and generalized regular, provided
that the errors to the curve and its tangent vectors are sufficiently small. To this purpose,
we provide also an explicit error threshold.
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In this note we give a partial answer to the following basic question: when is the injectivity
of a planar parametric curve, i.e., the property of being a simple curve, preserved by a general
approximation method? We mean an approximation that is not explicity constructed to be
shape preserving, such as are, for example, variation diminishing approximations in the field
of computer aided geometric design [7].

The problem is relevant, for example, to the setting of moment computations over planar
regions. Indeed, suppose that we have to compute the integral of a bivariate polynomial
over a region whose boundary is a Jordan curve, and that we are able to give an accurate
piecewise polynomial approximation of the boundary. Then, integrating the polynomial over
the approximate region becomes trivial using Green’s formula, provided that its boundary is
still a simple curve, since any x-primitive (or y-primitive) becomes a piecewise polynomial
univariate function along the curve. This idea has been used to construct algebraic cubature
formulas in [11], by resorting to spline interpolation. But we may also consider using the recent
software package chebfun, which can approximate curves at machine precison by piecewise
Chebyshev interpolation in an efficient and automatic way (cf. [2, 9, 10]).

With no loss of generality, we consider curves parametrized on [0, 1]

P (t) = (x(t), y(t)) , t ∈ [0, 1] (1)

where P (·) is continuous, and injective on [0, 1] (simple open curve), or injective on [0, 1) and
(0, 1] with P (0) = P (1) (simple closed curve). Moreover, we assume that P (·) is piecewise
C1, i.e., there is at most a finite number of breakpoints P (ti) where P ′+(ti) := limt→t+i

P ′(t) 6=
P ′−(ti) := limt→t−i

P ′(t); for a closed curve, P (0) = P (1) is considered a breakpoint if P ′+(0) 6=
P ′−(1).

For convenience, as is usual, we shall include global continuity in the notion of piecewise C1

parametric curve. The space PC1([0, 1];S), for brevity PC1, of piecewise C1 parametric curves
on the partition of [0, 1] generated by a fixed finite set of parameter breakpoints S = {ti}, is
endowed with the norm

‖P‖PC1 := max
{
‖P‖L∞ , ‖P ′‖L∞

}
(2)

where ‖Q‖L∞ := max {‖q1‖L∞ , ‖q2‖L∞} for Q(t) = (q1(t), q2(t)) piecewise continuous.

Definition 1: A singular point is a point P (t∗) such that P ′+(t∗) = (0, 0) or P ′−(t∗) = (0, 0).
A cusp is a breakpoint P (ti) such that P ′+(ti) = −kP ′−(ti) for some k > 0 (i.e., the left and
right tangent vectors have opposite directions).
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Definition 2: We say that a curve in PC1([0, 1];S) is generalized regular if it has no singular
points and no cusps.

Observe that, in the case when the curve has no breakpoints, generalized regularity coincides
with classical regularity as defined, e.g., in [12], namely: the tangent vector is never the zero
vector.

We can now state and prove the main result.

Theorem 1. Let P (t) = (x(t), y(t)), t ∈ [0, 1], be a simple and generalized regular curve in
PC1([0, 1];S). Then, any (closed if P is closed) approximating curve P̃ (t) = (x̃(t), ỹ(t)) in
PC1([0, 1];S) is simple itself, provided that the error ‖P − P̃‖PC1 is sufficiently small.

We give two proofs of the theorem. The first is essentially qualitative, working by contra-
diction with some typical arguments of differential topology (see, e.g., [8, Thm. 1.7]). The
second is constructive, giving an estimate (even though not always easy to apply in practice)
of the radius of a sufficient approximation neighborhhood.

In order to treat properly the breakpoints, we shall resort to some basic results of nonsmooth
analysis. We recall that the Clarke generalized gradient of a piecewise C1 univariate function
f at a point t, say ∂f(t), is the convex hull of the directional derivatives at such a point

∂f(t) = co{f ′+(t), f ′−(t)} (3)

(cf. [6, Ch. 2]), that is the interval with the left and right derivatives as extrema, that reduces
to one point when the function is differentiable in the classical sense. Then, for a planar
piecewise C1 parametric curve, we may define at each point P (t) a generalized tangent vector
as the Cartesian product of the generalized gradients,

∂P (t) := ∂x(t)× ∂y(t)

which is a Cartesian rectangle at the breakpoints (possibly degenerating into a horizontal or
vertical segment).

First Proof. Assume that the conclusion of the theorem is false. Then, there exists a sequence
of PC1 curves, say {Pn}, with lim ‖Pn − P‖PC1 = 0, that are not simple, i.e., for every n there
exist un, vn ∈ [0, 1), or un, vn ∈ (0, 1], un 6= vn, such that

Pn(un) = Pn(vn) .

By resorting possibly to subsequences, we may assume that limun = u and lim vn = v exist;
since lim ‖Pn − P‖L∞ = 0, we have that limPn(un) = P (u) = P (v) = limPn(vn). If P (u) is
a breakpoint, since it is not singular and it is not a cusp, the angle between the left and right
tangent vectors is less than π. By a suitable rotation of the coordinates (which clearly doesn’t
affect the property of a curve of being simple or not), we may assume that the left and right
tangent vectors are both in the upper (or lower) half-plane, i.e., that (0, 0) 6∈ ∂P (u) either
when P (u) is a smooth point or when it is a breakpoint.

Now, if the curve is open, we have that u = v, whereas if the curve is closed we may have
either u = v, or u = 1 and v = 0, or u = 0 and v = 1. Consider without loss of generality
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the case that either u = v or u = 1 and v = 0, and define v̂n = vn if v 6= 0, v̂n = vn + 1
if u = 1 and v = 0 (i.e., lim v̂n = u). Extend P (and Pn) to [0, 2] as P̂ (t) = P (t), t ∈ [0, 1]
and P̂ (t) = P (t− 1), t ∈ (1, 2] (the extension being still piecewise C1). Applying the Hermite-
Genocchi formula to the first divided differences (cf., e.g., [1]), we can write

(0, 0) ≡ P̂n(un)− P̂n(v̂n)

un − vn
=

∫ 1

0
P̂ ′n(tun + (1− t)v̂n) dt

=

∫ 1

0
P̂ ′(tun + (1− t)v̂n) dt+ En =

P̂ (un)− P̂ (v̂n)

un − v̂n
+ En

where the vector sequence En tends to zero since ‖En‖∞ ≤ ‖P ′n − P ′‖L∞ . Now, if P (u) is not
a breakpoint, it is not singular, in view of the generalized regularity condition: taking the limit
as n → ∞ we get the contradiction P̂ ′(u) = P ′(u) = (0, 0). If P (u) is a breakpoint, by the
mean-value theorem for generalized gradients (cf. [6, Thm. 2.3.7]) we can write

(0, 0) ≡ P̂ (un)− P̂ (v̂n)

un − v̂n
+ En ∈ ∂x̂(τn)× ∂ŷ(σn) + En (4)

where τn, σn belong to the open interval with endpoints un and v̂n. As n → ∞ in (4) we get
the contradiction (0, 0) ∈ ∂P̂ (u) = ∂P (u). �

Second Proof. We begin with the case of an open curve. The key observation is that the
parametrization is injective if and only if

g(t1, t2) := |P [t1, t2]|2 =
|P (t2)− P (t1)|2

|t2 − t1|2
= (x[t1, t2])

2 + (y[t1, t2])
2 > 0 (5)

for (t1, t2) ∈ [0, 1]2, t1 6= t2 (where f [t1, t2] denotes the first divided difference of a function f ,
and |V | is the Euclidean norm of a vector V ∈ R2). Notice that the function g is defined and
continuous on [0, 1]2 off the diagonal. We shall now show that under our assumptions g can be
extended to the whole square [0, 1]2 and is bounded away from zero.

Indeed, by the generalized mean-value thorem for generalized gradients (cf. [6, Thm. 2.3.7]),
there exist ξ, η ∈ (t1, t2) such that x[t1, t2] ∈ ∂x(ξ) and y[t1, t2] ∈ ∂y(η). Now, fix τ ∈ [0, 1].
Since the curve is piecewise C1, it is easy to show that for every ε > 0 there exists δ > 0 such that
x[t1, t2] ∈ ∂x(τ)+[−ε, ε] and y[t1, t2] ∈ ∂y(τ)+[−ε, ε] for |t1−τ | ≤ δ and |t2−τ | ≤ δ. Moreover,
since the function g is invariant under rotations of the coordinates (x, y), and P (τ) is not
singular and is not a cusp in view of the generalized regularity condition, reasoning as in the first
proof it is not restrictive to assume (up to a suitable rotation of the coordinates when P (τ) is a
breakpoint) that (0, 0) 6∈ ∂P (τ), i.e., at least one of the intervals ∂x(τ), ∂y(τ) does not contain
zero. Assume, for simplicity, that 0 6∈ ∂x(τ), thus (x[t1, t2])

2 ∈ co{(x′+(τ)± ε)2, (x′−(τ)± ε)2}.
It follows that we can extend the definition of g to the diagonal preserving positivity by setting

g(τ, τ) := lim inf
(t1,t2)→(τ,τ)

g(t1, t2) > 0 (6)

since g(τ, τ) ≥ min {(x′+(τ))2, (x′−(τ))2} > 0, and hence we obtain an everywhere positive and
lower semicontinuous function on [0, 1]2. Then we have

m := min
(t1,t2)∈[0,1]2

g(t1, t2) > 0 (7)
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by the extremum theorem for semicontinuous functions; see, e.g., [5].
Consider now

g̃(t1, t2) :=
∣∣∣P̃ [t1, t2]

∣∣∣2 ≥ |g(t1, t2)− e(t1, t2)| (8)

for (t1, t2) ∈ [0, 1]2, t1 6= t2, where

e(t1, t2) =
∣∣(x̃[t1, t2])

2 − (x[t1, t2])
2 + (ỹ[t1, t2])

2 − (y[t1, t2])
2
∣∣

and the estimate

|(x̃[t1, t2])
2 − (x[t1, t2])

2| = |(x̃[t1, t2]− x[t1, t2])(x̃[t1, t2] + x[t1, t2])|

≤ |x̃[t1, t2]− x[t1, t2]|2 + 2|x[t1, t2]| |x̃[t1, t2]− x[t1, t2]| .

Using the Hermite-Genocchi formula we obtain the bounds

|x̃[t1, t2]− x[t1, t2]| ≤
∫ 1

0
|(x̃′ − x′)(st1 + (1− s)t2)| ds ≤ ‖x̃′ − x′‖L∞

and

|x[t1, t2]| ≤
∫ 1

0
|x′(st1 + (1− s)t2)| ds ≤ ‖x′‖L∞

Proceeding similarly with the y variables, we get finally the bound

|e(t1, t2)| ≤ 2ε2 + 4cε , ε := ‖P − P̃‖PC1 , c := ‖P‖PC1

and thus, solving the inequality 2ε2+4cε < m, in view of (7)-(8) we can ensure that g̃(t1, t2) > 0,
i.e., injectivity of P̃ , as soon as the inequality

ε <
√
c2 +m/2− c (9)

is satisfied.
We consider now the case of a closed curve. First, we extend P (and P̃ ) to [0, 2] by setting

P̂ (t) = P (t), t ∈ [0, 1] and P̂ (t) = P (t− 1), t ∈ (1, 2], and we define

g(t1, t2) := max
j,k∈{0,1}

∣∣∣P̂ [t1 + j, t2 + k]
∣∣∣2 = max

j,k∈{0,1}

∣∣∣P̂ (t2 + k)− P̂ (t1 + j)
∣∣∣2

|t2 + k − (t1 + j)|2
(10)

for (t1, t2) ∈ [0, 1]2 \ J , where J := {(t1, t2) : t1 = t2} ∪ {(0, 1), (1, 0)}, which is a positive and
continuous function. Reasoning as above with generalized gradients, we can show that g can
be extended to the whole [0, 1]2 by

g(σ, τ) := lim inf
(t1,t2)→(σ,τ)

g(t1, t2) > 0

for every (σ, τ) ∈ J . In such a way g becomes a positive and lower semicontinuous function on
[0, 1]2, and thus has a positive minimum, say m. The rest of the proof proceeds as above via
the Hermite-Genocchi formula, leading to the estimate (9) of the error threshold which ensures
that P̃ is a simple curve. �
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Remark 1. The kind of approximation in Theorem 1 is completely general. Indeed, it is only
required that not only the curve, but also its tangent vectors are (piecewise) approximated.
This means that the result can be applied for example to piecewise polynomial or trigonometric
approximation, under suitable smoothness assumptions, and in general to any approximation
process which guarantees convergence in PC1 (the only constraint being that the approximating
curve is closed if the original one is, a property that is guaranteed by any interpolation method
including the endpoints of the parameter interval).

It is worth mentioning here two popular polynomial-based interpolation methods, namely
spline interpolation (cf., e.g., [3]), and (piecewise) Chebyshev(-Lobatto) interpolation (which
is at the core of the recent software package chebfun, cf. [2, 9]). Using for example complete
cubic spline interpolation with maximum stepsize h in each subinterval of smoothness, we get
convergence in PC1 of order O(h3), as soon as the curve is piecewise C4, by a classical result [3,
Ch. 5]. On the other hand, piecewise Chebyshev-Lobatto interpolation of degree n guarantees
convergence in PC1 for functions that are piecewise C3+α, α > 0, with order O(n−α), in view
of classical results concerning convergence of such process in Sobolev spaces; cf., e.g., [4, §5.5.3].

Example: Consider the case of the unit circle, parametrized by the angle as P (t) = (cos 2πt, sin 2πt),
t ∈ [0, 1]. It is immediate to see that g(t1, t2) in (10) is 4π2 times the squared ratio of the lengths
of the chord P (t2)−P (t1) and of the corresponding shortest circle arc. Moreover, extension of g
to the diagonal gives the squared Euclidean norm of the tangent vector, g(t, t) = |P ′(t)|2 = 4π2.
Hence, in (9) we have c = ‖P ′‖∞ = 2π and m = 4π2 · 4/π2 = 16 (the minimal chord/arc ratio
being 2/π), that is the approximating curve is simple as soon as

ε = ‖P − P̃‖C1 <
√

4π2 + 8− 2π = 0.607...

This entails that, for example, if we approximate the circle by a complete cubic spline inter-
polant P̃ with constant stepsize h, by the classical estimate ‖P − P̃‖C1 ≤ h3‖P (4)‖∞/24
(cf. [3, Ch. 5]), the spline curve will be surely a Jordan curve as soon as h < h0 =
3

√
24(
√

4π2 + 8− 2π)/(2π)4 = 0.210..., i.e., if we use at least [1/h0] + 1 = 5 equispaced in-
terpolation points.
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