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Sinc-collocation methods with consistent collocation points for
Fredholm integral equations of the second kind

Tomoaki Okayama a

Abstract

Sinc-collocation methods are known to be efficient for Fredholm integral equations of the second kind,
even if functions in the equations have endpoint singularity. However, existing methods have the
disadvantage of inconsistent collocation points. This inconsistency complicates the implementation of
such methods, particularly for large-scale problems. To overcome this drawback, this study proposes
another Sinc-collocation methods with consistent collocation points. The results of a theoretical error
analysis show that the proposed methods have the same convergence property as existing methods.
Numerical experiments suggest the superiority of the proposed methods in terms of implementation and
computational cost.
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1 Introduction

This paper is concerned with Fredholm integral equations of the second kind of the following form:

u(t)−
∫ b

a

k(t, s)u(s)ds = g(t), a ≤ t ≤ b, (1.1)

where k and g are given continuous functions, and u is the solution to be determined. Most numerical methods provided in the
literature do not perform well when the functions k and g have derivative singularity at the endpoints. To overcome the difficulty,
Rashidinia and Zarebnia [11] proposed a Sinc-collocation method, which was derived without assuming differentiability at the
endpoints. The results of numerical experiments indicated that their method can achieve O(exp(−c

p
N)), where N denotes

approximately half the number of collocation points. However, they did not prove whether their method was guaranteed to
converge. Furthermore, their method required information on the boundary values of the solution u(t), which are not available
in practice.

To address this situation, Okayama et al. [7] reformed their method so that it could be implemented without the information
of the boundary values of u(t), and proved that the reformed method can attain O(exp(−c

p
N)). The method is based on the

Sinc approximation combined with the Single-Exponential (SE) transformation:

t =ψSE(x) =
b− a

2
tanh

� x
2

�

+
b+ a

2
. (1.2)

They further improved the method by replacing the SE transformation with the Double-Exponential (DE) transformation:

t =ψDE(x) =
b− a

2
tanh

�π

2
sinh x

�

+
b+ a

2
, (1.3)

and proved that their improved method can attain a higher convergence rate: O(exp(−cN/ log N)).
The methods were derived as follows. Based on the Sinc approximation with auxiliary functions, set the approximate solution

uN (t) as

uN (t) = c−N−1
b− t
b− a

+
N
∑

j=−N

c j sinc

�

ψ−1(t)− jh
h

�

+ cN+1
t − a
b− a

,
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where sinc x = sin(πx)/(πx), and ψ is either ψSE or ψDE. Substituting uN into the given equation (1.1) and setting (2N + 3)
collocation points, t = t i (i = −N − 1, . . . , N + 1), as

t i =











a (i = −N − 1),

ψ(ih) (i = −N , . . . , N),

b (i = N + 1),

we obtain a system of linear equations with respect to unknown coefficients c j ( j = −N − 1, . . . , N + 1). Those collocation points
are chosen so that uN (t i) = ci holds for i = −N − 1, . . . , N + 1. However, because of the inconsistency of the collocation points at
i = ±(N + 1), the methods are rather painful to implement, particularly for systems of Fredholm integral equations.

As a related work, Sinc-Nyström methods have been proposed [3]1, which were derived as follows. Set the approximate
solution vN (t) as

vN (t) = g(t) + h
N
∑

j=−N

k(t,ψ( jh))vN (ψ( jh))ψ
′( jh),

which is obtained by discretizing the integral in (1.1). Setting (2N + 1) collocation points t = t̃ i (i = −N , . . . , N) as

t̃ i =ψ(ih) (i = −N , . . . , N),

we obtain a system of linear equations with respect to unknown coefficients vN (ψ( jh)) ( j = −N , . . . , N). The collocation points
t̃ i are consistent for all i = −N , . . . , N , which is a considerable advantage in terms of practical implementation. In fact, the
consistency was effectively utilized in the case of a system of Fredholm integral equations [10]. However, the approximate
solution vN (t) includes the given functions, g(t) and k(t, s), which may require a high computational cost for evaluation.

To address this issue, this study derives another Sinc-collocation methods based on the concept of the Sinc-collocation methods
derived for initial value problems [5]. The approximate solution ũN (t) is given by using c̃ j = vN (ψ( jh)) as

ũN (t) = c̃−N
b− t
b− a

+
N
∑

j=−N

�

c̃ j − c̃−N
b−ψ( jh)

b− a
− c̃N

ψ( jh)− a
b− a

�

sinc

�

ψ−1(t)− jh
h

�

+ c̃N
t − a
b− a

,

where the basis functions of ũN (t) include only elementary functions. In addition, the coefficients c̃ j ( j = −N , . . . , N) are
obtained by solving the system of linear equations of the Sinc-Nyström methods, where the consistent collocation points t = t̃ i

are employed. Therefore, the derived methods have an advantage in terms of both implementation and computational cost.
Furthermore, by conducting a theoretical convergence analysis, this study proves that the new method with t =ψSE(x) can

attain O(exp(−c
p

N)), and the new method with t =ψDE(x) can attain O(exp(−cN/ log N)). These convergence rates are the
same as those of the original Sinc-collocation methods proposed by Okayama et al. [7]. However, the proposed methods may
require less computation time compared to the original methods to obtain the same precision. This is due to the difference in the
system of linear equations. This point is discussed in detail in Section 5.3.

The remainder of this paper is organized as follows. In Section 2, as a preliminary, basic definitions and theorems for Sinc
methods are explained. Sinc methods include two important parameters, α and d, which are used to set the mesh size, h. Section 3
describes how to find those parameters, based on the result on the smoothness property of the solution of the equation (1.1).
In Section 4, the original Sinc-collocation methods are described. In Section 5, the newly proposed Sinc-collocation methods
are described, which are the main result of this paper. In Section 6, some numerical examples are presented. In Section 7,
convergence theorems of the new Sinc-collocation methods are proved. Section 8 presents a conclusion of this paper.

2 Fundamental definitions and theorems for Sinc methods

The Sinc approximation is a function approximation formula expressed as

F(x)≈
N
∑

j=−N

F( jh)S( j, h)(x), x ∈ R, (2.1)

where S( j, h)(x) denotes the so-called “Sinc function” defined by

S( j, h)(x) = sinc
�

x − jh
h

�

.

Numerical methods based on the Sinc approximation are referred to as “Sinc methods.” For example, a quadrature formula
obtained by integrating both sides of (2.1) as

∫ ∞

−∞
F(x)dx ≈

N
∑

j=−N

F( jh)

∫ ∞

−∞
S( j, h)(x)dx = h

N
∑

j=−N

F( jh) (2.2)

is referred to as the “Sinc quadrature.” Comprehensive summaries of existing Sinc methods have been provided in several
books and review papers [13, 14, 15, 16]. This section provides fundamental definitions and theorems for such Sinc methods as
preliminaries for the remainder of this work.

1Although the title of the paper [3] refers to Sinc-collocation methods, the work considers Sinc-Nyström methods in reality.
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2.1 SE-Sinc approximation and SE-Sinc quadrature on the finite interval

To apply the Sinc approximation (2.1) to a function f (t) on the finite interval (a, b), the SE transformation (1.2) is frequently
utilized as

f (ψSE(x))≈
N
∑

j=−N

f (ψSE( jh))S( j, h)(x), x ∈ R,

which is equivalent to

f (t)≈
N
∑

j=−N

f (ψSE( jh))S( j, h)({ψSE}−1(t)), t ∈ (a, b). (2.3)

We refer to this approximation as the “SE-Sinc approximation.” Similarly, to apply the Sinc quadrature (2.2) to the integral on
the finite interval (a, b), the SE transformation (1.2) is frequently utilized as

∫ b

a

f (t)dt =

∫ ∞

−∞
f (ψSE(x)){ψSE}′(x)dx ≈ h

N
∑

j=−N

f (ψSE( jh)){ψSE}′( jh). (2.4)

We refer to this approximation as the “SE-Sinc quadrature.” The function space defined below is important in formalizing an
error analysis of these approximations.

Definition 2.1. Let α be a positive constant, and let D be a bounded and simply-connected domain (or Riemann surface) that
satisfies (a, b) ⊂D . Then, Lα(D) denotes the family of all functions f satisfying the following conditions: (i) f is analytic in D ;
(ii) there exists a constant C such that for all z in D ,

| f (z)| ≤ C |Q(z)|α, (2.5)

where the function Q is defined by Q(z) = (z − a)(b− z).

When the SE transformation is utilized, the domain D in Definition 2.1 should be an eye-shaped region: ψSE(Dd) = {z =
ψSE(ζ) : ζ ∈Dd} (see also an example figure [7, Fig. 1]), where Dd is a strip domain defined by Dd = {ζ ∈ C : | Imζ|< d} for a
positive constant d. Then, error analyses of the above approximations are described as follows.

Theorem 2.1 (Stenger [13, Theorem 4.2.5]). Let f ∈ Lα(ψSE(Dd)) for d with 0< d < π, let N be a positive integer, and let h be
selected by the formula

h=

√

√πd
αN

. (2.6)

Then, there exists a constant C that is independent of N, such that

max
a≤t≤b

�

�

�

�

�

f (t)−
N
∑

j=−N

f (ψSE( jh))S( j, h)({ψSE}−1(t))

�

�

�

�

�

≤ C
p

N exp
�

−
p

πdαN
�

.

Corollary 2.2 (Okayama et al. [9, Corollary 2.8]). Let ( f Q) ∈ Lα(ψSE(Dd)) for d with 0< d < π, let N be a positive integer, and
let h be selected by the formula (2.6). Then, there exists a constant C that is independent of N, such that

�

�

�

�

�

∫ b

a

f (t)dt − h
N
∑

j=−N

f (ψSE( jh)){ψSE}′( jh)

�

�

�

�

�

≤ C exp
�

−
p

πdαN
�

.

Remark 1. In the case of the Sinc quadrature, the optimal choice of h is not (2.6), but h =
p

2πd/(αN). However, to implement
the derived method easily, the mesh size h is chosen as (2.6) for both the SE-Sinc approximation and quadrature. The same
applies to the DE-Sinc approximation and quadrature (described next).

2.2 DE-Sinc approximation and DE-Sinc quadrature on the finite interval

The key role of the SE transformation (1.2) is to map the whole real axis R onto the finite interval (a, b). Because the DE
transformation (1.3) also plays the same role, the SE transformation may be replaced by the DE transformation in the above-
mentioned approximations. It has recently been known that such replacement enhances the performance of Sinc methods [2, 16].

For example, by the replacement in the SE-Sinc approximation (2.3), we obtain

f (t)≈
N
∑

j=−N

f (ψDE( jh))S( j, h)({ψDE}−1(t)), t ∈ (a, b).
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We refer to this approximation as the “DE-Sinc approximation.” By the same replacement in the SE-Sinc quadrature (2.4), we
obtain

∫ b

a

f (t)dt =

∫ ∞

−∞
f (ψDE(x)){ψDE}′(x)dx ≈ h

N
∑

j=−N

f (ψDE( jh)){ψDE}′( jh).

We refer to this approximation as the “DE-Sinc quadrature.” In these cases, the domain D in Definition 2.1 should be ψDE(Dd) =
{z =ψDE(ζ) : ζ ∈Dd} (see also an example figure [7, Fig. 2]), which is a Riemann surface infinitely rotating around the endpoints
2. Error analyses of the above approximations are described as follows.

Theorem 2.3 (Tanaka et al. [17, Theorem 3.1]). Let f ∈ Lα(ψDE(Dd)) for d with 0< d < π/2, let N be a positive integer, and let
h be selected by the formula

h=
log(2dN/α)

N
. (2.7)

Then, there exists a constant C that is independent of N, such that

max
a≤t≤b

�

�

�

�

�

f (t)−
N
∑

j=−N

f (ψDE( jh))S( j, h)({ψDE}−1(t))

�

�

�

�

�

≤ C exp
§

−πdN
log(2dN/α)

ª

.

Corollary 2.4 (Okayama et al. [9, Corollary 2.9]). Let ( f Q) ∈ Lα(ψDE(Dd)) for d with 0 < d < π/2, let N be a positive integer,
and let h be selected by the formula (2.7). Then, there exists a constant C that is independent of N, such that

�

�

�

�

�

∫ b

a

f (t)dt − h
N
∑

j=−N

f (ψDE( jh)){ψDE}′( jh)

�

�

�

�

�

≤ C exp
§

−2πdN
log(2dN/α)

ª

.

After the replacement, the convergence rate is improved to O(exp(−cN/ log N)), which is substantially higher than the
previous rate of O(exp(−c

p
N)).

Remark 2. The convergence rate O(exp(−cN/ log N)) is not always attainable under the assumption in Theorem 2.1 or Corol-
lary 2.2. We should note that ψDE(Dd) is a wider and more complicated domain than ψSE(Dd); that is, the condition imposed on
f in the case of the DE transformation is more restricted than that in the case of the SE transformation. If the assumption of
Theorem 2.3 or Corollary 2.4 is not fulfilled, the SE transformation may perform better than the DE transformation.

2.3 Generalized SE/DE-Sinc approximation on the finite interval

According to Theorems 2.1 and 2.3, the function f should belong to Lα(D). This may seem impractical because f (t) must be zero
at the endpoints, t = a and t = b, owing to the inequality (2.5). In reality, it suffices to consider the following function spaces.

Definition 2.2. Let D be a bounded and simply-connected domain (or Riemann surface). Then, HC(D) denotes the family of all
functions that are analytic in D and continuous on D .

Definition 2.3. Let α be a constant with 0< α≤ 1 and let D be a bounded and simply-connected domain (or Riemann surface)
that satisfies (a, b) ⊂D . Then, the space Mα(D) consists of all functions f satisfying the following conditions: (i) f ∈ HC(D);
(ii) there exists a constant C for all z in D such that

| f (z)− f (a)| ≤ C |z − a|α,

| f (b)− f (z)| ≤ C |b− z|α.

For functions f ∈Mα(D), using auxiliary functions

ωa(t) =
b− t
b− a

, ωb(t) =
t − a
b− a

,

the following approximations have been proposed:

f (t)≈ PSE
N [ f ](t) = f (ψSE(−Nh))ωa(t) + f (ψSE(Nh))ωb(t)

+
N
∑

j=−N

{ f (ψSE( jh))− f (ψSE(−Nh))ωa(ψ
SE( jh))− f (ψSE(Nh))ωb(ψ

SE( jh))}S( j, h)({ψSE}−1(t)), (2.8)

f (t)≈ PDE
N [ f ](t) = f (ψDE(−Nh))ωa(t) + f (ψDE(Nh))ωb(t)

+
N
∑

j=−N

{ f (ψDE( jh))− f (ψDE(−Nh))ωa(ψ
DE( jh))− f (ψDE(Nh))ωb(ψ

DE( jh))}S( j, h)({ψDE}−1(t)). (2.9)

We refer to (2.8) as the “generalized SE-Sinc approximation,” and (2.9) as the “generalized DE-Sinc approximation.” Error
analyses of these approximations are described as follows. Here, ‖ · ‖C([a,b]) denotes the usual uniform norm over [a, b].

2More detailed explanation/figure can be found in Tanaka et al. [17]
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Theorem 2.5 (Okayama [4, Theorem 3]). Let f ∈ Mα(ψSE(Dd)) for d with 0 < d < π, let N be a positive integer, and let h be
selected by the formula (2.6). Then, there exists a constant C that is independent of N, such that

‖ f −PSE
N f ‖C([a, b]) ≤ C

p
N exp

�

−
p

πdαN
�

.

Theorem 2.6 (Okayama [4, Theorem 6]). Let f ∈Mα(ψDE(Dd)) for d with 0< d < π/2, let N be a positive integer, and let h be
selected by the formula (2.7). Then, there exists a constant C that is independent of N, such that

‖ f −PDE
N f ‖C([a, b]) ≤ C exp

§

−πdN
log(2dN/α)

ª

.

Remark 3. Although Okayama et al. also used the symbols PSE
N and PDE

N in their paper [7, (2.29) and (2.31)], their definitions
differ from those in the present paper: (2.8) and (2.9). This is one of key differences between Okayama et al. and this study.

3 Smoothness property of the solution

To approximate the solution u according to Theorem 2.5 or 2.6, u must belong to Mα(ψSE(Dd)) or Mα(ψDE(Dd)). It should be
noted that the parameters α and d, which indicate smoothness of the function, are used to select the mesh size h in (2.6) or (2.7).
In practice, however, investigating u directly is not possible because u is an unknown function to be determined. To improve the
situation, Okayama et al. [7] provided a sufficient condition for u ∈Mα(D) using the known functions g and k, as described
below.

Suppose k(z, ·) ∈ HC(D) and k(·, w) ∈ HC(D) for all z, w ∈D , and let us introduce the integral operator K : HC(D)→ HC(D)
defined by

K[ f ](t) =
∫ b

a

k(t, s) f (s)ds.

Note that the equation (1.1) can be rewritten as (I −K)u = g. Then, the following theorem holds for both D =ψSE(Dd) and
D =ψDE(Dd).

Theorem 3.1 (Okayama et al. [7, Theorem 4.3]). Let k(z, ·) ∈ HC(D) and k(·, w) ∈ Mα(D) for all z, w ∈ D , and let also
g ∈ Mα(D). Furthermore, assume that the homogeneous equation (I −K) f = 0 has only the trivial solution f ≡ 0. Then, the
equation (1.1) has a unique solution u ∈Mα(D).

This theorem suggests that the smoothness parameters α and d of the solution u can be found by investigating known
functions g and k.

4 Original Sinc-collocation methods

In this section, Sinc-collocation methods derived by Okayama et al. [7] are described. These methods were derived in accordance
with the standard collocation procedure.

4.1 Original SE-Sinc-collocation method

First, suppose that the assumptions in Theorem 3.1 are fulfilled with D =ψSE(Dd). Then, set the approximate solution uSE
N as

uSE
N (t) = u−N−1ωa(t) +

N
∑

j=−N

u jS( j, h)({ψSE}−1(t)) + uN+1ωb(t). (4.1)

Let us substitute uSE
N into the equation (1.1), and approximate the integral operator K by KSE

N :

KSE
N [ f ](t) = h

N
∑

j=−N

k(t,ψSE( jh)) f (ψSE( jh)){ψSE}′( jh). (4.2)

In both (4.1) and (4.2), the mesh size h is selected by the formula (2.6). Finally, by setting the collocation points as

tSE
i =











a (i = −N − 1),

ψSE(ih) (i = −N , . . . , N),

b (i = N + 1),

(4.3)

we obtain a (2N + 3)× (2N + 3) system of linear equations:

{ωa(t
SE
i )−KSE

N [ωa](t
SE
i )}u−N−1 +

N
∑

j=−N

¦

δi j − hk(tSE
i , tSE

j ){ψ
SE}′( jh)

©

u j + {ωb(t
SE
i )−KSE

N [ωb](t
SE
i )}uN+1

= g(tSE
i ), i = −N − 1, −N , . . . , N , N + 1. (4.4)
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Let us define n by n= 2N + 3, and let ESE
n and KSE

n be n× n matrices defined by

ESE
n =















1 0 · · · 0 0
ωa(tSE

−N ) 1 O ωb(tSE
−N )

...
. . .

...
ωa(tSE

N ) O 1 ωb(tSE
N )

0 0 · · · 0 1















,

KSE
n =

















KSE
N [ωa](a) · · · hk(a, tSE

j ){ψ
SE}′( jh) · · · KSE

N [ωb](a)
KSE

N [ωa](tSE
−N ) · · · hk(tSE

−N , tSE
j ){ψ

SE}′( jh) · · · KSE
N [ωb](tSE

−N )
...

...
...

KSE
N [ωa](tSE

N ) · · · hk(tSE
N , tSE

j ){ψ
SE}′( jh) · · · KSE

N [ωb](tSE
N )

KSE
N [ωa](b) · · · hk(b, tSE

j ){ψ
SE}′( jh) · · · KSE

N [ωb](b)

















.

Furthermore, let g SE
n = [g(a), g(tSE

−N ), . . . , g(tSE
N ), g(b)]T. Then, the resulting system of linear equations (4.4) can be written in

the matrix-vector form:
(ESE

n − KSE
n )un = g SE

n , (4.5)

where un = [u−N−1, u−N , . . . , uN , uN+1]T. By solving this for the coefficients un, the approximate solution uSE
N is determined

by (4.1). This is the original SE-Sinc-collocation method. Its convergence was analyzed as follows.

Theorem 4.1 (Okayama et al. [7, Theorem 6.4]). Suppose that the assumptions in Theorem 3.1 are fulfilled with D =ψSE(Dd) for
d ∈ (0,π). Then, there exists a positive integer N0 such that the equation (4.5) is uniquely solvable for all N ≥ N0. Furthermore,
there exists a constant C independent of N such that for all N ≥ N0,

‖u− uSE
N ‖C([a,b]) ≤ C

p
N exp

�

−
p

πdαN
�

.

4.2 Original DE-Sinc-collocation method

Here, the original DE-Sinc-collocation method is described; it replaces the SE transformation in the original SE-Sinc-collocation
method with the DE transformation. Suppose that the assumptions in Theorem 3.1 are fulfilled with D =ψDE(Dd). Then, set the
approximate solution uDE

N as

uDE
N (t) = u−N−1ωa(t) +

N
∑

j=−N

u jS( j, h)({ψDE}−1(t)) + uN+1ωb(t). (4.6)

Let us substitute uDE
N into the equation (1.1), and approximate the integral operator K by KDE

N :

KDE
N [ f ](t) = h

N
∑

j=−N

k(t,ψDE( jh)) f (ψDE( jh)){ψDE}′( jh). (4.7)

In both (4.6) and (4.7), the mesh size h is selected by the formula (2.7). Finally, by setting the collocation points as t = tDE
i

defined by

tDE
i =











a (i = −N − 1),

ψDE(ih) (i = −N , . . . , N),

b (i = N + 1),

(4.8)

we obtain an n× n system of linear equations (recall n= 2N + 3):

(EDE
n − KDE

n )un = g DE
n , (4.9)

where g DE
n = [g(a), g(tDE

−N ), . . . , g(tDE
N ), g(b)]T, and EDE

n and KDE
n are n× n matrices defined by

EDE
n =















1 0 · · · 0 0
ωa(tDE

−N ) 1 O ωb(tDE
−N )

...
. . .

...
ωa(tDE

N ) O 1 ωb(tDE
N )

0 0 · · · 0 1















,

KDE
n =

















KDE
N [ωa](a) · · · hk(a, tDE

j ){ψ
DE}′( jh) · · · KDE

N [ωb](a)
KDE

N [ωa](tDE
−N ) · · · hk(tDE

−N , tDE
j ){ψ

DE}′( jh) · · · KDE
N [ωb](tDE

−N )
...

...
...

KDE
N [ωa](tDE

N ) · · · hk(tDE
N , tDE

j ){ψ
DE}′( jh) · · · KDE

N [ωb](tDE
N )

KDE
N [ωa](b) · · · hk(b, tDE

j ){ψ
DE}′( jh) · · · KDE

N [ωb](b)

















.
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By solving this for the coefficients un in (4.9), the approximate solution uDE
N is determined by (4.6). This is the original DE-Sinc-

collocation method. Its convergence was analyzed as follows.

Theorem 4.2 (Okayama et al. [7, Theorem 8.2]). Suppose that the assumptions in Theorem 3.1 are fulfilled with D =ψDE(Dd) for
d ∈ (0,π/2). Then, there exists a positive integer N0 such that the equation (4.9) is uniquely solvable for all N ≥ N0. Furthermore,
there exists a constant C independent of N such that for all N ≥ N0,

‖u− uDE
N ‖C([a,b]) ≤ C exp

§

−πdN
log(2πd/α)

ª

.

5 New Sinc-collocation methods with consistent collocation points

In this section, new Sinc-collocation methods are presented. These methods are derived based on the concept of Sinc-collocation
methods derived for initial value problems [5], which are closely related to the Sinc-Nyström methods [3, 10]. Convergence
theorems for the presented methods are stated, and proofs are provided in Section 7.

5.1 New SE-Sinc-collocation method with consistent collocation points

First, suppose that the assumptions in Theorem 3.1 are fulfilled with D =ψSE(Dd). Then, approximating the equation (I−K)u = g
by (I −KSE

N )v
SE
N = g (i.e., applying Corollary 2.2 as K ≈ KSE

N ), set the approximate solution vSE
N as

vSE
N (t) = g(t) + h

N
∑

j=−N

k(t,ψSE( jh))vSE
N (ψ

SE( jh)){ψSE}′( jh), (5.1)

where the mesh size h is selected by the formula (2.6). Setting (2N + 1) collocation points t = t̃SE
i (i = −N , . . . , N) as

t̃SE
i =ψ

SE(ih) (i = −N , . . . , N), (5.2)

we obtain a (2N + 1)× (2N + 1) system of linear equations:

N
∑

j=−N

¦

δi j − hk( t̃SE
i , t̃SE

j ){ψ
SE}′( jh)

©

vSE
N ( t̃

SE
j ) = g( t̃SE

i ), i = −N , . . . , N . (5.3)

Let us define m by m = 2N + 1, and let Im be an m×m identity matrix, and let K̃SE
m be an m×m matrix whose (i, j)-th element is

hk( t̃SE
i , t̃SE

j ){ψ
SE}′( jh) (i, j = −N , . . . , N); more precisely,

K̃SE
m =



















hk( t̃SE
−N , t̃SE

−N ){ψ
SE}′(−Nh) · · · hk( t̃SE

−N , t̃SE
j ){ψ

SE}′( jh) · · · hk( t̃SE
−N , t̃SE

N ){ψ
SE}′(Nh)

...
...

...
hk( t̃SE

i , t̃SE
−N ){ψ

SE}′(−Nh) · · · hk( t̃SE
i , t̃SE

j ){ψ
SE}′( jh) · · · hk( t̃SE

i , t̃SE
N ){ψ

SE}′(Nh)
...

...
...

hk( t̃SE
N , t̃SE

−N ){ψ
SE}′(−Nh) · · · hk( t̃SE

N , t̃SE
j ){ψ

SE}′( jh) · · · hk( t̃SE
N , t̃SE

N ){ψ
SE}′(Nh)



















.

Furthermore, let g̃ SE
m = [g( t̃

SE
−N ), . . . , g( t̃SE

N )]
T and ũ j = vSE

N ( jh) ( j = −N , . . . , N). Then, the resulting system of linear equa-
tions (5.3) can be written in the matrix-vector form:

(Im − K̃SE
m )ũm = g̃ SE

m , (5.4)

where ũm = [ũ−N , . . . , ũN ]T. By the use of the solution vector ũm, let us introduce another approximate solution ũSE
N as

ũSE
N (t) = ũ−Nωa(t) +

N
∑

j=−N

�

ũ j − ũ−N
b−ψSE( jh)

b− a
− ũN

ψSE( jh)− a
b− a

�

S( j, h)({ψSE}−1(t)) + ũNωb(t), (5.5)

where the mesh size h is selected by the formula (2.6). Between vSE
N (t) and ũSE

N (t), the relationship ũSE
N = PSE

N vSE
N holds. In summary,

by solving the equation (5.4) for the coefficients ũm, the approximate solution ũSE
N is determined by (5.5). This is the new

SE-Sinc-collocation method. Its convergence theorem is written as follows, which is proved in Section 7.1.

Theorem 5.1. Suppose that the assumptions in Theorem 3.1 are fulfilled with D = ψSE(Dd) for d ∈ (0,π). Then, there exists a
positive integer N0 such that the equation (5.4) is uniquely solvable for all N ≥ N0. Furthermore, there exists a constant C independent
of N such that for all N ≥ N0,

‖u− ũSE
N ‖C([a,b]) ≤ C

p
N exp

�

−
p

πdαN
�

.
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5.2 New DE-Sinc-collocation method with consistent collocation points

Here, the new DE-Sinc-collocation method is described; it replaces the SE transformation in the new SE-Sinc-collocation method
with the DE transformation. Suppose that the assumptions in Theorem 3.1 are fulfilled with D =ψDE(Dd). Then, approximating
the equation (I −K)u= g by (I −KDE

N )v
DE
N = g (i.e., applying Corollary 2.4 as K ≈ KDE

N ), set the approximate solution vDE
N as

vDE
N (t) = g(t) + h

N
∑

j=−N

k(t,ψDE( jh))vDE
N (ψ

DE( jh)){ψDE}′( jh), (5.6)

where the mesh size h is selected by the formula (2.7). Setting (2N + 1) collocation points t = t̃DE
i (i = −N , . . . , N) as

t̃DE
i =ψ

DE(ih) (i = −N , . . . , N), (5.7)

we obtain an m×m system of linear equations (recall m= 2N + 1):

(Im − K̃DE
m )ũm = g̃ DE

m , (5.8)

where g̃ DE
m = [g( t̃

DE
−N ), . . . , g( t̃DE

N )]
T, and K̃DE

m is an m×m matrix whose (i, j)-th element is hk( t̃DE
i , t̃DE

j ){ψ
DE}′( jh) (i, j = −N , . . . , N);

more precisely,

K̃DE
m =



















hk( t̃DE
−N , t̃DE

−N ){ψ
DE}′(−Nh) · · · hk( t̃DE

−N , t̃DE
j ){ψ

DE}′( jh) · · · hk( t̃DE
−N , t̃DE

N ){ψ
DE}′(Nh)

...
...

...
hk( t̃DE

i , t̃DE
−N ){ψ

DE}′(−Nh) · · · hk( t̃DE
i , t̃DE

j ){ψ
DE}′( jh) · · · hk( t̃DE

i , t̃DE
N ){ψ

DE}′(Nh)
...

...
...

hk( t̃DE
N , t̃DE

−N ){ψ
DE}′(−Nh) · · · hk( t̃DE

N , t̃DE
j ){ψ

DE}′( jh) · · · hk( t̃DE
N , t̃DE

N ){ψ
DE}′(Nh)



















.

By the use of the solution vector ũm, let us introduce another approximate solution ũDE
N as

ũDE
N (t) = ũ−Nωa(t) +

N
∑

j=−N

�

ũ j − ũ−N
b−ψDE( jh)

b− a
− ũN

ψDE( jh)− a
b− a

�

S( j, h)({ψDE}−1(t)) + ũNωb(t), (5.9)

where the mesh size h is selected by the formula (2.7). Between vDE
N (t) and ũDE

N (t), the relationship ũDE
N = PDE

N vDE
N holds. In

summary, by solving the equation (5.8) for the coefficients ũm, the approximate solution ũDE
N is determined by (5.9). This is the

new DE-Sinc-collocation method. Its convergence theorem is written as follows, which is proved in Section 7.2.

Theorem 5.2. Suppose that the assumptions in Theorem 3.1 are fulfilled with D =ψDE(Dd) for d ∈ (0,π/2). Then, there exists a
positive integer N0 such that the equation (5.8) is uniquely solvable for all N ≥ N0. Furthermore, there exists a constant C independent
of N such that for all N ≥ N0,

‖u− ũDE
N ‖C([a,b]) ≤ C exp

§

−πdN
log(2πd/α)

ª

.

5.3 Discussion on the differences between the original and new Sinc-collocation methods

The primary difference between the original and new Sinc-collocation methods lies in the system of linear equations to be solved.
Recall that the system of equations in the original methods is (4.5) or (4.9), whereas that in the new methods is (5.4) or (5.8).
In the case of the original methods, users must handle the exceptional cases at i, j = ±(N + 1), due to the inconsistency of
the collocation points (4.3) or (4.8). In the case of the new methods, the systems of linear equations are considerably simple
and easy to implement, owing to the consistent collocation points (5.2) or (5.7). Especially in the matrices KSE

n and KDE
n of the

original methods, the elements in j = ±(N + 1) include a summation term KSE
N or KDE

N , which may incur a high computational
cost. In contrast, such a term is not included in the matrices K̃SE

m and K̃DE
m of the new methods. For this reason, the difference in

the computation time between the original and new methods is significant in the case where k is computationally complex for
evaluation.

One minor difference is that the size of the systems (5.4) and (5.8) is m = 2N + 1, which is slightly smaller than the size
of the systems (4.5) and (4.9): n= 2N + 3. It also should be noted that the original and new methods share exactly the same
basis functions. Accordingly, the number of the basis functions is the same: n= 2N + 3. In terms of the convergence rates, as
Theorems 4.1–4.2 and Theorems 5.1–5.2 show, there is no difference between the original and new methods.

In short, the new methods have an advantage in terms of practicality of implementation and computational cost, without the
loss of convergence performance. This is also confirmed in the next section.
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Table 1: Values of the parameters α and d. πm = 3.14.

Example 6.1 Example 6.2 Example 6.3 Example 6.4
Original SE, α 1.0 0.5 0.5 1.0

New SE, α 1.0 0.5 0.5 1.0
Original DE, α 1.0 0.5 0.5 1.0

New DE, α 1.0 0.5 0.5 1.0
Original SE, d πm/2 πm πm πm/2

New SE, d πm/2 πm πm πm/2
Original DE, d πm/6 πm/2 πm/2 0.125

New DE, d πm/6 πm/2 πm/2 0.125

6 Numerical examples

In this section, numerical comparisons between the four methods (original SE/DE-Sinc-collocation methods and new SE/DE-
Sinc-collocation methods) are presented. The computation was performed on MacBook Air with 1.7 GHz Intel Core i7 with
8GB memory, running Mac OS X 10.12.6. The computation programs were implemented in the C programming language with
double-precision floating-point arithmetic, and compiled with Apple LLVM version 9.0.0 with the “-O2” option. LAPACK in Apple’s
Accelerate framework was used for computation of the system of linear equations. The source code for all programs is available
at https://github.com/okayamat/sinc-colloc-fredholm.

We consider the following four examples.

Example 6.1 (Delves and Mohamed [1, special case of Family 4 in Chap. 10]). Consider the following equation

u(t)−
∫ 1

0

tsu(s)ds =
r

(t − 1/2)2 + r2
− t arctan

�

1
2r

�

, 0≤ t ≤ 1,

whose solution is u(t) = r/{(t − 1/2)2 + r2}. For the experiment, r was set as r = 1/2.

Example 6.2 (Delves and Mohamed [1, Example 4.2.5b]). Consider the following equation

u(t)−
∫ π/2

0

(ts)3/4u(s)ds = t1/2
§

1−
π2

9

�πt
2

�1/4ª

, 0≤ t ≤ π/2,

whose solution is u(t) = t1/2.

Example 6.3 (Okayama et al. [7, Example 9.4]). Consider the following equation

u(t)−
∫ 1

0

t
p

3−1
100
∑

l=1

sal (1− s)1−bl u(s)ds = t1/2 − t
p

3−1
100
∑

l=1

B(al + 3/2,2− bl), 0≤ t ≤ 1,

whose solution is u(t) = t1/2. Here, B(p, q) is the beta function, al = (3/π)l , and bl = (2
p

2/3)l .

Example 6.4 (Okayama et al. [7, Example 9.5]). Consider the following equation

u(t)− 2

∫ 1

−1

(1− s2)(2−t2)/(2+t2)

(2+ t2)(1+ s20)

�

5(2+ t2)s18(1− s2) + (s20 + 1)(s21 + s+ 2)
	

u(s)ds

=
2t

1+ t20
−

4
2+ t2

B(3/2,4/(2+ t2)), −1≤ t ≤ 1,

whose solution is u(t) = 2t/(1+ t20).

Following Okayama et al. [7], the values of the parameters α and d were chosen as shown in Table 1. Here, πm = 3.14 was
used as a slightly smaller value than π. Because there is no difference between the assumptions in the theorems of the original
and new methods, the methods share the same values for those parameters. The number of lines of the main programs is shown
in Table 2. The table reveals the advantage of the new SE/DE-Sinc collocation methods in terms of implementation. Furthermore,
note that the differences between the four examples are small, even though Examples 6.3 and 6.4 are extremely difficult for
Gaussian quadrature-based methods.

Figures 1–4 show the convergence profile with respect to N . We observe that the original and new SE-Sinc-collocation methods
converge at the same rate, O(exp(−c

p
N)), which is suggested by Theorems 4.1 and 5.1. We also observe that the original and

new DE-Sinc-collocation methods converge at the same rate, O(exp(−cN/ log N)), which is suggested by Theorems 4.2 and 5.2.
However, especially in Example 6.3, the notable advantage of the new SE/DE-Sinc-collocation methods may be observed in terms
of the computational cost. The convergence profile with respect to the computation time is displayed in Figure 5. The difference
in the performance is due to the functions k and g in Example 6.3, which are relatively computationally complex for evaluation.
In other examples, such a significant difference was not observed.
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Table 2: Number of lines of the main programs.

Example 6.1 Example 6.2 Example 6.3 Example 6.4
Original SE 171 169 204 182
Original DE 171 169 204 183

New SE 127 125 160 138
New DE 127 125 160 139
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Figure 1: Convergence with respect to N for Example 6.1.
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Figure 2: Convergence with respect to N for Example 6.2.
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Figure 3: Convergence with respect to N for Example 6.3.
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Figure 4: Convergence with respect to N for Example 6.4.
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Figure 5: Convergence with respect to computation time for
Example 6.3.
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7 Proof of convergence theorems

This section provides proofs for Theorems 5.1 and 5.2. In this section, we write X = C([a, b]) for short.

7.1 Proof of Theorem 5.1

Recall that by solving (5.4), vSE
N is determined by (5.1), and ũSE

N is determined by (5.5). The key point of the proof of Theorem 5.1
is the relation between those two approximate solutions: ũSE

N = PSE
N vSE

N . Using the relation, we have

‖u− ũSE
N ‖X = ‖u−PSE

N vSE
N ‖X ≤ ‖u−PSE

N u‖X + ‖PSE
N u−PSE

N vSE
N ‖X ≤ ‖u−PSE

N u‖X + ‖PSE
N ‖L(X ,X )‖u− vSE

N ‖X . (7.1)

Under the assumptions of Theorem 5.1, u ∈Mα(ψSE(Dd)) holds by Theorem 3.1. Thus, using Theorem 2.5, we can evaluate the
first term in (7.1) as

‖u−PSE
N u‖X ≤ C1

p
N exp

�

−
p

πdαN
�

for a constant C1 independent of N . As for the second term in (7.1), the following result was obtained.

Theorem 7.1 (Okayama et al. [7, Theorem 6.3]). Suppose that the assumptions in Theorem 3.1 are fulfilled with D =ψSE(Dd)
for d ∈ (0, π). Then, there exists a positive integer N0 such that for all N ≥ N0, the equation (5.1) has a unique solution vSE

N ∈ X .
Furthermore, there exists a constant C2 independent of N such that for all N ≥ N0,

‖u− vSE
N ‖X ≤ C2 exp

�

−
p

πdαN
�

.

In addition to providing the estimate of ‖u− vSE
N ‖X , this theorem guarantees the existence of the unique solution vSE

N ; this
means that the system (5.4) is uniquely solvable. Furthermore, we can estimate the remaining term ‖PSE

N ‖L(X ,X ) as follows.

Lemma 7.2. There exists a constant C3 independent of N such that ‖PSE
N ‖L(X ,X ) ≤ C3 log(N + 1).

The lemma is deduced immediately by using the following result.

Lemma 7.3 (Stenger [13, p. 142]). Let h> 0. Then, it holds that

sup
x∈R

N
∑

j=−N

|S( j, h)(x)| ≤
2
π
(3+ log N).

Thus, we can evaluate the second term in (7.1) as

‖PSE
N ‖L(X ,X )‖u−PSE

N vSE
N ‖X ≤ C3 log(N + 1) · C2 exp

�

−
p

πdαN
�

.

Summing up the above results, we establish Theorem 5.1.

7.2 Proof of Theorem 5.2

Recall that by solving (5.8), vDE
N is determined by (5.6), and ũDE

N is determined by (5.9). In the proof of Theorem 5.2 as well, the
key point is the relation between those two approximate solutions: ũDE

N = PDE
N vDE

N . Using the relation, we have

‖u− ũDE
N ‖X = ‖u−PDE

N vDE
N ‖X ≤ ‖u−PDE

N u‖X + ‖PDE
N u−PDE

N vDE
N ‖X ≤ ‖u−PDE

N u‖X + ‖PDE
N ‖L(X ,X )‖u− vDE

N ‖X . (7.2)

Under the assumptions of Theorem 5.2, u ∈Mα(ψDE(Dd)) holds by Theorem 3.1. Thus, using Theorem 2.6, we can evaluate the
first term in (7.2) as

‖u−PDE
N u‖X ≤ C1 exp

§

−πdN
log(2dN/α)

ª

for a constant C1 independent of N . As for the second term in (7.2), the following result was obtained.

Theorem 7.4 (Okayama et al. [7, Theorem 8.1]). Suppose that the assumptions in Theorem 3.1 are fulfilled with D =ψDE(Dd) for
d ∈ (0, π/2). Then, there exists a positive integer N0 such that for all N ≥ N0, the equation (5.6) has a unique solution vDE

N ∈ X .
Furthermore, there exists a constant C2 independent of N such that for all N ≥ N0,

‖u− vDE
N ‖X ≤ C2 exp

§

−2πdN
log(2dN/α)

ª

.

In addition to providing the estimate of ‖u− vDE
N ‖X , this theorem guarantees the existence of the unique solution vDE

N ; this
means that the system (5.8) is uniquely solvable. Furthermore, in the same way as Lemma 7.2, we can estimate the remaining
term ‖PDE

N ‖L(X ,X ) as follows.

Lemma 7.5. There exists a constant C3 independent of N such that ‖PDE
N ‖L(X ,X ) ≤ C3 log(N + 1).

Thus, we can evaluate the second term in (7.2) as

‖PDE
N ‖L(X ,X )‖u−PDE

N vDE
N ‖X ≤ C3 log(N + 1) · C2 exp

§

−2πdN
log(2dN/α)

ª

.

Summing up the above results, we establish Theorem 5.2.
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8 Concluding remarks

Okayama et al. [7] presented the SE/DE-Sinc-collocation methods for the equation (1.1). Those methods can attain exponential
convergence even if the functions k and g have derivative singularity at the endpoints. However, those methods are challenging
or painful to implement owing to the inconsistent collocation points (4.3) or (4.8). To address the situation, this paper proposed
new SE/DE-Sinc-collocation methods that employ consistent collocation points (5.2) or (5.7). The results of a theoretical analysis
proved that the new SE/DE-Sinc-collocation methods exhibit the same convergence property as the original SE/DE-Sinc-collocation
methods. As shown in Section 6, compared with the original methods, the number of lines of the programs in the new methods
was reduced to 70–80 %. Furthermore, the advantage of the new methods in terms of the computational cost may be observed in
the equations with computationally complex functions k and g. It should also be emphasized that the condition numbers of the
resulting matrices in the new methods (Im − K̃SE

m and Im − K̃DE
m ) are good [8], although such a result is not obtained yet for the

original methods.
The followings issues may be considered in future studies. First, a Sinc-collocation method for Volterra integral equations was

proposed by Rashidinia and Zarebnia [12], and results similar to those of the present work can be established for that method.
Second, the error analysis for the Sinc-Nyström methods can be improved compared with Theorems 7.1 and 7.4. As described
in Remark 1, the mesh size h for the SE/DE-Sinc quadrature is not selected optimally because it can share the same h as in
the SE/DE-Sinc approximation, which is also used in the Sinc-collocation methods. However, in the case of the Sinc-Nyström
methods, only the SE/DE-Sinc quadrature is used, and the mesh size h can be optimally chosen. The error of this case should
be rigorously analyzed for both cases of the SE transformation [10] and DE transformation [3]. Third, explicit error bounds
are desired for verified numerical computation. If we can compute the constant C in Theorem 5.1 or 5.2, we can guarantee the
accuracy of the method by computing the right-hand side of the inequality. This can be performed by examining the constants
appearing in the convergence theorems, and using the results for basic approximation formulas [6]. We plan to report further
results on these issues in future work.
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