
Special issue dedicated to Norm Levenberg on the occasion of his 60th birthday, Volume 11 · 2018 · Pages 122–129

The Secant Method for Root Finding, Viewed as a Dynamical
System

Eric Bedford · Paul Frigge

Communicated by F. Piazzon

Abstract

The secant method is a procedure for approximating the zeros of a function. We will explore the behavior
of this procedure in the case of univariate rational functions for arbitrary starting points, whether or not
there is convergence to a zero.

Introduction
Let a function f : C→ C be given. The secant method for finding a root α, f (α) = 0, is as follows. Given two initial points
z1, z2 ∈ C, we determine a third point z3 ∈ C by the condition that (z3, 0) is the point where the (secant) line between (z1, f (z1))
and (z2, f (z2)) crosses the horizontal coordinate axis. Inductively, we determine zn+1 starting with zn−1 and zn. This procedure
may be written (zn, zn+1) = S f (zn−1, zn) where

S f (x , y) = (y, R(x , y)) : C2 ¹¹Ë C2, with (1)

R(x , y) =
y f (x)− x f (y)

f (x)− f (y)
= x −

(x − y) f (x)
f (x)− f (y)

. (2)

If the initial points for the secant method are the same, z1 = z2, then the first step of the Secant Method essentially coincides with
Newton’s method, but after the first step, the two methods are different.

If f (z) is a rational function, then S f is a rational mapping. A point α is a simple zero of f if and only if α̂ := (α,α) is a
regular fixed point of S f . The secant map S f may be considered to be a root-finding algorithm: If α is a simple root of f , then if
the starting points z1 and z2 are sufficiently close to α, then the iterates of S f (z1, z2) converge to α̂ at the super-exponential rate
φ ∼ 1.61803, where φ is the golden ratio (see Theorem 4.2).

On the other hand, if α is a root of f with multiplicity greater than one, then α̂ is a point of indeterminacy for S f . We show
(Theorem ??) that in this indeterminate case there is a nonempty basin B(α̂) of points which are attracted to α̂ in forward time,
although the rate of convergence is merely geometric.

Since we consider S f in its capacity as a root-finding algorithm, we must ask about the size of B̃ :=
⋃

B(α̂ j), where α j ranges
over all roots of f . A root-finding method can hope that B̃ might have full measure, or at least be dense in C2. However, we show
that this is “almost never” the case. Namely, by Corollary 3.3, we have: For a generic polynomial f , there is an open set of points
which do not converge to a root.

There are two cases in which the secant map takes an especially attractive form: when f is a quadratic polynomial, and when
f is a rational fraction of degree 1. In Section 4, we describe the dynamics of S f in these cases.

Finally we discuss S f as a global dynamical system of the complex plane C2. If f = p/q is rational, S f is a dominant rational
map and has topological degree dt :=max(deg(p)− 1,deg(q)) (see Proposition 1.1). We show that in most cases the dynamical
degree δ = δ(S f ) is greater than dt (Theorem 5.1), and thus S f is a map of “small topological degree”. We then record a few
conclusions that follow from the general theory.

Another root finder, Newton’s method, has been intensively studied as a global dynamical system on Ĉ. In complex dimension
2, the Newton method for the roots of a pair of quadratics was studied by Hubbard and Papadopol [7]. The resulting rational
map has algebraic degree 3 and topological degree 4. This is a map of “large topological degree” and will be expected to have
dynamical behavior that is qualitatively different from that of S f .

After our work was completed, we learned of independent work by Garijo and Jarque [6], who discuss related questions
about the secant map, as applied in the real domain. One of their results is that there is a polynomial p for which Sp has an
attracting cycle of period 4; and thus Sp is not “generally convergent” in this case.
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1 Basic properties
The general theory of iteration of rational maps has been studied intensively in recent years (see [8], [5], [3]). Everything
we will do in Section 1 has been done in [2] for the case where f is a polynomial with distinct (simple) zeros. Here we
will deal with the case that f may have poles and, most importantly, multiple zeros. Following [2], we start by extending
S f to a rational map S f : P1 × P1 ¹¹Ë P1 × P1. Throughout this paper, we will assume that f (z) = p(z)

q(z) is a rational function
which is not linear. (Otherwise, S f is constant.) Further, we may and will assume that p and q are monic, and we write
S(x , y) = S f (x , y) = (y, R f (x , y)), where

R f (x , y) = R f (y, x) =
y q(y) p(x)− x q(x) p(y)

q(y) p(x)− q(x) p(y)
= x −

(x − y)p(x)q(y)
p(x)q(y)− p(y)q(x)

(3)

We record here how the Secant Map changes as we perform scaling, translation and inversion on the map f :

Sλ f = S f

σ̃−1 ◦ S f ◦ σ̃ = S f ◦σ with σ(x) = λx , σ̃(x , y) = (λx ,λy)

τ̃−1 ◦ S f ◦ τ̃= S f ◦τ with τ(x) = x + a, τ̃(x , y) = (x + a, y + a)

R1/ f − x = (x − R f ) ◦ρ with ρ(x , y) = (y, x)

Sg = j ◦ S f ◦ j with g(t) = t f (1/t), j(x , y) = (1/x , 1/y).

(4)

By the first equation, we may and will assume that both p and q are monic.

Proposition 1.1. . Let us set dt :=max{deg(p)− 1, deg(q)}. It follows that for y fixed, the degree of R(x , y) in x is dt , and S f has
topological degree dt , i.e., if (x0, y0) is a generic point, then S−1(x0, y0) consists of dt points.

Proof. Let us write the expression for R(x , y) in the center of (3) as Ñ(x , y)/D̃(x , y). It is clear that Ñ(x , y) and D̃(x , y) both
vanish along the line {x = y}, and thus the GCD of Ñ and D̃ will have the form (y − x)h(x , y). We show that h(x , y) is constant
by observing that Ñ − y D̃ = (y − x)q(x)p(y) and x D̃ − Ñ = (x − y)q(y)p(x). Thus if (y − x)h divides both Ñ and D̃, then h
divides both q(x)p(y) and q(y)p(x). But then h must be constant since p and q have no common factors.

Now we claim that the numerator Ñ(x , y) has degree dt +1 in x . The most difficult case is where deg(p(x)) = deg(x q(x)) =
dt + 1. In this case, the highest degree term in x in the expression Ñ , is x dt+1(y q(y)− p(y)). The coefficient y q(y)− p(y)
cannot be the zero polynomial because p and q are relatively prime. Thus the degree of N(x , y) := Ñ(x , y)/(y − x) in x is dt .

Now we claim that D̃ has degree d̄ :=max(deg(p), deg(q)) in x . The hardest case is when d̄ = deg(p) = deg(q). In this case
the term of highest degree in D̃ is x d̄(q(y)− p(y)). Thus for generic y , the degree of D̃ is d̄, and so the degree of D := D̃/(y − x)
in x is d̄ − 1≤ dt . It follows that the degree in x of N − cD is dt for all but finitely many c ∈ C.

The number of solutions {(x , y) : S(x , y) = (y, R(x , y)) = (x0, y0)} is the same as the number of solutions of {x : R(x , x0) =
y0}= {x : N(x , x0) = y0D(x , x0)}. It follows that or generic (x0, y0), the number of solutions is dt .

Let us observe that the cohomology group H1,1(P1 × P1;Z) is generated by the (Poincaré dual) class H = {y = c} of a
horizontal line and V = {x = c} of a vertical line. The intersection product is given by H ·H = V · V = 0, and H · V = V ·H = 1. If
C ⊂ P1 is a curve, then its Poincaré dual is the cohomology class defined by

{C}= mH + nV ∈ H1,1(P1 × P1;Z)

where m (resp. n) is the number of times C intersects a general vertical (resp. horizontal) line.
The indeterminacy set I(S) is the finite (possibly empty) set of points where S fails to be continuous.

Proposition 1.2. S f has 2dt(max(deg(p), deg(q))− 1) points of indeterminacy, counted with multiplicity.

Proof. As in the proof of Proposition 1.1, we write R(x , y) = N/D where N and D are obtained by dividing the numerator and
denominator of the central expression in (3) by (y − x). By Proposition 1.1, N and D have no common factor, and the degrees in
x are dt and max(deg(p), deg(q))− 1, respectively. We will compute the cardinality of

I(S f ) = {(x , y) ∈ P1 × P1 : N(x , y) = D(x , y) = 0}.

By the symmetry of N and D, we see that the degrees in y are the same as the degrees in x . Thus, as elements of H1,1(P1×P1;Z),
we have that the class of {N = 0} is given by dt(H + V ), and the class of {D = 0} is (max(deg(p), deg(q))−1)(H + V ). Taking the
intersection product, then, we have #{N(x , y) = D(x , y) = 0}= 2dt(max(deg(p), deg(q))− 1).

If C is a curve, we define its strict transform S(C) to be the closure of S(C − I(S)). A curve is said to be exceptional if S(C)
is a point. It is clear that any exceptional curve is of the form {y = c}, for some constant c ∈ C∪ {∞}. In order to work with
points at infinity, we will use the coordinate system (u, v) = j(x , y) = (1/x , 1/y). We define a∞ = deg(q) − deg(p) so that
f (1/t) = ta∞h(t), where h(t) is holomorphic at t = 0, and h(0) 6= 0. Thus a∞ gives the order of zero or pole of f at∞.

Proposition 1.3. If c ∈ C, f (c) = 0, then S({y = c}) = (c, c). If f (∞) ∈ C (i.e., if infinity is not a pole of f ), then S({y =∞}) =
(∞,∞). For all other cases, {y = c} is not exceptional and is mapped to the vertical line {x = c}. If c =∞, then we have the
following: If a∞ < 0, then P1 × {∞} is not exceptional; if a∞ ≥ 0, then P1 × {∞} is exceptional and maps to (∞,∞)x ,y .
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Proof. A horizontal line {y = c}, c ∈ C, is exceptional if and only if x 7→ R(x , c) is constant. If c ∈ C is not a pole of f , then

R(x , c) =
c f (x)− x f (c)

f (x)− f (c)

If this expression is constant, and if f (c) 6= 0, then f (x) must be linear, which case we have excluded. Thus if c ∈ C is not a pole,
then {y = c} is exceptional if and only if f (c) = 0.

If c =∞ is not a pole, then limx→∞ f (x) = α ∈ C exists. Thus limy→∞ R(x , y) = limy→∞
y f (x)−αx

f (x)−α =∞ for generic x , so we
conclude that S({y =∞}) = (∞,∞), and so {y =∞} is exceptional.

Now suppose that c ∈ C is a pole of f = p/q. Then q(c) = 0 and p(c) = α 6= 0. Using the expression for R(x , y) in (3), we
have limy→c R(x , y) = limy→c

−xq(x)α
−q(x)α = x , so {y = c} is not exceptional. Finally, if c =∞ is a pole, i.e., if a∞ ≤ −1, then the

degree of p is greater than the degree of q. If deg(p)> deg(q) + 1, then the previous argument shows that limy→∞ R(x , y) = x .
If deg(p) = deg(q) + 1, then since p and q are monic, the previous argument shows that limy→∞ R(x , y) = x − f (x), which is
nonconstant since f is nonlinear.

Let x0 be a point which is not a pole of f . Then we say that x0 is a critical point if f ′(x0) = 0. We say that the critical point is
simple if f ′′(x0) 6= 0. If x0 is a pole, then we consider the coordinate X = 1/x at x =∞. The condition of f having a pole at x0
is equivalent to F := 1/ f having a zero at x0. We say that x0 is a critical point for f at a pole x0 if F ′(x0) = 0.

Let us record a computation which will be useful in the sequel. Suppose

f (x) = (x −α)a(1+ x h(x))

where h(x) is analytic in a neighborhood of x = α. By (4) there is no loss of generality if we assume α= 0. Then for a ≥ 1, we
have

f (x)− f (y) = x a(1+ xh(x))− ya(1+ yh(y))
= (x a − ya)(1+ xh(x)) + ya(xh(x)− yh(y))

= (x − y)
�

(x a−1 + · · ·+ ya−1)(1+ xh(x)) + ya
�

xh(x)− yh(y)
x − y

��

. (5)

Using a similar expansion for y f (x)− x f (y) in the case a ≥ 2, we find

R(x , y) = y
N1(x , y)
D1(x , y)

= y
x(x a−2 + · · ·+ ya−2)(1+ xh(x)) + x ya−1

�

xh(x)−yh(y)
x−y

�

(x a−1 + · · ·+ ya−1)(1+ xh(x)) + ya
�

xh(x)−yh(y)
x−y

� (6)

Proposition 1.4. The behavior of S f on the diagonal inside C2 is as follows:
a) If x0 is a non-critical point for f , then (x0, x0) is not indeterminate for S f , and S f (x0, x0) = (x0, x0 − f (x0)/ f ′(x0)).
b) If x0 is a critical point for f with f (x0) 6= 0, then (x0, x0) is not indeterminate for S f , and S f (x0, x0) = (x0,∞).
c) If f has a multiple zero or multiple pole at x0, then (x0, x0) is indeterminate for S f .
Finally, for the behavior at the diagonal point at infinity:
d) S f is indeterminate at (∞,∞) if and only if |1+ a∞| ≥ 2.

Proof. The first two statements follow from the expression on the right hand side of (1). For the third statement, we note that
the indeterminacy locus of S f is the same as the set where the fraction R is indeterminate. By (4), it is sufficient to consider
the case where x0 is a multiple zero of f . Now we have a ≥ 2 and may write R(x , y) as in (6), so that the numerator is
y x(x a−2 + · · ·+ ya−2) plus terms of order > a, while the denominator is (x a−1 + · · ·+ ya−1) plus terms of order > a − 1. The
expression y x(x a−2 + · · ·+ ya−2) vanishes on a lines passing through the origin, and these are distinct from the a− 1 lines where
(x a−1 + · · ·+ ya−1) vanishes, which means that the numerator and denominator have no common factors. Thus the polar locus of
R intersects the zero locus of R at the origin. Thus R is indeterminate there.

To discuss the point (∞,∞) we use the involution j(x , y) = (1/x , 1/y) which is a biregular map taking (x , y) = (∞,∞) to
(0, 0). Conjugating S f with j, we obtain a new map Sg (last line of (4)) which is the secant method for the function g(t) := t f (1/t).
The function g is meromorphic at t = 0 and vanishes to order 1+ a∞. It follows from (c) in Proposition 1.4 that if g has a
multiple zero or pole at t = 0, then Sg is indeterminate; otherwise it is regular. This corresponds to |1+ a∞| ≥ 2.

A direct calculation shows the following two results.

Proposition 1.5. If α ∈ C is a simple zero for f , then (α,α) is a fixed point of S f , and the differential is

DS f (α,α) =
�

0 1
0 0

�

+
f ′′(α)

2 f ′(α)

�

0 0
y −α x −α

�

+O2(x −α, y −α).

In particular, the eigenvalues of DS f (α,α) are 0 and 0.
This also says something about the behavior at (∞,∞). If f is regular at infinity, and f (∞) 6= 0, then g(t) = t f (1/t) has a

simple zero at t = 0. By (4), S f in a neighborhood of (∞,∞) is locally conjugate to the map Sg at (0, 0), and DSg has the form
given by Proposition 1.5.

Proposition 1.6. If α ∈ C is a simple pole for f , then (α,α) is a fixed point for S f , and DS f (α,α) =
�

0 1
0 0

�

, so (α,α) is of

saddle type.
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2 Convergence at multiple roots
We have seen in Proposition 1.4 that if α is a zero of f with multiplicity a ≥ 2, then α̂= (α,α) is a point of indeterminacy for S f .
By (4) we will suppose that α = 0. The local behavior of S f at α̂ will be more clear if we work in the blowup π : M → C2 at
(0,0) ∈ C2. By blow up, we mean that M is a complex manifold, and π is a holomorphic map such that if we let E := π−1(0,0)
denote the exceptional divisor of the blowup, then E ∼= P1, and π : M − E→ C2 − {(0,0)} is biholomorphic. We now work with
the induced map Ŝ := π−1 ◦ S f ◦π : M ¹¹Ë M .

We can represent the manifold M explicitly in a neighborhood of E by using two coordinate charts. One of them is the
coordinate system (s, t) such that π(s, t) = (s, st) = (x , y) on an affine neighborhood in M in which we have E = {s = 0}. Since
π−1(x , y) = (x , y/x) = (s, t), it follows from (6) that the induced map is given by

Ŝ : (s, t)→ (s t,ψ(t)(1+ sg(s, t))) , ψ(t) =
1+ t + · · ·+ ta−2

1+ t + · · ·+ ta−2 + ta−1
. (7)

where g(s, t) is analytic in a neighborhood of (0, 0). Thus the behavior of Ŝ near E is modeled by the map

(s, t)→ (s1, t1) = (s t,ψ(t)) (8)

whose iterates have the form
(sn, tn) = (st0 · · · tn−1,ψn(t)) (9)

with t j =ψ j(t0). The fixed points of ψ are defined by the condition ψ(t) = t, which is equivalent to

1= ta−1 + ta

The following is elementary:

Proposition 2.1. If a ≥ 2, then ψ has a fixed point 0< ta < 1, and −1<ψ′(ta)< 0.

Now we observe that the differential of Ŝ at E = {s = 0} is

DŜ(0, t) =
�

t 0
ψ(t)g(0, t) ψ′(t)

�

.

Thus the eigenvalues of DŜ(0, ta) are strictly less than one in modulus. We say that a point p0 has a basin B for f if for every
q ∈ B, the iterates f n(q) converge to p0 uniformly in a neighborhood of q. In general, p0 need not belong to B. It follows that
(0, ta) ∈ E has a basin of attraction for Ŝ, which in fact contains a neighborhood of (0, ta). Pushing down by π to a neighborhood
of (0,0) ∈ C2, we have:

Theorem 2.2. Let ta be as in Proposition 2.1. For sufficiently small r > 0, the set {(x , y) ∈ C2 : |x |< r, |ta − y/x |< r} is contained
in the basin of (0, 0) for S f . Thus for a multiple zero α of f , there is a conical neighborhood of α̂ in which the iterates of S f converge
to α̂ at the asymptotic rate O(|ψ′(ta)|n).

3 Critical 3-cycles
Let f be a polynomial of degree at least 3, and let x0 be a critical point: f ′(x0) = 0. If f (x0) 6= 0 then

(x0, x0)→ (x0,∞)→ (∞, x0)→ (x0, x0), (10)

where the first map is given by (b) of Proposition 1.4, and the other two maps follow directly from the formula (3). Using
(4), we may perform a translation and assume that x0 = 0. Further, we introduce coordinate changes j1(x , y) = (1/x , y) and
j2(x , y) = (x , 1/y) and define

S1 := j2 ◦ S, S2 := j1 ◦ S ◦ j2, S3 := S ◦ j1

so that each S j is a holomorphic map from a neighborhood of the origin to another neighborhood of the origin. Since j2
1 and j2

2
are identity maps, we have the decomposition S3

f = S3 ◦ S2 ◦ S1, which we may use to give the local behavior at (x0, x0) = (0, 0).

Theorem 3.1. Let f be a polynomial of degree d ≥ 3, and let x0 be a simple critical point which is not a zero: f (x0) 6= 0, f ′(x0) = 0,
and f ′′(x) 6= 0. Then the 3-cycle (x0, x0) is both semi-parabolic and semi-superattracting, in the sense that DS3(x0, x0) has eigenvalues
0 and 1. Further, if x0 = 0, then the local behavior at (0,0) is conjugate to

S3(x , y) = (x , 0) +
(−a2)d−1

ad
(2x + y)d−1(−2,1) +Od (11)

where Od indicates terms bounded by (|x |+ |y|)d .

Proof. As observed above, we may use (4) to assume that x0 = 0. Further, by (4) we may assume that f (0) = 1. Thus

f (z) = 1+ a2z2 + · · ·+ adzd ,

where a2, ad 6= 0. We have
S1(x , y) = (y,−a2 x − a2 y + G) +Od
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S2(x , y) =

�

y, x −
yd−1

ad

�

+Od , S3(x , y) =

�

y, y −
x d−1

ad

�

+Od

where G = G(x , y) is a polynomial in which all the terms have degree at least 2. To see the computation for S2, observe that the
second coordinate of S2 is

R(x , 1/y) =
f (x)/y − x f (1/y))

f (x)− f (1/y)

We define f̌ (t) = td f (1/t) = ad + ad−1 t + · · ·+ td . If we multiply the numerator and denominator by yd we find

R(x , 1/y) =
yd−1 f (x)− x f̌ (y)

yd f (x)− f̌ (y)
≡

yd−1 − x f̌ (y)

− f̌ (y)
= x −

yd−1

f̌ (y)
≡ x −

yd−1

ad

where the ‘≡’ indicates that we are working modulo Od , i.e., homogeneous terms of degree d and higher. The computation of S3
is similar.

Now

S2(S1(x , y)) =

�

−a2(x + y) + G, y +
−(−a2)d−1

ad
(x + y)d−1

�

+Od

so

S3(x , y) = S3 ◦ S2 ◦ S1 = (y, y) +
−(−a2)d−1

ad
(x + y)d−1(1,2) +Od

Finally, if we set M =
�

1 1
1 0

�

, then M−1 ◦ S3 ◦M will have the desired form.

Remark 1. The expressions for S2 and S3 that are given in the proof are not valid for rational maps that are not polynomials.
Now we want to show the existence of a basin for the map (11). By (4) we may scale coordinates so that (−a2)d−1/ad = 1, so

if we drop the Od terms from S3, we have the map

F0 : (x , y)→
�

x − 2(2x + y)d−1, (2x + y)d−1
�

(12)

Theorem 3.2. If f is a polynomial of degree at least 3, and if x0 is a simple critical point for f with f (x0) 6= 0, then the 3-cycle
(x0, x0) has a nonempty basin.

Proof. For notational convenience, we will use (4) to move the point (x0, x0) to the origin (0,0). For small c, r > 0 we define

Dc,r := {(x , y) ∈ C2 :ℜ(x)< r, |ℑ(x)|< cℜ(x), |y|< 2d ℜ(x)d−1}

So Dc,r is a thin neighborhood of the real interval (0, r)× {0}. If |ℑ(x)|< cℜ(x), we have

ℜ(x)≤ |x | ≤ ℜ(x)(1+ c2/2)

ℜ(x d−1) =ℜ(x)d−1 −ℑ(x)2
��

d − 1
2

�

ℜ(x)d−3 + · · ·
�

=ℜ(x)d−1
�

1+O(c2)
�

ℑ(x d−1) = (d − 1)ℑ(x)ℜ(x)d−2 −ℑ(x)3
��

d − 1
3

�

ℜ(x)d−4 + · · ·
�

= (d − 1)ℑ(x)ℜ(x)d−2(1+O(c2)).

Let us first show that Dc,r is invariant under the map F0 given in (12). For this we write (x1, y1) = F0(x , y). Thus x1 =
x − 2(2x + y)d−1, so if (x , y) ∈Dc,r ,

ℜ(x1) =ℜ(x)− 2d ℜ(x d−1) +O(|x |d−2|y|) =ℜ(x)
�

1− 2d ℜ(x)d−2(1+O(c2)) +O(ℜ(x)2d−3)
�

and
ℑ(x1) = ℑ(x)− 2dℑ(x d−1) +O(|x |d−2|y|) = ℑ(x)− (d − 1)2dℑ(x)ℜ(x)d−2(1+O(c2)) +O(ℜ(x)2d−3).

Thus

ℑ(x1)
ℜ(x1)

=
ℑ(x)
ℜ(x)

1− (d − 1)2d(1+O(c2))ℜ(x)d−2

1− 2d(1+O(c2))ℜ(x)d−2 +O(ℜ(x)2d−3)
+

O(ℜ(x)2d−3)
ℜ(x)(1+ o(1))

< c
1− (d − 1)2d(1+O(c2))ℜ(x)d−2

1− 2d(1+O(c2))ℜ(x)d−2 +O(ℜ(x)2d−3)
+

O(ℜ(x)2d−3)
ℜ(x)(1+ o(1))

.

Let us choose c sufficiently small that the two (independent) expressions of O(c2) satisfy

(d − 1)(1+O(c2))> 1+O(c2)

Now as r → 0, the right hand side approaches

|ℑ(x1)|
ℜ(x1)

< c
1− (d − 1)2d ℜ(x)d−2(1+O(c2))

1− 2d ℜ(x)d−2(1+O(c2))
< c
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so that for r and c small, we have |ℑ(x1)|/ℜ(x1)< c. Since y1 = (2x + y)d−1, it follows (after possibly further shrinking r) that
(x1, y1) ∈Dc,r .

Since the dominant behavior of the first coordinate at the origin is parabolic: x 7→ x − 2d x d−1, it follows that Dc,r is in the
basin of (0,0) for F0.

Finally, it is clear that the arguments above remain valid if we add terms O((|x |+ |y|)d) to F0. Thus Dc,r is in the basin of
(0, 0) for S3

f .

None of the coordinates in the 3-cycle (10) is a root of f , so we have:

Corollary 3.3. If f has degree at least 3 and has a simple critical point which is not a zero, then there is an open set of points whose
orbits are not attracted to roots of f .

4 Special cases: the Fibonacci monomial map
Given a 2× 2 integer matrix A, we define the monomial map

MA(z1, z2) = zA = (z
a1,1
1 z

a1,2
2 , z

a2,1
1 z

a2,2
2 )

This iterates easily: (MA)n = MAn . We define AFib =
�

0 1
1 1

�

, which satisfies

AFib
n =

�

Fn−1 Fn
Fn Fn+1

�

where Fn is the nth Fibonacci number. The eigenvalues of AFib are φ = (1+
p

5)/2∼ 1.61803 and −1/φ = (1−
p

5)/2. Taking
the trace of AFib

n, we have
Fn−1 + Fn+1 = φ

n + (−φ)−n

We refer to
MFib(x , y) := MAFib

(x , y) = (y, x y)

as the Fibonacci monomial map.
The set T2 = {|x | = |y| = 1} is invariant under MFib, and the restriction of MFib to T2 is a hyperbolic toral automorphism

of entropy log(φ). The set {|x | |y|φ = 1} is foliated by the curves {x yφ = eiθ }, where yφ is defined locally, which are the
complexifications of the stable manifolds of this toral automorphism. Similarly, the complexifications of the unstable manifolds
give a foliation of {|y|= |x |φ}.

Every monomial map commutes with the Cremona involution j(x , y) = (1/x , 1/y), so it follows that the behavior of the
Fibonacci monomial map at (0,0) is the same as the behavior at (∞,∞) ∈ P1 ×P1. Thus j gives a symmetry between the basins
BMFib

(0, 0) and BMFib
(∞,∞).

Theorem 4.1. The set {|x | |y|φ < 1} is the attracting basin of (0, 0) of MFib, and {|x | |y|φ > 1} is the basin for (∞,∞) ∈ P1 × P1.
In fact, the rate of convergence of the nth iterate to (0, 0) is at the superexponential rate O(rφ

n
) with r < 1.

Proof. If (x , y) is on one of the coordinate axes, i.e., if x y = 0, then M2
Fib(x , y) = (0,0). Thus to discuss the basin of (0,0), we

may assume x y 6= 0, and let ξ = (log |x |, log |y|) denote logarithmic coordinates. Let v+ := (1,φ) (resp. v− := (1,−1/φ)) denote
the φ (resp. (−1/φ)) eigenvector for AFib. For ξ= (ξ1,ξ2) ∈ R2, there are c+, c− ∈ R such that ξ= c+v+ + c−v−. In logarithmic
coordinates, the map z 7→ M n

Fib(z) corresponds to

ξ 7→ An
Fibξ= c+φ

nv+ + c−(−φ)−nv−. (13)

Thus {ξ : c+ < 0} is the basin of (−∞,−∞) as n→ +∞, and {ξ : c+ > 0} is the basin of (∞,∞) as n→−∞. Exponentiating,
we see that if c+ < 0, then M n

Fib(z)→ (0, 0), and the exponential of {c+ < 0} is {0< |x | |y|φ < 1}. The rate of convergence also is
clear from (13) when we exponentiate.

The following is well known, at least from the point of view of numerical computation.

Theorem 4.2. If α is a simple zero of f , then for (x , y) near (α,α), the iterates Sn
f (x , y) converge to (α,α) at the superexponential

rate O(rφ
n
) with r < 1.

Proof. Using (4) we may assume that α= 0, so f (x) = x + a2 x2 +O(x3), and up to conjugation, we may assume that a2 = 1.
Thus S f is regular at (0, 0), and S f (x , y)− a2MFib(x , y) is bounded by a multiple of (|x |+ |y|)3, so this result is a consequence of
the rate of convergence seen in Theorem 4.1.

Example 4.1 (Möbius transformation.). If f (x) is a Möbius transformation, we may assume it is of the form x−α
x−β , and we

introduce an affine change of coordinate in x to make α = 0 and β = 1. Thus f (x) = x/(x −1). It follows that S f (x , y) = (y, x y)
is the Fibonacci monomial map. The basin of (0, 0) for S f corresponds to the basin of the unique root of f (x). The other basin of
S f corresponds to the (degenerate) critical point x =∞ for f .
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Example 4.2 (Quadratic polynomial.). If f (x) is a quadratic polynomial with a double root, we may replace f by λ f and
conjugate with a translation so that f (x) = x2. In this case, S f (x , y) = (y, x y/(x + y)). If we now conjugate with the Cremona
involution j(x , y) = (1/x , 1/y), we find that S f (x , y) is conjugate to the linear map

z 7→ AFib z

Similarly, if f (x) is a quadratic polynomial with distinct roots, we may replace f by λ f and compose with an affine
transformation in the x-coordinate so that f (x) = x2 − 1. Thus we have S f (x , y) = (y, 1+x y

x+y ). We now move the roots of f to 0

and∞ via the Möbius transformation ϕ(z) = z+1
z−1 , and the map ϕ̃(x , y) = (ϕ(x),ϕ(y)) conjugates S f (x , y) to the Fibonacci

monomial map.

5 Dynamical degree
A rational map F = (F1, F2) : C2 ¹¹Ë C2 is defined by a pair of rational functions F j = Pj/Q j , j = 1, 2, where (Pj ,Q j) = 1, i.e., they
have no common factor. We can define the degree of F to be the maximum of the degrees of each of the polynomials Pj and Q j .
However, this is not a conjugacy invariant and does not behave well under composition because the cancellation of factors is
“unpredictable”, meaning that the degree can increase or decrease. Thus we define the dynamical degree δ(F) to be

δ(F) := lim
n→∞

(degree(F n))1/n

This limit exists and is an invariant of birational conjugacy (see [5]), and is an important characteristic of F as a dynamical
system.

We will compute the dynamical degree δ(S f ), following the outline given in [5]. The reader who is not familiar with this
approach might look at the expository article [1].

Let us start with the case a∞ < 0, so by Proposition 1.3, all the exceptional curves are of the form {y = α} with α ∈ C, and
{y = α} is mapped to (α,α), where α is a root of f . If (α,α) is a point of indeterminacy, then by Proposition 1.4, it must be a
root with multiplicity ≥ 2. By (4) we may suppose that α= 0.

Let π(s, t) = (s, s t) = (x , y), π : M → C2 be the blowup of the point (0, 0), as was discussed in Section 2. We assume that 0
is a root of f with multiplicity a ≥ 2, so we use (7) to obtain

Ŝ|E(0, t) =
1+ t + · · · ta−2

1+ t + · · · ta−2 + ta−1

and thus Ŝ is regular on E in the (s, t) coordinate system.1 We let X = {t = 0} ⊂ M denote the strict transform of the x-axis
under π−1. The x-axis is exceptional for S f , and Ŝ(X ) = (0, 1) ∈ E, so that X is exceptional and is mapped to a regular point for
Ŝ. By (8) and (9), we see that the further iterates Ŝn(0, 1) all lie in the interval {(0, t) : 0≤ t ≤ 1} and thus the forward orbit of
X under Ŝ never encounters a point of I(Ŝ).

Now let us proceed to blow up all the points (α j ,α j) ∈ C2, 1≤ j ≤ s, where f has a zero of order a j ≥ 2. Again we will refer
to the resulting space as M . Every dominant rational map has a well-defined pullback on cohomology (see, for instance [5] or
[2]). Thus we have a well-defined linear map Ŝ∗ : H1,1(M ;Z)→ H1,1(M ;Z). In the previous paragraph, we showed that for every
exceptional curve C ⊂ M , the iterates Ŝn(C), n≥ 0, are disjoint from the indeterminacy locus of Ŝ. It follows that the pullback
operation satisfies

(Ŝn)∗ = (Ŝ∗)n

(see, for instance [5] or [2]), and thus the dynamical degree of δ(S f ) = δ(Ŝ) is equal to the spectral radius of Ŝ∗.
The cohomology group H1,1(M ;Z) is generated by the classes V = {x = const}, H = {y = const}, and E1, . . . , Es, where E j

denotes the blowup divisor over (α j ,α j). To find the dynamical degree, we will find the matrix that represents Ŝ∗ with respect to
this ordered basis. We have seen in Proposition 1.3 that a vertical line {x = c} is pulled back to a horizontal line {y = c}. This gives
us the first column in the matrix (14) below. Now look at the preimage of a general horizontal line {y = c}. This is pulled back
to the curve {R(x , y) = c}. By Proposition (1.1), we see that R(x , y) has degree dt in x when y is fixed, and vice versa. Further,
R(x , y) vanishes at all the centers of blowup (α j ,α j). Looking at (6) we see that {R(x , y) = c} = {c D1(x , y) = y N1(x , y)}. Thus
we see that (0, 0) is a point of multiplicity a j − 1. It follows that the class of {R(x , y) = c} is dt H + dt V +

∑

(1− a j)E j . Finally, we
have Ŝ(s, t) = (st,?), so the pullback of E = {s = 0} is {st = 0} which is the class of a horizontal line, so we obtain:

Ŝ∗ =













0 dt 0 . . . 0
1 dt 1 . . . 1
0 1− a1 0 . . . 0
...

...
0 1− as 0 . . . 0













(14)

The characteristic polynomial of Ŝ∗ is

x s(x2 + dt x + ((a1 − 1) + · · ·+ (as − 1)− dt))

1We comment that the other coordinate chart at E is π′(u, v) = (u v, v), and in this chart we have E = {v = 0}. The induced map Ŝ : M ¹¹Ë M has a point of
indeterminacy at (u, v) = (0,0) ∈ E, which corresponds to the point (s, t) = (0,∞) ∈ E, which is outside of the (s, t) coordinate system.
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The largest root of this polynomial is δ = (dt +
q

d2
t + 4

�

dt +
∑

(1− a j)
�

)/2. Since a∞ < 0, we have deg(p) > deg(q), so
dt = deg(p)− 1. Since deg(p) =

∑

a j , it follows that δ > dt unless p has exactly one zero, in which case p(t) = c(t − a)d .
There remains the case a∞ ≥ 0 to consider. By Proposition 1.3, P1 × {∞} is exceptional and maps to (∞,∞), which by

Proposition 1.4 is indeterminate exactly when a∞ ≥ 1. Thus if a∞ = 0, then δ is given by the formula above. If a∞ ≥ 1, then we
must look at the exceptional curve P1 × {∞}. The auxiliary function g(t) = t f (1/t) vanishes to order a∞ + 1 at t = 0, so by (4)
it suffices to determine the dynamical degree of Sg . For this, we apply the previous argument. For the new exceptional curve, we
augment Ŝ∗ with an extra column as before, and in the extra row, we have the coefficient 1− (a∞ + 1) = −a∞ which gives:

Ŝ∗ =

















0 dt 0 . . . 0 0
1 dt 1 . . . 1 1
0 1− a1 0 . . . 0 0

...
0 1− as 0 . . . 0 0
0 −a∞ 0 . . . 0 0

















(15)

The largest root of the characteristic polynomial of (15) is

δ =
�

dt +
r

d2
t + 4

�

dt − a∞ +
∑

(1− a j)
�

�

/2.

In the case where a∞ ≥ 0, we have dt = a∞ + deg(p) = deg(q). Thus a∞ +
∑

a j = dt , from which we conclude that δ > dt .
Combining the cases a∞ < 0 and a∞ ≥ 0, we have:

Theorem 5.1. If p(t) = c(t − a)d , and deg(p)> deg(q), then δ = dt = d −1. Otherwise, S f is of small topological degree, meaning
that the dynamical degree is larger than the topological degree.

If δ > dt , there are invariant currents T± with the properties S∗T+ = δ T+ and S∗T
− = δ T− (see [2]). In our argument

discussing the forward iterates of the exceptional curves, we in fact showed that the forward orbits of exceptional curves remain
at bounded distance from the indeterminacy locus. Thus by [4], it follows that there is an invariant measure µ = T+ ∧ T−. A
number of the dynamical properties of T± and µ are presented in [3]. It will be interesting to apply them to the Secant Method.
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