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Abstract

Let ν be a finite measure on a non-polar compact K ⊂ C. Let D be the Vandermonde determinant in
z1, ...zn. and Zn the integral of |D|2 over Kn with respect to the product measure dν(z1)...dν(zn). Then
the leading term asymptotics of Zn are the same if and only if the measure is regular (in the sense of
Stahl-Totik).

To my friend and colleague, Norm Levenberg on his 60th birthday

1 Introduction
Let K be a compact non-polar set in the complex plane. Let ν be a finite measure on K . We consider the integrals

Zn =

∫

Kn

|D(z1, z2, .., zn)|2dν(z1)...dν(zn).

Here D(z1, .., zn) =
∏

1≤i< j≤n(z j − zi) denotes the Vandermonde determinant.
These integrals arise, for example, in the study of normal matrix models where the eigenvalues given by z1, ..., zn are confined

to the compact set K . In this context the constants Zn are referred to as normalizing constants as the expression

1
Zn
|D(z1, z2, .., zn)|2dν(z1)...dν(zn)

is a probability distribution on Kn - the joint distribution of the eigenvalues.
They also arise in the study of orthogonal polynomials as they are related to the study of Bergman function asymptotics or, in

the real case, asyptotics for the Christoffel-Darboux kernel.
Asymptotic expansions for the Zn are of considerable interest. In this paper we will deal only with leading term asymptotics

for Zn. The formula (1) below is well-known in many cases. In this paper we will establish Theorem 1.1 which gives necessary
and sufficient conditions on the measure ν so that the asymptotics for Zn

lim
n

1
n2

log Zn = log(cap(K)) (1)

hold. Here cap denotes logarithmic capacity and cap(K)> 0 since K is non-polar.

We let qn(z) denote the monic polynomial of degree n and of minimal L2(ν) norm. That is
∫

K

|qn(z)|2dν(z) = inf
p∈Nn
{
∫

K

|p(z)|2dν(z)}.

where Nn denotes the space of monic polynomials of degree n.
We let

en =:
�

∫

K

|qn(z)|2dν(z)
�1/2
= ||qn||L2(ν),

and we let rn(z) be a monic polynomial of degree n of minimal sup norm on K . That is

||rn||K = inf
p∈Nn

�

||p||K
�

.
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The polynomial rn is, in general, not unique.
However it is known (see [4]) that

lim
n
||rn||

1/n
K = cap(K). (2)

Now,
en = ||qn||L2(ν) ≤ ||rn||L2(ν)

so that

limsup
n

1
n

log en ≤ log cap(K) (3)

and, in particular the sequence { 1
n log en} is bounded above.

Measures for which

lim
n

1
n

log en = log cap(K) (4)

are important.

Definition 1.1. (see [5]) The measure ν is regular if

lim
n

1
n

log ||qn||L2(ν) = log(cap(K)). (5)

We will write ν ∈ REG(K).

Theorem 1.1.

lim
n

1
n2

log Zn = log(cap(K))

if and only if ν ∈ REG(K).

To establish the theorem, we must show that (1) holds if and only if (5) holds.
In section 2 we show that this question reduces to the following: given that certain means of the sequence (7) converge then

the sequence converges to the same limit. Criteria for this to happen are developed in section 3 and we show that the sequence
{ 1

n log ||qn||L2(ν)} satisfies those criteria.
In section 4 we discuss regular measures and a closely related notion of Bernstein-Markov measures.

2 Convergence of means
We now express the constants Zn in terms of the

en =:
�

∫

K

|qn(z)|2dν(z)
�1/2
= ||qn||L2(ν).

Doing row operations on the Vandermonde determinants we obtain

Zn =

∫

Kn

det(qi(z j))det(qi(z j))dν(z1)dν(z2)...dν(zn)

where the indices in the determinant are i = 0, ..., n− 1 and j = 1, ..., n.
Expanding the determinants and using the fact that the q j ’s are mutually orthogonal we have

Zn = n!||q0||2L2(ν)....||qn−1||2L2(ν).

Hence
1
n2

log Zn =
log n!

n2
+

2
n2

n−1
∑

i=0

log ||qi ||L2(ν).

So (1) is equivalent to

lim
n

� 2
n2

n−1
∑

i=0

log ||qi ||L2(ν)

�

= log cap(K). (6)

Thus we must show that (5) and (6) are equivalent.
Consider the sequence

log e1,

two terms
︷ ︸︸ ︷

1
2

log e2,
1
2

log e2, .....

n terms
︷ ︸︸ ︷

1
n

log en, .....
1
n

log en . (7)

The mean of the above terms is
2

n(n+ 1)

�

log e1 + log e2 + .........+ log en

�

.

and (6) is equivalent to

lim
n

2
n(n+ 1)

�

log e1 + log e2 + .........+ log en

�

= log cap(K). (8)
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It is a standard fact that if a sequence converges then this implies that the arithmetic means converge to the same limit. Thus
(5) implies (6). We must show that the converse holds. Of course, it is not true, in general, that if certain arithmetic means of
a sequence converge then the sequence converges. The fact that this holds in the case of theorem 1.1 will be due to special
properties of the sequence {en}.

3 Properties of the sequence {en}
In theorem 3.1 we will establish a necessary condition for a mean of a sequence to converge while the sequence itself diverges. In
theorem 3.2 we will show that the sequence { 1

n log en} does not satisfy that condition, so we may conclude that the sequence
converges.

We will use the concept of a sequence of zero density defined as follows:

Definition 3.1. (see [7]) Let J ⊂ N be a subsequence. Then J is of zero density if

lim
n

� card(J ∩ {1, 2, ..., n}
n

�

= 0.

Theorem 3.1. Let {an} be a sequence of real numbers, satisfying:

limsup
n

an ≤ s

and

lim
n

2
n(n+ 1)

�

n
∑

j=1

ja j

�

= s.

Let J be a subsequence of N such that for some η > 0

limsup
n∈J

an ≤ s−η.

Then J is of zero density.

Proof. The conclusion is not affected if finitely many terms are changed in J so we may assume that an ≤ s−η for n ∈ J .
The hypothesis imply that the sequence is bounded above and we assume that an ≤ L for all n and some constant L.

Furthermore the existence of the limsup of the sequence implies that given any ε > 0 there exists a B(ε) such that for n≥ B(ε)
we have an ≤ s+ ε.

The proof will proceed by contradiction. Suppose that J is not of zero density. Then there is a subsequence {nk} ⊂ J such that

lim
k

� card(J ∩ {1,2, ..., nk}
nk

�

≥ α > 0

where α≤ 1.
We let

Jk = J ∩ {1,2, ..., nk}

and
J c

k = {1, 2, ..., nk} \ J

We may assume, again possibly changing finitely many terms from J , given γ > 0 that

α+ γ≥
1
nk

card(Jk)≥ α− γ (9)

for all k.

Consider the sum
∑nk

j=1 ja j . We will separately estimate the sum of those terms with j ∈ Jk and j ∈ J c
k .

∑

j∈Jk

ja j ≤
�∑

j∈Jk

j
�

(s−η) =
�∑

j∈Jk

j
�

s−
�∑

j∈Jk

j
�

η. (10)

And, since card(Jk)≥ (α− γ)nk, we have (where [x] denotes the greatest integer ≤ x)

∑

j∈Jk

j ≥
[(α−γ)nk]
∑

j=1

j =
([(α− γ)nk])([(α− γ)nk] + 1)

2
. (11)

Also,
∑

j∈J c
k

ja j ≤
�

B
∑

1

ja j

�

+
∑

j>B, j∈J c
k

ja j ≤
B(B + 1)L

2
+
∑

j∈J c
k

j(s+ ε). (12)

And since card(J c
k)≤ nk(1− (α− γ))

∑

j∈J c
k

j ≤
nk
∑

[nk(α−γ)]

j =
nk(nk − 1)

2
−
[nk(α− γ)]([nk(α− γ)]− 1)

2
. (13)
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Combining 10 and 12 we have

nk
∑

j=1

ja j ≤
�

nk
∑

j=1

j
�

s−η
�∑

j∈Jk

j
�

+ ε
∑

j∈J c
k

j +
B(B + 1)L

2
. (14)

Thus

limsup
k

2
n2

k

nk
∑

j=1

ja j ≤ s−η
�∑

j∈Jk

j
�

+ ε
∑

j∈J c
k

j

≤ s−
(α− γ)2η+ ε

�

(1− (α− γ)2

2

�

.

(15)

Given s,α,η one may choose γ,ε so that the right side if the inequality is < s . This contradiction establishes the result.

Theorem 3.2. Suppose that for some subsequence J ⊂ N that

sup
n∈J

1
n

log en ≤ log(cap(K))−η (16)

for some η > 0. Then there is a subsequence J1 of N, not of zero density, such that (16) holds (possibly with a different η).

Lemma 3.3. Given ε > 0 there is an integer t0(ε) such that for all n and all t ≥ t0 we have

en+t ≤ (cap(K) + ε)t en.

Proof. Choose t0 so that ||rt ||K ≤ (cap(K) + ε)t for t ≥ t0. Then,

en+t =
�

∫

K

|qn+t(z)|2dν
�1/2
≤
�

∫

K

|qn(z)rt(z)|2dν
�1/2

≤ ||rt ||K en

and the lemma follows.

Proof. (of theorem 3.3)
Now choose ε > 0 so that for some η1 > 0, and all ρ such that 1/2≤ ρ ≤ 2/3 we have

ρ[log(cap(K) + ε)] + (1−ρ)[log(cap(K))−η]≤ log(cap(K))−η1.

For n ∈ N and n≥ t0 , n≤ t ≤ 2n we have from lemma 3.3

1
n+ t

log en+t ≤
t

n+ t
log(cap(K) + ε) +

n
n+ t

log(cap(K))−η.

So
1

n+ t
log en+t ≤ log(cap(K))−η1.

So if J1 includes all such indices (n+ t) as above, then J1 is not of zero density but

sup
n∈J1

1
n

log en ≤ log(cap(K))−η1.

Proof. (of theorem 1.1)
The proof will be by contradiction.
We assume (8) holds. If (5) does not hold there must be a subsequence J ⊂ N such that for some η > 0 we have

supn∈J log 1
n log en ≤ log cap(K)−η. By theorem 3.1, J must be of zero density but by theorem 3.2 we may choose such a J not of

zero density.
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4 Regular measures
In this section we will deal with properties of regular measures. These measures are extensively studied in [5].

Definition 4.1. Let µ be a finite measure on a non-polar compact set K ⊂ C. We say that µ is a Bernstein-Markov measure if
given ε > 0 there is a constant C > 0 such that

||p||K ≤ C(1+ ε)n||p||L2(µ) (17)

for all holomorphic polynomials p of degree ≤ n and all n.
We will write µ ∈ BM(K).

Lemma 4.1.
BM(K) ⊂ REG(K).

Proof. We must show that all Bernstein-Markov measures are regular. Let µ be Bernstein-Markov on K . Given ε > 0 there is a
constant C such that

||rn||K ≤ ||qn||K ≤ C(1+ ε)n||qn||L2(µ).

It follows that
lim inf

n
||qn||

1/n
L2(µ) ≥ lim

n
||rn||

1/n
K = cap(K).

Combining this with (3) we obtain (1).

Asymptotics for the Bergman function are valid for regular measures. Let µ be a finite measure on a non-polar compact set
K ⊂ C. We let dµeq(K) denote the equilibrium measure of K (see [4]).

The Bergman function is defined by

Sn(z) :=
n
∑

j=0

|p j(z)|2 (18)

where the p j(z) are orthonormal polynomials in L2(µ) and deg p j = j.
For K ⊂ R, Sn as a function of the real variable, is known as the Christoffel-Darboux function.

Theorem 4.2. Let µ ∈ REG(K). Then

lim
n

1
n

Sn(z)dµ= dµeq(K) weak∗.

Proof. Theorem 2.2 in [3] gives the above result when µ ∈ BM(K). However that proof only uses the Bernstein-Markov property
of µ to establish the asymptotics of Zn as given in theorem 1. Those asymptotics are valid when µ ∈ REG(K) by the "easy" part of
theorem 1.1 i.e. (5) implies (1).

Related results may be found in ([1], corollary 4.4) and
([6], corollary 1).

We record a number facts about regular and Bernstein-Markov measures:

• If the set K is a regular set in the sense of potential theory, (i.e. it is regular for the exterior Dirichlet problem (see [4])
then every Bernstein-Markov measure is regular, i.e. BM(K)= REG(K). (see [5], theorem 3.2.3 (v))

• A specific example of a measure that is regular but not Bernstein-Markov (so the set K is necessarily not regular) is given
in ([5], example 3.5.3).

• There exists a Bernstein-Markov measure on any compact set (see [3], corollary 3.5 ).

• A convenient sufficient condition that a measure be regular on a regular compact set K is the following "mass-density "
condition: µ is regular if there are constants T > 0, R0 > 0 such that µ(∆(z, R))≥ RT for all R≤ R0 and all z ∈ K where
∆(z, R) denotes the disc center z and radius R. In particular, one dimensional Lebesgue measure on a compact interval is
Bernstein-Markov, as is planar Lebesgue measure on a compact disc.
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5 β > 0
We consider the constants

Zn,β =

∫

Kn

|D(z1, ...zn)|βdν(z1)...dν(zn) (19)

where β > 0 is a real parameter.
We will prove the following result:

Theorem 5.1. Let K ⊂ C be compact and ν ∈ REG(K). Then

lim
n

1
n2

log Zn,β =
β

2
log cap(K).

Proof.
∫

Kn

|D(z1, ..., zn)|βdν(z1)...dν(zn)≤ supKn |D(z1, ..., zn)|βν(K)n

so it follows from the asymptotics for supKn |D(z1, ..., zn)| given by the Fekete-Szego theorem (see [4], theorem 5.5.2 ) that

lim sup
n

1
n2

log Zn,β ≤
β

2
log cap(K). (20)

Now, by corollary 3.4.2 of [5] since ν ∈ REG(K) we have

lim
n
(||qn,β ||Lβ (ν))

1
n = cap(K)

where qn,β is a monic polynomial of degree n of minimal Lβ (ν) norm. It follows that given ε > 0 there exists n0 such that

�

∫

K

|q(z)|βdν(z)
�

1
nβ ≥ cap(K)− ε (21)

for all monic polynomials q of degree n≥ n0.
Then, doing the integral in zn in the integral below and using (21) we have, by Fubini’s theorem:

Zn,β =

∫

K

|(zn − z1)...(zn − zn−1)|βdν(zn)

∫

Kn−1

|D(z1, ...zn−1|βdν(z1)...dν(zn−1)

≥ (cap(K)− ε)(n−1)β Zn−1,β .

Repeating this procedure, we get

Zn,β ≥ (cap(K)− ε)

�

(n−1)+...+(n−n0)

�

β
Zn0−1,β .

Since ε > 0 is arbitrary we have

lim inf
n

1
n2

log Zn,β ≥
β

2
logcap(K). (22)

Combining (20) and (22) completes the proof.
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