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On the Lebesgue constant of the trigonometric Floater-Hormann
rational interpolant at equally spaced nodes
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Abstract

It is well known that the classical polynomial interpolation gives bad approximation if the nodes are
equispaced. A valid alternative is the family of barycentric rational interpolants introduced by Berrut in
[4], analyzed in terms of stability by Berrut and Mittelmann in [5] and their extension done by Floater
and Hormann in [8]. In this paper firstly we extend them to the trigonometric case, then as in the
Floater-Hormann classical interpolant, we study the growth of the Lebesgue constant on equally spaced
points. We show that the growth is logarithmic providing a stable interpolation operator.
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1 Introduction
Given a continous function f defined in the interval [a, b] ⊂ R, n+ 1 points (nodes), X = {a = x0 < · · · < xn = b}, and the
corresponding function values F = { fi = f (x i), i = 0, . . . , n}, the classical univariate interpolation problem consists in finding a
function g, in the Banach space of continous function on [a, b] equipped with the sup-norm, C([a, b],‖.‖∞), such that gX = F ,
namely g(x i) = fi , ∀ i. Letting bk the Lagrange elementary polynomials of total degree n such that bk(x j) := δk j we may rewrite
the interpolant in Lagrange form, at every point x ∈ [a, b], as

g(x) =
n
∑

k=0

bk(x) fk. (1)

For stability purposes we need to understand the behaviour of the Lebesgue function λn(x) =
∑n

k=0 |bk(x)| in particular the
value of its maximum

Λn := max
x∈[a,b]

λn(x) (2)

which is the so-called Lebesgue constant.
It is well known that the Lebesgue constant represents an index of stability for the interpolation operator. Bounds for the

Lebesgue constant on different sets of nodes, are presented in various papers. The reader can consider for this purpose the
interesting survey by L. Brutman [6], that contains many fundamental results and a wide literature on the topic. The role of the
interpolation nodes is crucial and the rule is to choose them in order to have a logarithmic growth of the Lebesgue constant,
which represents the optimal growth in polynomial interpolation with nodes having the so-called arccosine distribution (like
Chebyshev points) while in the rational case this growth holds when we choose equally spaced points (cf. [5, 9, 10]).

In the classical setting the equispaced nodes do not garantee the stability and the growth turns out to be exponential.
This is one of the reasons why other interpolation methods should be used in this case. One alternative is represented by the
Floater-Hormann rational interpolant, shortly FHRI, that has a good order of approximation and the growth of the Lebesgue
constant is logarithmic also with equispaced nodes.

The paper is organized as follows: in Section 2 we recall the construction of the FHRI and show how we can extend it to the
trigonometric case, in Section 3 we provide upper and lower bounds for the Lebesgue constant of the trigonometric interpolant
previously introduced and finally in Section 4 we report some numerical experiments that confirm the goodness of the theoretical
results.
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2 From the classical to the trigonometric FHRI
Let X the set of nodes and F the set of values, as above. The Floater-Hormann Rational Interpolant (FHRI), is a family of rational
interpolants that depends on a blending parameter d. Following [8] the construction runs as follows. Choose an integer 0≤ d ≤ n,
for each i = 0, 1, . . . , n− d, let pi(x) be the unique polynomial of degree at most d that interpolates the given continous function
f at the d + 1 points x i ,. . . ,x i+d . Then the FHRI at x is given by the ratio

r(x) =

n−d
∑

i=0

si(x)pi(x)

n−d
∑

i=0

si(x)

(3)

with the blending functions

si(x) =
(−1)i

(x − x i) · · · (x − x i+d)
. (4)

The interpolant can be also written in barycentric form at every point x as (cf. [8])

r(x) =

n
∑

k=0

wk

x − xk
fk

n
∑

k=0

wk

x − xk

(5)

where

wk =
∑

i∈Jk

(−1)i
i+d
∏

j=i, j 6=k

1
xk − x j

(6)

with Jk = {i ∈ {0,1, 2, . . . , n− d} such that k− d ≤ i ≤ k}.
As in the classical case (cf. [2, 3, 11, 12]), the trigonometric polynomials pi can be written in Lagrange form. That is, consider

the points x i , . . . , x i+d then

pi(x) =
i+d
∑

k=i

`
(i)
k (x) fk

where {`(i)k }k=i,...,i+d are the Lagrange trigonometric “polynomials”

`
(i)
k = ak,i`

(i)(x)
�

cst
�

ω

2
(x − xk)

�

+ ci

�

, (7)

ak,i =
i+d
∏

j=i, j 6=k

1

sin
�

ω
2 (xk − x j)

� , `(i)(x) =
i+d
∏

j=i

sin
�

ω

2
(x − x j)

�

,

cst(x) :=

�

csc(x) = 1
sin(x) if d even

cot(x) = cos(x)
sin(x) if d odd

, ci :=

�

0 if d even
cot(ω2

∑i+d
j=i x j) if d odd

and the pulsation ω that must be appropriately chosen (see next section). Now, letting

st
k(x) =

(−1)k

sin(ω2 (x − xk)) · · · sin(
ω
2 (x − xk+d))

(8)

the Trigonometric Floater-Hormann Rational Interpolant, shortly TFHRI, can be defined as

r t(x) :=

n−d
∑

i=0

st
i (x)

� i+d
∑

k=i

ak,i`
(i)(x)

�

cst
�

ω

2
(x − xk)

�

+ ci

�

fk

�

n−d
∑

i=0

st
i (x)

(9)

Noting that
i+d
∑

k=i

ak,i`
(i)(x)

�

cst
�

ω

2
(x − xk)

�

+ ci

�

= 1

letting qk(x) = wt
k cst

�ω

2
(x − xk)

�

+αk where

wt
k =

∑

i∈Jk

(−1)i ak,i =
∑

i∈Jk

(−1)i
i+d
∏

j=i, j 6=k

1

sin
�

ω
2 (xk − x j)

� (10)
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with Jk as above, and

αk :=

(

0 if d even
∑

i∈Jk

(−1)i ak,i ci if d odd

the TFHRI in barycentric form is

r t(x) =
n
∑

k=0

�

qk(x)
∑n

j=0 q j(x)

�

︸ ︷︷ ︸

bt
k(x)

fk . (11)

For illustration, in Figure 2 (Left) we provide the plot of bt
k on n= 5 equally spaced points of [0, 1].

3 On the Lebesgue constant of the trigonometric FHRI
Suppose for the moment that d is an even positive integer and I = [a, b]. The TFHRI in (11) has now basis functions

bt
k(x) =

wt
k

sin
�

ω
2 (x − xk)

�

n
∑

j=0

wt
k

sin
�

ω
2 (x − x j))

. (12)

For the well-posedness of the interpolant, ω has to satisfy what we call Condition C1. That is, for every x ∈ I and every k,
ω
2 |x − xk| ≤

ω
2 (b− a)< π

2 , that is

0<ω<
π

(b− a)
(13)

Now, consider the function g(x) = 1
sinc(x) (sinc being the unnormalized sinc function) whose plot in [−π2 , π2 ] is shown in

Figure 1.

Figure 1: Plot of g = 1/sinc in [−π2 , π2 ].

The function g is positive, greater than 1, symmetric with respect to the origin, but not defined at the point set Xk = {xk =
kπ ,∀k ∈ Zr {0}}. For these reasons we may restrict our investigations to I = [0,1] so that 0<ω< π.

Moreover, letting Mω =
1

sinc
�

ω
2

� then, for any x , xk ∈ [0,1] the following hold:

1≤ g
�ω

2
(x − xk)

�

≤ Mω , (14)

(x − xk)(xk+1 − x)≤
1

4n2
. (15)

For later use, we also recall the below inqualities for the partial sums of Leibnitz’s and harmonic series, namely ∀n ∈ N

π

4
−

1
2n+ 3

≤
n
∑

k=0

(−1)k

2k+ 1
≤
π

4
+

1
2n+ 3

(16)

and

ln(n+ 1)≤
n
∑

k=0

1
k
≤ ln(2n+ 1) . (17)
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Figure 2: Basis functions (left) and the corresponding Lebesgue function (right) for n= 5, d = 0 on x0 = 0, x1 = π/4, x2 = π/2 and ω= π/2.

In particular, from (17), we get

n
∑

k=0

1
2k+ 1

=
2n+1
∑

k=1

1
k
−

n
∑

k=1

1
2k
≥ ln(2n+ 2)−

1
2

ln(2n+ 1)≥
1
2

ln(2n+ 3) (18)

3.1 Case d = 0

The case d = 0 is of particular interest in order to understand how to bound the Lebesgue constant. It corresponds to Berrut’s
trigonometric interpolant with weights in (10) given by wt

k = (−1)k.

Theorem 3.1. The Lebesgue constant associated with the TFHRI in [0, 1] at equidistant nodes {x j =
j
n , j = 0, . . . , n}, for d = 0 and

pulsation ω satisfying Condition C1, has upper bound

Λn ≤
Mω

2−Mω

(2+ ln n) (19)

Proof. If x = xk for any k then λn(x) = 1. Let us take xk < x < xk+1 for k = 0, . . . , n−1, the Lebesgue function can be written as

λn(x) =

(x − xk)(xk+1 − x)
n
∑

j=0

1
sin(ω2 |x − x j |)

(x − xk)(xk+1 − x)

�

�

�

�

�

n
∑

j=0

(−1) j

sin(ω2 (x − x j))

�

�

�

�

�

=
N(x)
D(x)

. (20)

Following [9, 10], we start bounding the numerator N from above and the denominator D from below. That is

N(x) = (x − xk)(xk+1 − x) 2
ω

∑n
j=0

g(ω2 |x − x j |)
|x − x j |

≤
2Mω

ω
(x − xk)(xk+1 − x)

∑n
j=0

1
|x − x j |

≤
2Mω

ω

�

1
n
+

ln(n)
2n

�

. (21)

where we use (14),(15) and the last inequality comes from [9, Th. 1] with d = 0.
Now we look at the denominator and split the proof into 4 cases.

Case 1: k and n both even.

D(x) = (x − xk)(xk+1 − x)

�

�

�

�

n
∑

j=0

(−1) j

sin(ω2 (x − x j))

�

�

�

�

.
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Thanks to Condition C1 we observe
k
∑

j=0

(−1) j

sin(ω2 (x − x j))
−

n
∑

j=k+1

(−1) j

sin(ω2 (x j − x))
(22)

=
1

sin(ω2 (x − x0))
+
�

1
sin(ω2 (x − x2))

−
1

sin(ω2 (x − x1))

�

+ · · ·+

+
�

1
sin(ω2 (x − xk))

−
1

sin(ω2 (x − xk−1))

�

+
�

1
sin(ω2 (xk+1 − x))

−
1

sin(ω2 (xk+2 − x))

�

+

+ · · ·+
�

1
sin(ω2 (xn−1 − x))

−
1

sin(ω2 (xn − x))

�

> 0

so that we can ignore the absolute value in the denominator D. Following again [9] and using also (14), we obtain

D(x) = (x − xk)(xk+1 − x)
n
∑

j=0

(−1) j

sin(ω2 (x − x j))
(23)

= (x − xk)(xk+1 − x)
� k−1
∑

j=0

(−1) j

sin(ω2 (x − x j))
+

g(ω2 (x − xk))
ω
2 (x − xk)

+
g(ω2 (xk+1 − x))
ω
2 (xk+1 − x)

−
n
∑

j=k+2

(−1) j

sin(ω2 (x j − x))

�

≥ (x − xk)(xk+1 − x)
�

1
ω
2 (x − xk)

+
1

ω
2 (xk+1 − x)

+
k−1
∑

j=0

(−1) j

sin(ω2 (x − x j))
−

n
∑

j=k+2

(−1) j

sin(ω2 (x j − x))

�

=
2
ωn
+ (x − xk)(xk+1 − x)S(x). (24)

Now,

S(x) =
k−1
∑

j=0

(−1) j

sin(ω2 (x − x j)
−

n
∑

j=k+2

(−1) j

sin(ω2 (x j − x))
(25)

=
1

sin(ω2 (x − x0))
+

k−2
2
∑

s=1

>0
︷ ︸︸ ︷

�

1
sin(ω2 (x − x2s))

−
1

sin(ω2 (x − x2s−1))

�

−
1

sin(ω2 (x − xk−1))
−

1
sin(ω2 (xk+2 − x))

+

n−k
2
∑

s=2

>0
︷ ︸︸ ︷

�

1
sin(ω2 (xk+2s−1 − x))

−
1

sin(ω2 (xk+2s − x))

�

≥ −
�

1
sin(ω2 (xk − xk−1))

+
1

sin(ω2 (xk+2 − xk+1))

�

= g
�

ω

2n

�

2(−2n)
ω

≥ Mω

2(−2n)
ω

=
−4nMω

ω
.

Hence, by using (15),

D(x) =
2
ωn
+ (x − xk)(xk+1 − x)S(x) (26)

≥
2
ωn
− (x − xk)(xk+1 − x)

4nMω

ω

≥
2
ωn
−

1
4n2

4nMω

ω
=

2−Mω

ωn
.

Putting together (21) and (26) for computing the Lebesgue function as

Λn = max
k=0,...,n−1

�

max
xk<x<xk+1

λn(x)
�

(27)

we get the bound (19).
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Case 2: k even n odd. In this case we add a single positive term (sin
�ω

2
(xn − x)

�

)−1 to S. Therefore, all the previous bounds are

still true.

Case 3: k odd and n even.
With similar calculations as before, we notice

k
∑

j=0

(−1) j

sin(ω2 (x − x j))
+

n
∑

j=k+1

(−1) j

sin(ω2 (x − x j))
< 0.

Let D̂ be the denominator D without the absolute value.

D̂(x) = (x − xk)(xk+1 − x)
n
∑

j=0

(−1) j

sin(ω2 (x − x j))
= (x − xk)(xk+1 − x)

� k−1
∑

j=0

(−1) j

sin(ω2 (x − x j))
−

−
g(ω2 (x − xk))
ω
2 (x − xk)

−
g(ω2 (xk+1 − x))
ω
2 (xk+1 − x)

−
n
∑

j=k+2

(−1) j

sin(ω2 (x j − x))

�

= −(x − xk)(xk+1 − x)
� g(ω2 (x − xk))

ω
2 (x − xk)

+
g(ω2 (xk+1 − x))
ω
2 (xk+1 − x)

�

+ (x − xk)(xk+1 − x)
� k−1
∑

j=0

(−1) j

sin(ω2 (x − x j))
−

n
∑

j=k+2

(−1) j

sin(ω2 (x j − x))

�

= −
2
ω

�

(xk+1 − x)g
�ω

2
(x − xk)

�

+ (x − xk)g
�ω

2
(xk+1 − x)

�

�

+ (x − xk)(xk+1 − x)S(x).

Pairing the positive and negative terms as follows, we get

S(x) =
k−1
∑

j=0

(−1) j

sin(ω2 (x − x j))
−

n
∑

j=k+2

(−1) j

sin(ω2 (x j − x))
(28)

=

k−3
2
∑

s=0

<0
︷ ︸︸ ︷

�

1
sin(ω2 (x − x2s))

−
1

sin(ω2 (x − x2s+1))

�

+
1

sin(ω2 (x − xk−1))
+

1
sin(ω2 (xk+2 − x))

+

n−k−1
2
∑

s=2

<0
︷ ︸︸ ︷

�

1
sin(ω2 (xk+2s − x))

−
1

sin(ω2 (xk+2s−1 − x))

�

−
1

sin(ω2 (xn − x))

≤
1

sin(ω2 (x − xk−1))
+

1
sin(ω2 (xk+2 − x))

≤
2Mω

ω

�

1
xk − xk−1

+
1

xk+2 − xk+1

�

=
4nMω

ω
.

We return to D̂ and use (15)

D̂(x)≤ −
2
ω

�

(xk+1 − x)g
�ω

2
(x − xk)

�

+ (x − xk)g
�ω

2
(xk+1 − x)

�

�

+ (x − xk)(xk+1 − x)S(x)

≤ −
2
ω

�

(xk+1 − x)g
�ω

2
(x − xk)

�

+ (x − xk)g
�ω

2
(xk+1 − x)

�

�

+ (x − xk)(xk+1 − x)
4nMω

ω

≤
2
ω

�

−
1
n
+

Mω

2n

�

.

Hence by passing to the modulus since now Mω < g(π2 )< 2, we can bound D below as

D(x)≥
2
ω

� | − 2+Mω|
2n

�

=
2−Mω

nω
. (29)

Again (19) follows.

Case 4: k and n both odd.
In S the terms with j ≥ k+ 3 are an even number therefore we can group them all in the second sum. So we get again the
bounds of the case 3).

This concludes the proof.

Theorem 3.2. The Lebesgue constant associated with the TFHRI in [0, 1], with a pulsation ω satisfying Condition C1 at equally
spaced nodes {x j =

j
n , j = 0, . . . , n} has lower bound

Λn ≥
2n
Mω

ln(n)
4+ nπ

(30)
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Proof. Following [9] and our notations, the Lebesgue function at equally spaced points is

λn(x) =

n
∑

j=0

g(ω2 |x −
j
n |)

|2nx − 2 j|
�

�

�

�

n
∑

j=0

(−1) j g(ω2 (x −
j
n ))

(2nx − 2 j)

�

�

�

�

=:
N(x)
D(x)

.

1. Let n be even, say n = 2k, with points enumerated as x0, . . . , xn. The local maxima of λn are taken at the mid point of

each subinterval and at x∗ =
n+ 1
2n

the maximum is attained (see Figure 3, Left) . Then, taking the numerator N at x∗ and

using (14), we obtain

N
�

n+ 1
2n

�

=
n
∑

j=0

g(ω2 |
n+1−2 j

2n |)
|n+ 1− 2 j|

≥
n
∑

j=0

1
|2(k− j) + 1|

≥ ln(n+ 1)≥ ln(n).

where the last inequality is described in [9, Th. 1].

Figure 3: Lebesgue functions on equally spaced points. Left: n= 4. Right: n= 5

Now we consider the denominator also at x∗. Recalling [9],

D
�

n+ 1
2n

�

=

�

�

�

�

2k
∑

j=0

g(ω2 (
2(k− j)+1

2n ))(−1) j

2(k− j) + 1

�

�

�

�

≤
�

�

�

�

k
∑

j=0

g(ω2 (
2 j+1

4k ))(−1) j

2 j + 1

�

�

�

�

+

�

�

�

�

k−1
∑

j=0

g(ω2 (
2 j+1

4k ))(−1) j

2 j + 1

�

�

�

�

=: |A|+ |B| .

Keeping in mind (16) and thanks to Condition 1 that make the sine function increasing, it is easy to prove that A (and
therefore B) is positive and so we can ignore the absolute value.
Then

A=
k
∑

j=0

g
�

ω
2 (

2 j+1
4k )

�

(−1) j

2 j + 1
≤ Mω

k
∑

j=0

(−1) j

2 j + 1
≤ Mω

�

π

4
+

1
n+ 3

�

.

With similar computations it may be seen that

|B|= B ≤ Mω

�

π

4
+

1
n+ 1

�

.

Finally

|A|+ |B| ≤ Mω

�

π

4
+

1
n+ 3

+
π

4
+

1
n+ 1

�

≤ Mω

�

π

2
+

2
n+ 1

�

≤ Mω

�

π

2
+

2
n

�

obtaining the required result

Λn ≥
ln(n)

Mω

�

π

2
+

2
n

� =
2n ln(n)

Mω(nπ+ 4)
. (31)

2. In the case n odd, n= 2k+ 1, we consider x∗ = n+2
2n and evaluate both the numerator and the denominator at this point.

We follow the same ideas of the proof 1.
First we analyze the numerator and by using (14), (18), we get
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N(x∗) =
n
∑

j=0

g(ω2 |
n+2−2 j

2n |)
|n+ 2− 2 j|

≥
n
∑

j=0

1
|2(k− j + 1) + 1|

=
k+1
∑

j=0

1
2(k− j + 1) + 1

−
n
∑

j=k+2

1
2(k− j + 1) + 1

=
k+1
∑

j=0

1
2(k− j + 1) + 1

+
n
∑

j=k+2

1
2( j − k− 1)− 1

=
k+1
∑

j=0

1
2(k− j + 1) + 1

+
n−k−2
∑

l2=0

1
2l2 + 1

(l2 = j − k− 2)

=
k+1
∑

l1=0

1
2l1 + 1

+
n−k−2
∑

l2=0

1
2l2 + 1

(l1 = k− j + 1)

≥
1
2

ln(2(k+ 1) + 3) +
1
2

ln(2(n− k− 2) + 3)

=
1
2
(ln(n+ 4) + ln(n))≥

1
2
(ln(n) + ln(n)) = ln(n) .

We turn now to the denominator. As in the previous proof, it is easy to see that A, B are positive. So by using the index
substitutions as above and (16), it follows that

D(x∗)≤

�

�

�

�

�

2k+1
∑

j=0

(−1) j g(ω2 |
n+2−2 j

2n |)
2(k− j + 1) + 1

�

�

�

�

�

≤ Mω

�

k+1
∑

l=0

(−1)l

2l + 1
+

k−1
∑

l=0

(−1)l

2l + 1

�

≤ Mω

�

π

4
+

1
n+ 4

+
π

4
+

1
n

�

≤ Mω

�

π

2
+

2
n

�

.

We then obtain

λn(x
∗) =

N(x∗)
D(x∗)

≥
ln(n)

Mω

�

π

2
+

2
n

� =
2n ln(n)

Mω(nπ+ 4)
.

and conclude

Λn ≥
2n ln(n)

Mω(4+ nπ)
. (32)

This proves the result.

In the next two subsections we study the growth of the Lebesgue constant for d > 0, providing upper and lower bounds for
the TFHRI (11), separating the case of d even and d odd.

3.2 Case d > 0

We start by observing that the weights wt
k in (10), in the case of equispaced interpolation nodes and d > 0, satisfy

2d

ωd
|wk| ≤ |wt

k| ≤
2d M d

ω

ωd
|wk|. (33)

As in [10] we assume that n≥ 2d and recall that in the classical Floater-Hormann case

(−1)dhd d!wk = (−1)khd d!|wk|= (−1)kβk (34)

where

βk =
n
∑

i=d

�

d
i − k

�

=







∑k
i=0

�d
k

�

, if k ≤ d,
2d , if d ≤ k ≤ n− d,
βn−k, if k ≥ n− d

(35)

and h is the separation between the points, which is indeed constant in our setting.
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3.3 Case d even

In what follows, d ≥ 2 and d even.

Theorem 3.3 (Upper bound). The Lebesgue constant associated with TFHRI in [0, 1], withω satisfying Condition C1, at equispaced
nodes {x j =

j
n , j = 0, . . . , n} and basis functions (12) has the upper bound

Λn ≤ M d+1
ω

2d−1
�

2+ ln(n)
�

. (36)

Proof. As above, consider xk < x < xk+1 and the corresponding Lebesgue function

λn(x) =

n
∑

j=0

|wt
j |

sin(ω2 |x − x j |)
�

�

�

�

n
∑

j=0

wt
j

sin(ω2 (x − x j))

�

�

�

�

=

hd d!(x − xk)(xk+1 − x)
n
∑

j=0

|wt
j |

sin(ω2 |x − x j |)
�

�

�

�

hd d!(x − xk)(xk+1 − x)
n
∑

j=0

wt
j

sin(ω2 (x − x j))

�

�

�

�

:=
N(x)
D(x)

.

Using the same line of proof for the case d = 0, for the numerator we have

N(x) =
2
ω

hd d!(x − xk)(xk+1 − x)
n
∑

j=0

g(ω2 |x − x j |)|wt
j |

|x − x j |

≤
2d+1M d

ω

ωd+1
hd d!(x − xk)(xk+1 − x)

n
∑

j=0

g(ω2 |x − x j |)|w j |
|x − x j |

≤
2d+1M d+1

ω

ωd+1
(x − xk)(xk+1 − x)

n
∑

j=0

|w j |hd d!

|x − x j |

=
2d+1M d+1

ω

ωd+1
(x − xk)(xk+1 − x)

n
∑

j=0

β j

|x − x j |
≤

2d+1

ωd+1
M d+1
ω

2d
�

1
n
+

1
2n

ln(n)
�

,

where the last inequality has been taken from [10, Th. 1].

In order to find out a bound for D and thanks to (34) and (33), we notice that

(−1)dhd d!
n
∑

j=0

wt
j

sin(ω2 (x − x j)
= (−1)dhd d!

n−d
∑

j=0

st
j (x) ,

with st
j as in (8) such that, ∀ j ∈ {0, ..., n− d},

st
j (x) =

(−1) j

sin(ω2 (x − x j)) . . . sin(ω2 (x − x j+d))
=

2d+1

ωd+1
s j(x)

j+d
∏

i= j

g
�

ω

2
(x − x i)

�

≥ s j(x)
�

2
ω

�d+1

.

Assuming k ≤ n− d and keeping in mind the proof in [10, Th. 1], we have

D(x) = hd d!(x − xk)(xk+1 − x)

�

�

�

�

n
∑

j=0

st
j (x)

�

�

�

�

≥ hd d!(x − xk)(xk+1 − x)|st
k(x)|

≥
�

2
ω

�d+1

hd d!(x − xk)(xk+1 − x)|sk(x)| ≥
�

2
ω

�d+1 1
n

,

with the last inequality coming from the results in [10].
If k > n− d a similar reasoning leads to the same lower bound for D by considering sk−d+1 instead of sk. Recalling formula

(27), finally we obtain
Λn ≤ M d+1

ω
2d−1

�

2+ ln(n)
�

.

Theorem 3.4 (Lower bound). Under the same assumptions of Theorem 3.3, we have

Λn ≥
1

M d+1
ω

2d+2

�

2d + 1
d

�

ln
� n

d
− 1

�

. (37)
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Proof.

λn(x) =

hd d!
n
∑

j=0

|wt
j |

sin(ω2 |x − x j |)
�

�

�

�

hd d!
n
∑

j=0

wt
j

sin(ω2 (x − x j))

�

�

�

�

:=
N(x)
D(x)

.

We consider x∗ = x1−x0
2 = 1

2n . By using (14) and the bounds in (33),

N(x∗) = hd d!
n
∑

j=0

|wt
j |

sin(ω2 |x∗ − x j |)
≥ hd d!

2d+1

ωd+1

n
∑

j=0

g(ω2 (x
∗ − x j))|w j |
|x∗ − x j |

≥
2d+1

ωd+1

n
∑

j=0

β j

|x∗ − x j |

≥
2d+1

ωd+1
n2d ln

� n
d
− 1

�

,

where the last inequality has been taken from [9].
We turn to the denominator

D(x∗) = hd d!

�

�

�

�

n−d
∑

j=0

st
j (x

∗)

�

�

�

�

.

We notice that st
0(x

∗) e st
1(x

∗) have the same sign and that st
j (x
∗) oscillate in sign and decrease in absolute value. Keeping in

mind [9] and thank to (14) we get

D(x∗)≤ hd d!(|st
0(x

∗)|+ |st
1(x

∗)|)

= d!hd 2d+1

ωd+1

�

|s0(x
∗)|

d
∏

i=0

g(
ω

2
(x∗ − x i)) + |s1(x

∗)|
d+1
∏

i=1

g(
ω

2
(x∗ − x i))

�

≤
2d+1

ωd+1
M d+1
ω

�

|s0(x
∗)|+ |s1(x

∗)|
�

≤
2d+1

ωd+1
M d+1
ω

n
22d+2

�2d+1
d

� .

Finally we obtain

Λn ≥
1

M d+1
ω

2d+2

�

2d + 1
d

�

ln
� n

d
− 1

�

.

3.4 Case d odd

The interpolant has now the form

r t(x) =
n
∑

k=0











wt
k cot

�

ω

2
(x − xk)

�

+αk

n
∑

k=0

wt
k cot

�

ω

2
(x − xk)

�

+
n
∑

k=0

αk











fk (38)

where

wt
k =

∑

i∈Jk

(−1)i ak,i =
∑

i∈Jk

(−1)i
i+d
∏

j=i, j 6=k

1

sin
�

ω
2 (xk − x j)

� , αk =
∑

i∈Jk

(−1)i ak,i ci (39)

with Jk = {i ∈ {0,1, 2, ..., n− d} such that k− d ≤ i ≤ k}.
We stress the fact that if there exists an index j̄ such that

∑ j̄+d
j= j̄ x j = 0 then for this set of nodes the construction of the

interpolant is impossible. Otherwise we will choose ω so that r t is well-defined and interpolates every set of data {xk, fk}. For
sure ω must be chosen such that, for every sequence of d + 1 adjacent nodes,

ω

2

k+d
∑

j=k

x j 6= νπ ∀ν ∈ Z ∀k ∈ {0, . . . , n− d}.

In general the check of this property might be a little nasty, so in the following we restrict on I = [0, 1] and replace Condition C1
with Condition C2

ω

k+d
∑

j=k

x j < π ∀k ∈ {0, . . . , n− d} . (40)

Since
∑n

k=0 αk =
∑n−d

i=0 (−1)i ci

∑i+d
k=i ak,i , we prove that this sum is equal to zero showing that ∀i

∑i+d
k=i ak,i = 0 (cf. [1, Prop.

2.4.1]).
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Proposition 3.5. If d is odd and the nodes {xk} are equispaced in [0, 1] then

i+d
∑

k=i

 

i+d
∏

j=i j 6=k

1

sin
�

ω
2 (xk − x j)

�

!

= 0 . (41)

Proof. We notice that it is enough to prove that

i+d
∏

j=i j 6=k

sin
�

ω

2
(xk − x j)

�

= −
i+d
∏

j=i j 6=i+d−k

sin
�

ω

2
(x i+d−k − x j)

�

∀k ∈ {i, . . . , i +
d + 1

2
− 1}.

Fix k and let h= |x i+1 − x i |=
1
n . Then,

i+d
∏

j=i j 6=k

sin
�

ω

2
(xk − x j)

�

=
∏

j<k

sin
�

ω

2
(xk − x j)

�

∏

j>k

sin
�

ω

2
(xk − x j)

�

=

=
∏

j<k

sin
�

ω

2
|xk − x j |

�

(−1)i+d−k
∏

j>k

sin
�

ω

2
|xk − x j |

�

=

= (−1)i+d−k
k−1
∏

j=i

sin
�

ω(k− j)h
2

� i+d
∏

j=k+1

sin
�

ω( j − k)h
2

�

= (−1)i+d−k
k−i
∏

l=1

sin
�

ω

2
lh
� i+d−k
∏

l=1

sin
�

ω

2
lh
�

and

i+d
∏

j=i
j 6=2i+d−k

sin
�

ω

2
(x2i+d−k − x j)

�

=
i+d
∏

j<(i+d)−(k−i)

sin
�

ω

2
(x2i+d−k − x j)

� i+d
∏

j>(i+d)−(k−i)

sin
�

ω

2
(x2i+d−k − x j)

�

=
i+d
∏

j<(i+d)−(k−i)

sin
�

ω

2
|x2i+d−k − x j |

�

(−1)k−i
i+d
∏

j>(i+d)−(k−i)

sin
�

ω

2
|x2i+d−k − x j |

�

= (−1)k−i
2i+d−k−1
∏

j=i

sin
�

ω

2
(2i + d − k− j)h

� i+d
∏

j=2i+d−k+1

sin
�

ω

2
( j − 2i − d + k)h

�

= (−1)k−i
i+d−k
∏

l=1

sin
�

ω

2
lh
� k−i
∏

l=1

sin
�

ω

2
lh
�

.

Since d is odd and k−i+(i+d−k) = d, it follows that k and i+d−(k−i) can not be both even or odd. So (−1)i+d−k = −(−1)k−i

and the conclusion holds.

Thanks to the previous result TFHRI can be written as

r t(x) =
n
∑

k=0

bt
k(x) fk,

where

bt
k(x) =

wt
k cot

�

ω

2
(x − xk)

�

+αk

n
∑

k=0

wt
k cot

�

ω

2
(x − xk)

�

. (42)

For what follows, we need the trigonometric identity

cot(x) + cot(y) =
sin(x + y)

sin(x) sin(y)
∀x , y 6= kπ k ∈ Z. (43)

and a stronger condition than Condition C2, that is ω must satisfy the Condition C3

ω

�

2+
n−1
∑

j=n−d+1

x j

�

< π . (44)
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Theorem 3.6 (Upper bound). The Lebesgue constant associated with TFHRI in [0, 1], withω satisfying Condition C3, at equispaced
nodes {x j =

j
n , j = 0, . . . , n} and basis functions (42) has the upper bound

Λn ≤ C̄1M d+1
ω

2d−1
�

2+ ln(n)
�

. (45)

with C̄1 a suitable positive constant.

Proof. As above, consider xk < x < xk+1 and the corresponding Lebesgue function

λn(x) =

n
∑

s=0

�

�

�

�

wt
j cot

�

ω

2
(x − xs)

�

+αs

�

�

�

�

�

�

�

�

n
∑

s=0

wt
s cot

�

ω

2
(x − xs)

�

�

�

�

�

=
N(x)
D(x)

and define

z̃s,i(x) =
sin(ω2 (x +

∑i+d
j=i, j 6=s x j))

sin(ω2
∑i+d

j=i x j)
.

Since the terms as,i oscillate in sign, under the assumptions on ω, for fixed s the terms in parentheses have the same sign.
Therefore, z̃s,i(x) is greater than 0. By using (43) we can rewrite

N(x) =
n
∑

s=0

�

�

�

�

∑

i∈Js

(−1)i as,i

�

cot
�

ω

2
(x − xs)

�

+ ci

�

�

�

�

�

=
n
∑

s=0

�

∑

i∈Js

|as,i |z̃s,i(x)
�

1
sin(ω2 |x − xs|)

≤ Zk(x)
n
∑

s=0

|wt
s |

sin(ω2 |x − xs|)

with Zk(x) = max
(s,i)∈S

z̃s,i(x), S = {(s, i)| 0≤ s ≤ n, i ∈ Js}.

We notice that for fixed x , z̃s,i > z̃s+1,i , with s such that i ∈ Js. It then follows that

Zk(x) = max
(s,i)∈S̄

z̃s,i(x) ,

where S̄ = {(s, i)|i ∈ {0, . . . , n− d}, s =min{t|t ∈ Ji}}= {(i, i)|i ∈ {0, . . . , n− d}}.
Hence,

λn(x)≤

hd d!(x − xk)(xk+1 − x)Zk(x)
n
∑

s=0

|wt
s |

sin(ω2 |x − xs|)

hd d!(x − xk)(xk+1 − x)

�

�

�

�

n
∑

j=0

wt
j cot

�

ω

2
(x − x j)

�

�

�

�

�

.

Using the same proof for d even, we get

λn(x)≤ Zk(x)M
d+1
ω

2d−1(2+ log(n)).

Since z̃i,i is an increasing function in x for every i, then Zk(x) ≤ max
i∈{0,...,n−d}

z̃i,i(1) := C̄1, we can conclude by taking the

maximum on all subintervals

Λn = max
k=0,...,n−1

�

max
xk<x<xk+1

λn(x)
�

≤ C̄1M d+1
ω

2d−1(2+ log(n)).

Theorem 3.7 (Lower bound). Under the same hypoteses of the previous theorem,

Λn ≥
C̄2

M d+1
ω

2d+2

�

2d + 1
d

�

ln
� n

d
− 1

�

.
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Proof. Now,

λn(x) =

hd d!
n
∑

s=0

�

�

�

�

wt
s cot

�

ω

2
(x − xs)

�

+αs

�

�

�

�

�

�

�

�

hd d!
n
∑

s=0

wt
s cot

�

ω

2
(x − xs)

�

�

�

�

�

:=
N(x)
D(x)

.

We consider x∗ = x1−x0
2 = 1

2n .
We first investigate the numerator, using (14) and the bounds on the weights wt

s , we get

N(x∗) = hd d!
n
∑

s=0

�

∑

i∈Js

|as,i |
z̃s,i

sin(ω2 |x∗ − xs|)

�

≥ Chd d!
n
∑

s=0

|wt
s |

sin(ω2 |x∗ − xs|)

with z̃s,i :=
sin(ω2 (x

∗ +
∑i+d

j=i, j 6=s x j))

sin(ω2
∑i+d

j=i x j)
and C :=min(s,i)∈S z̃s,i with S as in the previous proof.

Using the same inequality for the lower bound in the case d even, finally we have

N(x∗)≥ C
2d+1

ωd+1
n2d ln(

n
d
− 1).

As before, noting that
z̃s,i > z̃s+1,i

we have

C = C̄2 = min
(s,i)∈S̄

z̃s,i

where S̄ = {(s, i)|i ∈ {0, . . . , n− d}, s =max{t|t ∈ Ji}}.
The inequality becomes

N(x∗)≥ C̄2
2d+1

ωd+1
n2d ln(

n
d
− 1). (46)

For the denominator, in the case d even, the inequality is still true

D(x∗)≤ hd d!

�

�

�

�

n−d
∑

s=0

st
s (x

∗)

�

�

�

�

≤
2d+1

ωd+1
M d+1
ω

n
22d+2

�2d+1
d

� .

Finally, we get

Λn ≥
C̄2

M d+1
ω

2d+2

�

2d + 1
d

�

ln
� n

d
− 1

�

,

as claimed.

4 Numerical experiments
Before going to the purely numerical part, we make several observations about the implementations. First of all, we noticed that
the expression of the basis functions bk in the case d even in (12) (similarly for the d odd case), is numerically unstable as ω is
closer to 0. For instance, the aforementioned formula is

bk(x) =

wt
k

n
∏

s=0,s 6=k

sin(
ω

2
(x − xs))

n
∑

j=0

wt
j

n
∏

s=0,s 6= j

sin(
ω

2
(x − xs))

.

The reason why can be easily understood, for example, by noting that, if ω= 10−8, n= 50 and I=[0,1],
�

�

�

�

�

n
∏

s=0,s 6=k

sin
�ω

2
(x − xs))

�

�

�

�

�

≤
n
∏

s=0,s 6=k

sin
�ω

2
)≈ωn

Dolomites Research Notes on Approximation ISSN 2035-6803



Bandiziol · De Marchi 64

so that ω50 ≈ 10−400, that is numerically approximated by 0. With the aim to improve the formula and make it more stable, we
have modified the expression of the weights and of the total bk both, turning out to be

b̃t
k(x) =

2d

ωd

w̃t
k g
�

ω
2 (x − xk)

�

ω
2 (x − xk)

n
∑

j=0

2d

ωd

w̃t
j g
�

ω
2 (x − x j)

�

ω
2 (x − x j)

=

w̃t
k g
�

ω
2 (x − xk)

�

x − xk

n
∑

j=0

w̃t
j g
�

ω
2 (x − x j)

�

x − x j

=
w̃t

k g
�

ω
2 (x − xk)

�∏n
s=0,s 6=k(x − xs)

n
∑

j=0

w̃t
j g
�ω

2
(x − x j)

�

n
∏

s=0,s 6= j

(x − xs)

(47)

where

w̃t
k =

∑

i∈Jk

(−1)i
i+d
∏

j=i, j 6=k

g
�

ω
2 (xk − x j)

�

xk − x j
(48)

Jk = {i ∈ {0,1, 2, . . . , n− d} s. t. k− d ≤ i ≤ k}
so that we can stably compute the Lebesgue function and so the Lebesgue constant.

4.1 Lebesgue constant

In order to verify the goodness of the results in the previous sections and to analyze the behaviour of the Lebesgue constant
of trigonometric Floater-Hormann interpolants, we have performed some numerical experiments. We computed the Lebesgue
contant with different d by evaluating the Lebesgue function λn on a set of 1000 points in [0,1].

Figure 4: Lebesgue constants for d = 0 (left) d = 2 (right), compared with their upper and lower bounds, for 6 ≤ n ≤ 200 equally spaced in
[0,1], ω= 0.1

We first consider the even case with d = 0, 2. When d = 0 we notice a zig-zag behaviour for λ2k and λ2k+1 as happend for the
Berrut’s rational interpolant and as in that case we report only the values λ2k (cf. [9]). Figure 4 in semilogarithmic scale reveals
that with ω= 0.1 the Lebesgue constants satisfy the bounds.

For d odd, we take d = 1, 3 and ω in such a way that for every 6 ≤ n ≤ 200 Condition C3 is satisfied. A good choice is
ω= 0.1 as before. The results are reported in Figure 5, where it can be noticed that the constants are between the bounds.

For the sake of completeness, Figure 6 and Figure 7 show the Lebesgue functions with d = 2, d = 3 and n= 10, 20, 40. We
note that when d = 2, as in the classical FHRI case, the Lebesgue function is symmetric with respect to the middle of the interval
and that its maximum, is obtained in the most external subintervals, [x0, x1] and [xn−1, xn]. Instead when d = 3 the Lebesgue
function in not symmetric and its maximum is in [xn−1, xn].

We have made more experiments on the Lebesgue constant with varying ω. We rescrict our analysis on the case d = 0 and
d = 1 but the same is still true for other values of d. According to the theoretical Conditions, we have choosen different values of
the pulsation near the maximum admissible number up to 0. It always turns out that there are not no significant differences for
the increasing of the constant (Figure 8).

4.2 Interpolation

We consider in [0, 1] the following functions:

f1(x) =
1

25x2 + 1
, (Runge f unct ion)

f2(x) = x3 − x2 − 1, (pol ynomial)
f3(x) = sin(x) + cos(x), (t r i gonomet ric).
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Figure 5: Lebesgue constants for d = 1 (left) d = 3 (right), compared with their upper and lower bounds, for 6≤ n≤ 200 in [0,1], ω= 0.1.

Figure 6: Lebesgue functions with equally spaced nodes in [0, 1], n= 10,20, 40, ω= 0.1 and d = 2

Figure 7: Lebesgue functions with equally spaced nodes in [0, 1], n= 10,20, 40, ω= 0.1 and d = 3

Figure 8: Lebesgue constant as ω→ 0 for d = 0,1

Using formula (3), the first experiment considers two different d, even and odd, on a fixed number n = 20 of equally spaced
interpolation nodes and ω satisfying the Condition 1. In Table 1 we report the results of the relative errors (the evaluation points
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are 200 equispaced points in [0,1]). In the case of f2 and f3 (i.e. a polynomial and a trigonometric polynomial) we have also

d = 0 d = 2 d = 1 d = 3
f1 1.9e− 2 1.3e− 3 7.8e− 3 1.0e− 3
f2 3.3e− 3 2.7e− 6 2.9e− 4 3.7e− 6
f3 3.2e− 3 1.8e− 6 3.7e− 3 1.6e− 7

Table 1: Relative interpolation errors

compared the behaviour of the relative errors on varying n from n= 10 to n= 160 every 10 degrees. We observe that similar
results can be obtained for f1 but, as evident from the first line of Table 1, the errors decrease slowly.

In Figures 9 and 10 we show the results for the cases d = 2 and d = 3, respectively.

Figure 9: Relative interpolation errors for the polynomial f2

Figure 10: Relative interpolation errors for the trigonometric function f3

As final experiments, we kept n fixed and varied d. In Figures 11 and 12 we show the behavior of the relative interpolation
errors again for f2 and f3. In both cases we observed that the errors decrease to almost the machine precision for relatively
small values of d (usually d ≤ 15), then they start to increase. This is consistent with the upper bound in Theorem 3.6 which is
logarithmic in n and exponential in d.

5 Conclusion and future work
In this work we have introduced the Trigonometric Floater-Hormann Rational Interpolant (TFHRI). This interpolant, as for the
classical case, is a blend of trigonometric functions. The construction depends indeed on n, the number of points, a blending
parameter d for constructing the blending trigonometric "polynomials" (see above §2) and a parameter ω ∈ (0, π

(b−a) ) necessary
for the well-posedness of the interpolant.

We have studied the Lebesgue constant providing upper and lower bounds in the case of equispaced points. It turns out that
our bounds have logarithmic growth in the number n of interpolation points, which are slightly different in case d even or odd.
All bounds depend on the constant Mω = 1/sinc(ω/2) and, when Mω = 1, the bounds correspond to those of the classical
Floater-Hormann rational interpolant on equispaced nodes.

In Section 4, we have presented the plots of the Lebesgue constants on varying n with even or odd values of d. The bounds
are not yet optimal, but they represent quite well the growth of the true Lebesgue constants.
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Figure 11: Relative interpolation errors for even d ≤ 14

Figure 12: Relative interpolation errors for odd d ≤ 13

What remains to do is the error analysis which will be also quite technical. In particular we need to know if the interpolant is
exact on polynomials up to certain degree or/and if it is exact on trigonometric functions. Another question will be how the
smoothness of the function will influence the convergence. The convergence seems guaranteed by the numerical evidence but
theoretical results must be provided.
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