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On zeros of quasi-orthogonal Meixner polynomials

Alta Jooste a · Kerstin Jordaan b

Abstract

For each fixed value of β in the range −2< β < −1 and 0< c < 1, we investigate interlacing properties
of the zeros of polynomials of consecutive degree for Mn(x;β , c) and Mk(x ,β + t, c), k ∈ {n−1, n, n+1}
and t ∈ {0,1,2}. We prove the conjecture in [9] on a lower bound for the first positive zero of the
quasi-orthogonal order 1 polynomial Mn(x;β+1, c) and identify upper and lower bounds for the first few
zeros of quasi-orthogonal order 2 Meixner polynomials Mn(x;β , c). We show that a sequence of Meixner
polynomials {Mn(x;β , c)}∞n=3 with −2 < β < −1 and 0 < c < 1 cannot be orthogonal with respect to
any positive measure by proving that the zeros of Mn−1(x;β , c) and Mn(x;β , c) do not interlace for any
n ∈ N½3.
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1 Introduction

Consider a sequence {pn}∞n=0 of monic orthogonal polynomials with zeros x1,n < x2,n < · · · < xn,n, satisfying a three-term
recurrence relation

pn(x) = (x − Bn)pn−1(x)− Cnpn−2(x), (1)

where Bn and Cn > 0 do not depend on x , p−1 ≡ 0 and p0 ≡ 1. A consequence of orthogonality is that each polynomial pn(x) has
n real, distinct zeros in (a, b) and the zeros of pn and pn−1 interlace as follows

x1,n < x1,n−1 < x2,n < · · ·< xn−1,n < xn−1,n−1 < xn,n.

Further, the interlacing of zeros of pn and qm, m≤ n−2, referred to as Stieltjes interlacing, means that there exist m open intervals
with endpoints at successive zeros of pn, each of which contains exactly one zero of qm.

In order for orthogonality conditions to hold, we often need restrictions on the parameters of the classical orthogonal polynomials
and when the parameters deviate from these restricted values in an orderly way, the zeros may depart from the interval of
orthogonality in a predictable way. This phenomenon can be explained in terms of the concept of quasi-orthogonality. The
sequence of polynomials {Qn}Nn=r+1, where each polynomial Qn is of exact degree n and N ∈ N∪{∞}, is discrete quasi-orthogonal
of order r ∈ N, where 0≤ r < n, with respect to the weight function w(x)> 0 on [a, b] if (cf. [6])

N−1
∑

i=0

(x i)
mQn(x i)w(x i)

¨

= 0, for m ∈ {0, 1, . . . , n− r − 1},
6= 0, for m= n− r.

(2)

Note that quasi-orthogonal polynomials Qn are only defined for n ∈ {r + 1, r + 2, . . . }. It is clear that when r = 0 in (2), the
sequence {Qn}n≥0 is discrete orthogonal with respect to w(x) on [a, b].

Quasi-orthogonality was first studied by Riesz [28], followed by Fejér [14], Shohat [29], Chihara [5], Dickinson [7], Draux
[8], Maroni [26] and Joulak [20]. The quasi-orthogonality of Jacobi, Gegenbauer and Laguerre sequences was discussed
in [1], the quasi-orthogonality of Meixner sequences in [18] and of Meixner-Pollaczek, Hahn, Dual-Hahn and Continuous
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Dual-Hahn sequences in [17]. Quasi-orthogonality of Pseudo-Jacobi polynomials was considered in [19] while [30] deals with
quasi-orthogonality of some hypergeometric and q-hypergeometric polynomials.

Quasi-orthogonal polynomials are characterised by the following property:
Lemma 1.1 ([1, 5]). Let {Pn}n≥0 be a family of orthogonal polynomials on [a, b] with respect to the weight function w(x)> 0. A
necessary and sufficient condition for a polynomial Qn,k of degree n to be quasi-orthogonal of order k ≤ n− 1 with respect to w on
[a, b], is that

Qn,k(x) =
k
∑

i=0

an,i Pn−i(x), an,0an,k 6= 0.

It is known that for a quasi-orthogonal polynomial of order k with n distinct real roots, there exists a quadrature formula valid for
all polynomials of degree ≤ 2n− k− 1 based on these zeros, provided that the weight in the quadrature formula does not vanish
(see, for example, [15, 27, 31]). n-point quadrature rules with one or two fixed nodes achieve the highest degree of accuracy
when the remaining nodes are the zeros of a polynomial of degree n in a sequence of quasi-orthogonal polynomials (cf. [2, 3, 4]).
Interlacing properties of zeros of polynomials of consecutive degree were used in [25] to provide substantially shorter proofs for
generalisations of quadrature identities.

Interlacing of the zeros was studied for various classical quasi-orthogonal polynomials, namely quasi-orthogonal order 1 Gegen-
bauer polynomials in [13], Laguerre polynomials in [12], Jacobi polynomials in [10], Meixner polynomials in [9], Pseudo-Jacobi
polynomials in [19], q-Laguerre in [21] and little q-Jacobi in [22], and quasi-orthogonal order 2 Jacobi polynomials in [11].

In this paper, we investigate zeros of quasi-orthogonal Meixner polynomials with a particular emphasis on bounds for and
interlacing properties of the zeros. Monic Meixner polynomials can be defined in terms of the 2F1 hypergeometric series by (cf.
[23, (9.10.1)])

Mn(x;β , c) =
� c

c − 1

�n
(β)n 2F1

�

−n,−x;β; 1−
1
c

�

(3)

=
� c

c − 1

�n
(β)n

n
∑

k=0

(−n)k(−x)k(1−
1
c )

k

(β)kk!
, β , c ∈ R, β 6= −1,−2, . . . ,−n+ 1, c 6= 0,1

where ( )n is Pochhammer’s symbol defined by

(α)n = (α)(α+ 1) · · · (α+ n− 1) for n≥ 1

(α)0 = 1 when α 6= 0.

The three term recurrence relation satisfied by monic Meixner polynomials [23, (9.10.4)] is

Mn(x;β , c) =
�

x +
β c + cn− c + n− 1

c − 1

�

Mn−1(x;β , c)−
c(n− 1)(β + n− 2)

(c − 1)2
Mn−2(x;β , c) (4)

with initial conditions M−1(x;β , c) = 0 and M0(x;β , c) = 1. Meixner polynomials for various parameter values, including those
for Krawtchouk polynomials, are discussed in [18].

In Section 2, we briefly recap and expand on some results for the zeros of Meixner polynomials when β > 0 and c ∈ (0,1). In
Section 3, we focus on the parameter ranges −β , c ∈ (0,1), for which the Meixner polynomials are discrete quasi-orthogonal
of order 1 and resolve a conjecture posed in [9]. We consider the case when β ∈ (−2,−1) and c ∈ (0,1) for which Meixner
polynomials are discrete quasi-orthogonal of order 2 in Section 4.

2 Meixner polynomials Mn(x;β , c), β > 0, 0< c < 1

The weight function

w(x) =
c x (β)x

x!
(5)

is positive when β , c > 0 and, by the ratio test, the moments associated with the weight (5) exist when c ∈ [0,1).

The sequence {Mn(x;β , c)}∞n=0 satisfies the discrete orthogonality relation (cf. [23, (9.10.2)])
∞
∑

x=0

c x (β)x
x!

Mm(x;β , c)Mn(x;β , c) =
c−nn!

(β)n(1− c)β
δmn

when β > 0 and c ∈ (0, 1). For 0< c < 1 and β > 0, the zeros are all distinct, positive and monotonically increasing as β increases
(cf. [16, Thm 7.1.2]). Further, there exists a point of the support of the measure between any two consecutive zeros of a discrete
orthogonal polynomial. The minimum distance between consecutive zeros of Meixner polynomials is greater than 1 [24, Thm 1].

The following lemma will be used to prove one of our results.
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Lemma 2.1. Let c ∈ (0,1), β > 0 and n ∈ N. Denote the zeros of Mn(x;β , c) by 0< y1,n < y2,n < · · ·< yn,n, then

(i) y1,1 =
β c

1−c ≤ β when c ∈ (0,0.5];

(ii) y1,n < 1< y2,n when n≥ β c
1−c .

Proof. (i) A simple calculation, using either (3) or (4), shows that M1(x;β , c) = x + β c
c−1 and hence y1,1 =

β c
1−c ≤ β for

c ∈ (0,0.5].

(ii) For 0< c < 1 and β > 0, we have
Mn(1;β , c)
Mn(0;β , c)

=
β c + cn− n

β c
≤ 0 for n≥ β c

1−c . See [24, Remark 2, p.127 and p.131] for an

alternate proof using a difference equation satisfied by the polynomial.

3 Meixner polynomials Mn(x;β , c), −1< β < 0, 0< c < 1

It follows from the contiguous relation for hypergeometric functions [18, eqn. (20)] that monic Meixner polynomials satisfy

Mn(x;β , c) = Mn(x;β + 1, c)−
nc

c − 1
Mn−1(x;β + 1, c) (6)

and hence, for −1< β < 0, the sequence {Mn(x;β , c)}∞n=2 is quasi-orthogonal of order r = 1 by Lemma 1.1. For n≥ 2, 0< c < 1
and −1< β < 0, the zeros of Mn(x;β , c) are all distinct, the smallest zero is always negative and the remaining (n− 1) zeros are
all positive (cf. [9, Thm 2.1(i)]).

The interlacing of zeros of polynomials within the sequences of quasi-orthogonal order 1 Meixner polynomials {Mn(x;β , c)}∞n=2

characterised by −β , c ∈ (0,1) is discussed in [9] as well as the interlacing of zeros of quasi-orthogonal Meixner polynomials
Mn(x;β , c) with the zeros of their nearest orthogonal counterparts Ml(x;β + k, c), l, n ∈ N, k ∈ {1,2}. Driver and Jooste [9]
conjectured that, if z1,n < 0< z2,n < · · ·< zn,n are the zeros of quasi-orthogonal order 1 Mn(x;β , c), then z2,n > 1.
Proposition 3.1. Suppose that {Mn(x;β , c)}n≥2 is a sequence of quasi-orthogonal order 1 Meixner polynomials with −β , c ∈ (0, 1).
Denote the zeros of Mn(x;β , c) by {zi,n}ni=1 in ascending order, then

z1,n < 0< 1< z2,n.

Proof. Let −β , c ∈ (0,1), then
Mn(1;β , c)
Mn(0;β , c)

=
β c + cn− n

β c
> 0 for n > β c

1−c . Since β c
1−c < 0 when −β , c ∈ (0,1), the polynomial

Mn(x;β , c) has either no zeros or an even number of zeros in (0,1), for all n≥ 0. From [9, Thm 2.1(i)], z1,n < 0 for all n, and
by [9, Remark (2), p.482], z3,n > 1. It therefore is impossible for an even number of zeros of Mn(x;β , c) to lie in (0,1) and we
deduce that there are no zeros of Mn(x;β , c) in (0,1). Therefore z1,n < 0< 1< z2,n, which proves [9, Conjecture I].

The following results are refinements of results in [9] that relied on the conjecture as an assumption. We state them here without
proof.
Theorem 3.2. (cf. [9, Thm 2.2]) Fix n,β and c where n ∈ N½3 and −β , c ∈ (0, 1), then the zeros of x Mn−1(x;β , c) and Mn(x;β , c)
interlace.
Corollary 3.3. (cf. [9, Cor. 2.3]) Let −β , c ∈ (0, 1) and n ∈ N½3. Then, if z1,n < 0< z2,n < · · ·< zn,n denote the zeros of Mn(x;β , c),
the negative zero of Mn(x;β , c) increases with n. Moreover, z1,1 =

β c
1−c is a lower bound for the negative zero of Mn(x;β , c) for each

n ∈ N.
Theorem 3.4. (cf. [9, Thm 2.4]) Fix n,β and c where n ∈ N½4, −β , c ∈ (0,1). Assume that Mn(x;β , c) and Mn−2(x;β , c) do

not have common zeros, i.e., Mn

�

β c+(c+1)(n−1)
1−c ;β , c

�

6= 0 (or, equivalently, Mn−2

�

β c+(c+1)(n−1)
1−c ;β , c

�

6= 0). Then the positive zeros of
�

x − β c+(c+1)(n−1)
1−c

�

Mn−2(x;β , c), interlace with the positive zeros of Mn(x;β , c).
Theorem 3.5. (cf. [9, Thm 3.1]) Fix n,β and c where n ∈ N and −β , c ∈ (0, 1). Assume that Mn(x;β , c) and Mn−2(x;β + 1, c) do
not have common zeros i.e., Mn

�

β c+n−1
1−c ;β , c

�

6= 0 (or, equivalently, Mn−2

�

β c+n−1
1−c ;β , c

�

6= 0). Then, for each n ∈ N½3, the zeros of
�

x − β c+n−1
1−c

�

Mn−2(x;β + 1, c) interlace with the (n− 1) positive zeros of Mn(x;β , c).

The final result in this section considers a case not addressed in [9], namely when both the degree and β are increasing.
Theorem 3.6. Suppose that {Mn(x;β , c)}n≥2 is a sequence of quasi-orthogonal order 1 Meixner polynomials with −β , c ∈ (0, 1). Let
Cn = −β +

(n+1)c
1−c and assume that Mn(Cn;β , c) 6= 0, then the (n+ 1) zeros of (x − Cn)Mn(x;β , c) interlace with the (n+ 1) zeros of

Mn+1(x;β + 1, c).

Dolomites Research Notes on Approximation ISSN 2035-6803



Jooste · Jordaan 51

Proof. Let −β , c ∈ (0, 1) be fixed. We note that Cn > −β for these values of β and c, furthermore z1,n < 0< 1< z2,n for all values
of n. Consider the equation

β + n
1− c

Mn(x;β , c) = (x − Cn)Mn(x;β + 1, c)−Mn+1(x;β + 1, c), (7)

which can be verified by comparing coefficients of xn. Since Mn(x;β + 1, c) and Mn+1(x;β + 1, c) are polynomials of consecutive
degree in an orthogonal sequence, their zeros are interlacing and they have no common zeros. It follows from (7) that Mn(x;β , c)
and Mn+1(x;β + 1, c) can have at most one common zero, namely at x = Cn. If they do not have any common zeros, i.e.
Mn(Cn;β , c) 6= 0 (equivalently, Mn+1(Cn;β + 1, c) 6= 0), evaluating (7) at yk,n+1 and yk+1,n+1, k ∈ {1,2, . . . , n}, two consecutive
zeros of Mn+1(x;β + 1, c), we obtain

�

β+n
1−c

�2

Mn(yk,n+1;β + 1, c)Mn(yk+1,n+1;β + 1, c)
=

�

yk,n+1 − Cn

� �

yk+1,n+1 − Cn

�

Mn(yk,n+1;β , c)Mn(yk+1,n+1;β , c)
. (8)

The zeros of the polynomials in an orthogonal sequence interlace, therefore Mn(x;β + 1, c) differs in sign at the zeros of
Mn+1(x;β + 1, c) and Mn(yk,n+1;β + 1, c)Mn(yk+1,n+1;β + 1, c)< 0. The left hand side of (8) is therefore negative.

Suppose Cn ∈ (yk,n+1, yk+1,n+1) for some k ∈ {1, 2, . . . , n}. Then in this single interval containing Cn, we will have
�

yk,n+1 − Cn

� �

yk+1,n+1 − Cn

�

< 0 and for the right hand side of (8) to be negative, Mn(yk,n+1;β , c)Mn(yk+1,n+1;β , c) > 0 and
we deduce that in this interval containing Cn, there will be no zeros of Mn(x;β , c). In each one of the other (n-1) intervals
(yk,n+1, yk+1,n+1), k ∈ {1,2, . . . , n}, not containing Cn, there will be a zero of Mn(x;β , c).

The point Cn cannot lie to the left of y1,n+1, since, for −β , c ∈ (0,1), we have y1,1 =
(β+1)c

1−c (see Lemma 2.1) and

Cn

y1,1
=

c(n+1)
1−c − β
(β+1)c

1−c

> 1,

for n> β

c , but βc < 0, therefore Cn > y1,1 > y1,n > y1,n+1 for all n≥ 1, which means Cn /∈ (0, y1,n+1).

Suppose Cn > yn+1,n+1. Then
�

yk,n+1 − Cn

� �

yk+1,n+1 − Cn

�

> 0 for each k ∈ {1,2, . . . , n} and for the right hand side of (8) to be
negative, we need Mn(yk,n+1;β , c)Mn(yk+1,n+1;β , c)< 0 for each k ∈ {1,2, . . . , n}, and this can only be true if there is a zero of
Mn(x;β , c) in each one of the n intervals with endpoints at the (n+ 1) zeros of Mn+1(x;β + 1, c). This leads to a contradiction,
since Mn(x;β , c) has n zeros of which the first one is negative, which means only (n− 1) zeros of Mn(x;β , c) are available to fill
the n gaps between the (n+ 1) positive zeros of Mn+1(x;β + 1, c). We thus have Cn < yn+1,n+1 and Cn fills the nth gap.

4 Meixner polynomials Mn(x;β , c), −2< β < −1, 0< c < 1

Iterating (6), we see that monic Meixner polynomials satisfy [18, Thm 7]

Mn(x;β , c) = Mn(x;β + 2, c) + 2n
c

1− c
Mn−1(x;β + 2, c) + n(n− 1)

� c
c − 1

�2
Mn−2(x;β + 2, c).

This implies that, for β ∈ (−2,−1), the right hand side is a linear combination of three terms in a sequence of orthogonal
polynomials and it follows from Lemma 1.1 that the sequence {Mn(x;β , c)}∞n=3 is quasi-orthogonal of order r = 2 when c ∈ (0, 1)
and β ∈ (−2,−1).

In what follows, we assume that −2< β < −1, 0< c < 1 and use the following notation: For each n ∈ N and −2< β < −1 and
0 < c < 1 fixed, we will indicate the zeros of quasi-orthogonal order 2 polynomials Mn(x;β , c) by x1,n < x2,n < · · · < xn,n, the
zeros of quasi-orthogonal order 1 polynomials Mn(x;β + 1, c) by z1,n < z2,n < · · ·< zn,n and the zeros of orthogonal polynomials
Mn(x;β + 2, c) by y1,n < y2,n < · · ·< yn,n. By orthogonality, we have

y1,n < y1,n−1 < y1,n−2 < · · ·< y1,1 =
� c

1− c

�

(β + 2)

and, if c ∈ (0, 0.5], it follows from Lemma 2.1(i) that

y1,n < y1,n−1 < · · ·< y1,1 ≤ β + 2< 1.

Lemma 4.1. Suppose {Mn(x;β , c)}∞n=3 is a sequence of quasi-orthogonal order 2 Meixner polynomials with β ∈ (−2,−1) and
c ∈ (0, 1). Let {x i,n}ni=1 denote the zeros of Mn(x;β , c) and {yi,n}ni=1 the zeros of Mn(x;β + 2, c) in increasing order. If n> β

c−1 , the
zeros of Mn(x;β , c) are all distinct, positive and interlace with the (n− 1) zeros of Mn−1(x;β + 2, c) as follows:

x1,n < y1,n−1 < x2,n < · · ·< yn−1,n−1 < xn,n.
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Proof. The fact that the zeros of Mn(x;β , c) are simple and positive for n> β

c−1 was proved in [18, Thm 7] using [20, Thms 8
and 9] but also follows from earlier results due to Xu (cf. [31, Thms 5.1 and 5.3]). The interlacing of the zeros of Mn(x;β , c) and
Mn−1(x;β + 2, c) is a straightforward consequence of [20, Thm 10].

Remark 1. Lemma 4.1 applies to n≥ 3 and the case when n= 1 was discussed in Lemma 2.1. For n= 2, we have

M2(x;β , c) = x2 +
1+ c + 2β c

c − 1
x +

β(β + 1)c2

(c − 1)2

with zeros x =
2β c + c + 1±

p

4β c + (c + 1)2

2(1− c)
.

(i) M2(x;β , c) will have a double root, x = 2β c+c+1
2(1−c) , when β = − (c+1)2

4c and if β ∈ (−2,−1), this implies that c ∈
�

3− 2
p

2,1
�

.

(ii) M2(x;β , c) will have two distinct roots if β > − (c+1)2

4c . Since − (c+1)2

4c < −1 for all c ∈ (0, 1), there are two cases to consider.

When −2< − (c+1)2

4c , we will have 2 distinct roots when c ∈
�

3− 2
p

2,1
�

and −2< − (c+1)2

4c < β < −1 and in the case when

− (c+1)2

4c < −2, we will have two distinct real roots when c ∈
�

0, 3− 2
p

2
�

and β ∈ (−2,−1).

(iii) M2(x;β , c) will have two pure imaginary roots when β < − (c+1)2

4c , i.e., when c ∈
�

3− 2
p

2,1
�

and −2< β < − (c+1)2

4c < −1.

Next, we provide upper and lower bounds for the first three zeros of a quasi-orthogonal order 2 Meixner polynomial which we
need to prove our main results.
Lemma 4.2. Suppose {Mn(x;β , c)}∞n=3 is a sequence of quasi-orthogonal order 2 Meixner polynomials with β ∈ (−2,−1) and
c ∈ (0, 1). If n> β

c−1 and {x i,n}ni=1 denotes the zeros of Mn(x;β , c), then

0< x1,n < −β − 1< x2,n < 1< −β < 2< x3,n.

Proof. Fix β ∈ (−2,−1) and c ∈ (0,1) and suppose n ∈ N½3 with n > β

c−1 . Then −β and −β − 1 are not zeros of Mn(x;β , c),
since Mn(−β − 1;β , c) =

�

1
c−1

�n
(β − cn+ n) Γ (β+n)

Γ (β+1) = 0 only when n= β

c−1 and Mn(−β;β , c) =
�

1
c−1

�n
(β)n 6= 0.

Let y1,n < y2,n < · · ·< yn,n denote the zeros of Mn(x;β +2, c). From Lemma 4.1, we know that x1,n < y1,n−1. From Lemma 2.1(ii),
we know that y1,n < 1 for all n> (β+2)c

1−c , which implies y1,n−1 < 1 when n> (β+2)c
1−c + 1= β c+c+1

1−c . Since

β c+c+1
1−c
β

c−1

= −
β c + c + 1

β
< 1

for all β ∈ (−2,−1) and c > −1, i.e., also when c ∈ (0, 1), we have β c+c+1
1−c <

β

c−1 for all β ∈ (−2,−1) and c ∈ (0, 1). Consequently
x1,n < y1,n−1 < 1 when n> β

c−1 . Furthermore, since

Mn(1;β , c)
Mn(0;β , c)

=
β c + cn− n

β c
> 0

when n> β c
1−c , the polynomial Mn(x;β , c), has either no zero or an even number of zeros in (0, 1) and this holds true for all n≥ 0,

since β c
1−c < 0 if 0< c < 1 and −2< β < −1. Therefore, in the case when all the zeros of Mn(x;β , c), are real, i.e., when n> β

c−1 ,
we have 0< x1,n < x2,n < 1.

Now, for 0< c < 1, −2< β < −1 and n> β

c−1 , consider

Mn(−β − 1;β , c)
Mn(0;β , c)

=
n+ β − cn
β cn

< 0

and
Mn(−β − 1;β , c)

Mn(−β;β , c)
=

n+ β − cn
β

< 0.

Hence the polynomial Mn(x;β , c) has an odd number of zeros in each of the intervals (0,−β −1) and (−β −1,−β), therefore we
have

0< x1,n < −β − 1< x2,n < 1< −β < 2.

From the interlacing proved in Lemma 4.1, we know that, for all n> β

c−1 ,

x2,n < y2,n−1 < x3,n < y3,n−1 < x4,n. (9)

Since the zeros of the Meixner polynomials, in this case y2,n−1 and y3,n−1, are more than one unit apart, it follows naturally that
there cannot be 3 zeros of Mn(x;β , c) in the interval (−β − 1,−β), therefore x3,n > −β and we have the configuration

0< x1,n < −β − 1< x2,n < 1< −β < x3,n.
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Finally, we prove that x3,n > 2. From (9) and the fact that the zeros of Meixner polynomials are more than one unit apart, it
follows that x4,n > y3,n−1 > 2 for n> β

c−1 .

Consider

Mn(2;β , c)
Mn(−β;β , c)

= cn−2 β(β + 1)c2 + n(c − 1) [n(c − 1) + 2β c + c + 1]
β(β + 1)

.

The denominator as well as the first term in the numerator are positive for −2< β < −1. Since n> β

c−1 and 0< c < 1, we have
that n(c − 1)< β < −1 and

n(c − 1) + 2β c + c + 1< (2β + 1)c < −c.

Hence the expression n(c − 1)(n(c − 1) + 2β c + c + 1) is positive for n > β

c−1 , 0 < c < 1 and −2 < β < −1 and it follows that
Mn(2;β , c)

Mn(−β;β , c)
> 0. This implies that there are either no zeros or an even number of zeros of Mn(x;β , c) in the interval (−β , 2).

The inequalities x2,n < 1, x3,n > −β and x4,n > 2 imply that there cannot be any zeros of Mn(x;β , c) in (−β , 2) and hence
x3,n > 2.

The result in Lemma 4.2 is illustrated in Table 1.

Table 1: The values of x1,10, x2,10 and x3,10 for different values of β and c, in each case n> β
c−1 .

−β c β

c−1 x1,10 x2,10 x3,10

1.99 0.1 2.21 3.549 ∗ 10−14 0.999999999987 2.0000000038
1.99 0.5 3.98 1.351 ∗ 10−6 0.999961 2.00059
1.99 0.8 9.5 0.001545 0.990203 2.02091
1.5 0.1 1.67 1.953 ∗ 10−12 0.99999999904 2.00000054
1.5 0.5 3 0.0000535 0.9982 2.0474
1.5 0.8 7.5 0.0405146 0.811339 2.93765

1.01 0.1 1.12 1.230 ∗ 10−13 0.999999999911 2.0000024
1.01 0.5 2.02 2.418 ∗ 10−6 0.999893 2.1284
1.01 0.8 5.05 0.000973697 0.994013 3.8303

Theorem 4.3. Suppose {Mn(x;β , c)}∞n=3 is a sequence of quasi-orthogonal order 2 Meixner polynomials with β ∈ (−2,−1) and
c ∈ (0, 1). Let {x i,n}ni=1 be the zeros of Mn(x;β , c), {yi,n}ni=1 the zeros of Mn(x;β + 2, c) in ascending order and An =

β

c−1 −β − n− 1.

(a) If n≥ β

c−1 − (β + 1), then An ≤ 0 and the zeros of Mn(x;β , c) and Mn(x;β + 2, c) are interlacing:

x1,n < y1,n < x2,n < y2,n < · · ·< xn,n < yn,n. (10)

(b) There is at most one integer n∗ such that β

c−1 − (β +2)< n∗ < β

c−1 − (β +1) and 0< An∗ < 1. When n∗ ∈
�

β

c−1 , β

c−1 − (β + 1)
�

,
the zeros of Mn∗(x;β , c) and Mn∗(x;β + 2, c) interlace as in (10) if and only if An∗ < y1,n∗ .

Proof. Let c ∈ (0, 1) and β ∈ (−2,−1) be fixed. Since Mn−1(x ,β +2, c) and Mn(x;β +2, c) are polynomials of consecutive degree
in an orthogonal sequences, their zeros interlace and they do not have common zeros. Consider

�

β

n
+ 1

�

Mn(x;β , c) =
�

β

n
+ 1− c

�

Mn(x;β + 2, c) + c (x − An)Mn−1(x;β + 2, c), (11)

which can be verified by comparing coefficients of xn. It follows from (11) that Mn(x;β , c) and Mn(x;β + 2, c) can have at most
one common zero at x = An. Evaluating (11) at yk,n and yk+1,n, k ∈ {1, 2, . . . , n− 1}, consecutive zeros of Mn(x;β + 2, c), yields

�

β

n + 1
�2
/c2

Mn−1(yk,n;β + 2, c)Mn−1(yk+1,n;β + 2, c)
=

�

yk,n − An

� �

yk+1,n − An

�

Mn(yk,n;β , c)Mn(yk+1,n;β , c)
. (12)

The polynomial Mn(x;β + 2, c) belongs to an orthogonal sequence and since the zeros of two polynomials of consecutive degree,
belonging to the same orthogonal sequence, interlace, Mn−1(x;β + 2, c) will differ in sign at the two consecutive zeros yk,n and
yk+1,n of Mn(x;β + 2, c) for each k ∈ {1, 2, . . . , n− 1}, i.e., Mn−1(yk,n;β + 2, c)Mn−1(yk+1,n;β + 2, c)< 0 and the left hand side of
(12) is negative.
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(a) Suppose n ≥ β

c−1 − (β + 1). It is clear that An ≤ 0 (and vice versa). Furthermore, since β ∈ (−2,−1), we also have
n≥ β

c−1 − (β+1)> β

c−1 and it follows from Lemma 4.1 that the zeros of Mn(x;β , c) are positive and simple. Since the zeros
of Mn(x;β , c) and Mn(x;β + 2, c) are all positive and An, the only possible common zero, is negative, the two polynomials
cannot have any common zeros in this case. Furthermore, An /∈ (yk,n, yk+1,n) for each k ∈ {1,2, . . . , n− 1} which implies
that the numerator on the right hand side of (12) is positive. Since the quotient on the right hand side of (12) must be
negative, Mn(yk,n;β , c)Mn(yk+1,n;β , c)< 0 for each k ∈ {1,2, . . . , n− 1}, i.e., the polynomial Mn(x;β , c) differs in sign at
the zeros of Mn(x;β+2, c), therefore the zeros of Mn(x;β , c) and Mn(x;β+2, c) interlace. Since n≥ β

c−1 −(β+1)> (β+2)c
1−c

for c ∈ (0, 1) and β ∈ (−2,−1), the condition of Lemma 2.1(ii) is met and we have y2,n > 1. Using Lemma 4.2, we deduce
that the zeros interlace as follows:

0< x1,n < y1,n < x2,n < 1< y2,n < · · ·< xn,n < yn,n.

(b) β

c−1 − (β + 2)< n< β

c−1 − (β + 1) if and only if 0< An < 1 and since

β

c − 1
− (β + 1)−

�

β

c − 1
− (β + 2)

�

= 1,

n lies in an interval of length 1 and there is at most one value of n, say n∗, such that 0 < An∗ < 1. When n∗ ∈
�

β

c−1 , β

c−1 − (β + 1)
�

, all the zeros of Mn(x;β , c) are positive and simple. If Mn∗ (x;β , c) and Mn∗ (x;β+2, c) have a common
zero at An∗ , i.e. Mn∗ (An∗ ;β , c) = Mn∗ (An∗ ;β+2, c) = 0, the zeros of Mn∗ (x;β , c) and Mn∗ (x;β+2, c) clearly do not interlace.
Suppose An∗ < y1,n∗ , then the zeros interlace as in (10) by the same argument as in (a). On the other hand, suppose the
zeros interlace as in (10). Since 0< An∗ < 1, the only possibility is that An∗ < y1,n∗ .

Remark 2. In the limited number of cases, where n ≤ β

c−1 − (β + 2), the two smallest zeros of Mn(x;β , c) are complex and
numerical examples indicate that the (n− 2) remaining real zeros interlace with the largest (n− 2) zeros of the orthogonal
polynomial Mn(x;β + 2, c).

Next, we prove that if 0< c < 1 and −2< β < −1 are fixed, the (n−1) zeros of Mn−1(x;β , c) do not interlace with the n zeros of
Mn(x;β , c) for any value of n ∈ N½4.
Theorem 4.4. Suppose {Mn(x;β , c)}∞n=3 is a sequence of quasi-orthogonal order 2 Meixner polynomials with β ∈ (−2,−1) and
c ∈ (0,1). Assume that β , c and n are such that Mn(x;β , c) and Mn−1(x;β , c) have no common zeros. When n − 1 > β

c−1 , if
{x i,n}ni=1 are the zeros of Mn(x;β , c) in increasing order, the n zeros of (x + β)Mn−1(x;β , c) interlace with the (n + 1) zeros of
(x + β + 1)Mn(x;β , c) as follows:

0< x1,n < x1,n−1 < −β − 1< x2,n−1 < x2,n < −β < x3,n < x3,n−1 < x4,n < · · · (13)

< xn−1,n < xn−1,n−1 < xn,n.

Proof. Let n− 1> β

c−1 , −2< β < −1 and 0< c < 1. Evaluating the mixed recurrence relation
�

x +
β(c − 2)

c − 1
+ n

�

Mn(x;β , c) = −
(β + n− 1)(β − cn+ n)

(c − 1)2
Mn−1(x;β , c) + (β + x)2Mn−1(x;β + 2, c), (14)

at zeros x i,n and x i+1,n, i ∈ {1, 2, . . . , n− 1} of Mn(x;β , c), we obtain

�

(β+n−1)(β−cn+n)
(c−1)2

�2

Mn−1(x i,n;β + 2, c)Mn−1(x i+1,n;β + 2, c)
=
(x i,n + β)(x i,n + β + 1)(x i+1,n + β)(x i+1,n + β + 1)

Mn−1(x i,n;β , c)Mn−1(x i+1,n;β , c)
. (15)

We know from Lemma 4.1 that, for n> β

c−1 , the zeros of Mn(x;β , c) interlace with the (n−1) zeros of Mn−1(x;β +2, c), therefore
Mn−1(x i,n;β + 2, c)Mn−1(x i+1,n;β + 2, c)< 0 for i ∈ {1, . . . , n− 1} and the left hand side of (15) is negative.

For each i ∈ {3, 4, . . . , n}, since x i,n > −β from Lemma 4.2, the numerator on the right hand side of (15) is positive, consequently
Mn−1(x i,n;β , c)Mn−1(x i+1,n;β , c)< 0 and this implies that each of the intervals (x i,n, x i+1,n), i ∈ {3, 4, . . . , n− 1} contains an odd
number of zeros of Mn−1(x;β , c). Lemma 4.2 with n replaced by n−1 implies that x1,n−1 < x2,n−1 < −β for n−1> β

c−1 and we see
that there is exactly one of the remaining (n−3) zeros of Mn−1(x;β , c) in each of the (n−3) intervals (x i,n, x i+1,n), i ∈ {3, 4, . . . , n−1},
i.e.

0< x1,n−1 < −β − 1< x2,n−1 < 1< −β < x3,n < x3,n−1 < x4,n < · · ·< xn,n−1 < xn−1,n−1 < xn,n (16)

To determine the relative positioning of the two smallest zeros of Mn−1(x;β , c)with respect to the two smallest zeros of Mn(x;β , c),
consider (15) for i ∈ {1, 2}. Applying Lemma 4.2 to the zeros of Mn(x;β , c), we see that the numerator on the right hand side in
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(15) is negative in each case. Hence, Mn−1(x1,n;β , c)Mn−1(x2,n;β , c)> 0 and Mn−1(x2,n;β , c)Mn−1(x3,n;β , c)> 0, which implies
that either no zeros or an even number of zeros of Mn−1(x;β , c) lie in each of the intervals (x1,n, x2,n) and (x2,n, x3,n). Considering
(16) and keeping in mind that x1,n < −β − 1 < x2,n < 1 < −β < x3,n by Lemma 4.2, we see that the only possibility is for the
zeros to be arranged as described in (13).

Remark 3.

(i) Since the zeros of two quasi-orthogonal order 2 Meixner polynomials of consecutive degree do not separate each other, the
sequence of Meixner polynomials {Mn(x;β , c)}∞n=3 with −2< β < −1 and c ∈ (0, 1) is not orthogonal with respect to any
positive measure.

(ii) Although the zeros of orthogonal Meixner polynomials, for c ∈ (0,1) and β > 0, are monotonically increasing as β
increases (cf. [16, Thm 7.1.2]), the zeros of quasi-orthogonal order 1 and 2 Meixner polynomials are, in general, not
monotonically increasing as β increases. For example, for −1 < β < 0, the smallest zero is always negative, while for
−2< β < −1 and n> β

c−1 , the smallest zero is positive. The zeros of Mn(x;β , c) for a fixed value of n and c ∈ (0, 1) and
two different values of −2< β < −1, shown in Table 2, clearly illustrates an example where x2,n decreases as β increases.

Table 2: The values of x1,5, x2,5, x3,5, x4,5 and x5,5 for c = 0.2 and two different values of β .

β x1,5 x2,5 x3,5 x4,5 x5,5

−1.9 0.000000904 0.999651 2.006685 3.445917 6.1727379
−1.8 0.0000169239 0.999321 2.0144 3.48815 6.24811
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