
Special Issue FAATNA20>22: Functional Analysis, Approximation Theory and Numerical Analysis Volume 16 · 2023 · Pages 39–47

The representation of the limit of power series
of positive linear operators by using

the semigroup of operators generated by their iterates
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1 Introduction

For an operator L, denote by Lk its iterates: Lk = L ◦ · · · ◦ L, k times, if k ≥ 1 with L0 = I , being the identity operator.
If (Ln)n, Ln : C[0,1]→ C[0, 1] is a sequence of positive linear operators, the geometric series of Ln is of the form

βn

∞
∑

k=0

(Ln)
k, n ∈ N (1)

where βn ∈ R is a normalization factor. It is obvious that the geometric series is not defined for any function in C[0,1]. For
instance, with the hypothesis that Ln preserve constant functions, then the operators in (1) are not defined for such functions. In
order to define this geometric series of operators it is necessary to restrict the domain of definition of operators. A space that can
be taken in consideration is

ψC[0, 1] = { f |∃g ∈ C[0,1], f =ψ · g}. (2)

where ψ(x) = x(1− x) and the norm on ψC[0,1] is given by

‖ψg‖ψ = ‖g‖, ψg ∈ψC[0, 1], (3)

where ‖ · ‖ denotes the uniform norm.
A first study of the convergence of geometric series attached to a sequence of operators (Ln)n was made in paper [13], namely

the case when Ln are the Bernstein operators, Bn. Here it is shown that one can define operators An :ψC[0, 1]→ψC[0,1],

An =
1
n

∞
∑

k=0

(Bn)
k, n ∈ N

and this sequence has a limit when n→∞ in the space (ψC[0, 1],‖ · ‖ψ), which can be explicitly described.
In this direction several papers extended this study for diverse classes of positive linear operators and for other spaces of

functions, see [1], [2], [3], [10], [13], [15], [16].
Recently, in the paper by Acar, Aral and Raşa, [4] it is given a new way to describe the uniform limit of geometric series of

form (1) using the semigroup of operators generated by the iterates of Ln.
Our aim is to study the convergence of more general power series of the form:

∞
∑

k=0

βn,k(Ln)
k (4)

using the C0-semigroup generated by the iterates of operators Ln. The framework of our approach differs from the study made in
[4] in the sense that we consider another type of operators, another space of functions and a stronger type of convergence.
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2 Preliminaries

Denote N= {1, 2, . . .}, N0 = N∪ {0}. Denote by Π the set of polynomials and for r ∈ N0, denote by Πr , the space of polynomials
of degree at most r. The monomial functions are given by e j(x) = x j , (x ∈ [0, 1], j ∈ N0). Also, if y ∈ R and r ∈ N0, denote by
(y)r , the falling factorial: (y)r = y(y − 1) . . . (y − r + 1), with (y)0 = 1.

Besides the space ψC[0,1], given in (2), we consider the space, (see [3]):

Cψ[0,1] = { f | ∃g ∈ B[0,1]∩ C(0,1), f =ψg}. (5)

This is an extension of space ψC[0, 1] and it can be endowed with the same norm:

‖ψg‖ψ = ‖g‖, ψg ∈ Cψ[0, 1]. (6)

This norm can be also defined as

‖ f ‖ψ = sup
x∈(0,1)

| f (x)|
x(1− x)

, f ∈ Cψ[0,1]. (7)

One can write also,
Cψ[0,1] = { f ∈ C[0,1], ‖ f ‖ψ <∞}.

The space Cψ[0, 1] endowed with the norm ‖ · ‖ψ is a Banach space, but it is not a Banach space with regard to the sup-norm ‖ · ‖,
since

ψC[0,1] = Cψ[0,1] = C0[0,1],

where C0[0, 1] = { f ∈ C[0, 1]| f (0) = 0, f (1) = 0}.
Note that if f , fn ∈ Cψ[0, 1], n ∈ N and ‖ f − fn‖ψ→ 0, (n→∞) then ‖ f − fn‖ → 0, (n→∞). For this reason, we can name

‖ · ‖ψ the strong norm on the space Cψ[0,1].
If L : Cψ[0, 1]→ Cψ[0,1] is a linear bounded operator we will use the notation

‖L‖ψ = sup
‖ f ‖ψ≤1

‖L f ‖ψ. (8)

In the sequel we consider a sequence (Ln)n of positive linear operators Ln : C[0, 1]→ C[0, 1], Ln 6= I , satisfying the following
conditions.

A1) There exist α ∈ (0,1) and αn ∈ (0, 1), n ∈ N such that Ln(ψ) = (1−αn)ψ, n ∈ N and limn→∞ nαn = α.
A2) The operator Ln admits the eigenvalues an, j associated to eigenpolynomials pn, j , 0≤ j ≤ n, with deg pn, j = j, where, for

a polynomial p we denote by deg p, the degree of p.
A3) There exist polynomials p j , j ≥ 0, such that limn→∞ pn, j = p j , j = 0,1, . . . .
A4) For any j ≥ 0 there exists l j ∈ (0,1], such that

lim
n→∞

(an, j)
n = l j

and moreover if l j = 1, then an, j = 1, for all n ∈ N.
A5) We have Ln(ψΠ) ⊂ψΠ.
A6) There exists a C0 - semigroup of operators (T (t))t>0, such that

T (t) f = lim
n→∞

(Ln)
kn f , uniformly for f ∈ C[0,1], t ≥ 0, (9)

if kn ∈ N, limn→∞
kn
n = t.

From conditions A1)-A6) one can deduce the following consequences.

Remark 1. Because Ln is a positive linear operator and Ln 6= I , from condition A4) there are at most two values of j ≥ 0, for
which l j = 1.

Remark 2. Condition A4) implies that

lim
n→∞

an, j = 1, and lim
n→∞

n(1− an, j) = − ln l j , j = 0,1, . . . . (10)

Remark 3. Conditions A3), A4) and A6) imply

T (t)p j = l t
j p j , j ∈ N0, t ≥ 0. (11)

Note that condition A6) is assured in certain hypothesis by Trotter’s theorem, ([17]).

Remark 4. For r ≥ 0, because the polynomials pn, j , 0 ≤ j ≤ r have the property deg pn, j = j, they form a basis of Πr and
consequently Ln(Πr) ⊂ Πr . Then, by induction, Lk

n(Πr) ⊂ Πr , k ∈ N, for any n, k ∈ N. From condition A6) it results that
T (t)(Πr) ⊂ Πr , r ∈ N0.
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Remark 5. We mention that the first part of condition A1) is a consequence of the following conditions: Ln(e j) = e j , j = 0, 1 and
Ln(Π2) ⊂ Π2. Indeed, it is proved in [3] that if L : C[0,1]→ C[0,1] is a positive linear operator such that Ln(e j) = e j , j = 0,1
and Ln(Π2) ⊂ Π2, then there exists β ∈ [0,1) such that Lψ= βψ.

Also, condition A5) is a consequence of the following conditions: Ln(C[0,1]) ⊂ Π and Ln(e j) = e j , j = 0,1. Indeed, in
this case we have Ln f (0) = f (0) and Ln f (1) = f (1), for any f ∈ C[0,1]. Consequently, for f ∈ ψC[0,1] it follows that
Ln f (0) = Ln f (1) = 0 and hence Ln(ψC[0,1]) ⊂ψΠ.

Finally we need the following lemmas.

Lemma 2.1. For any t ≥ 0 one has T (t)(Cψ[0,1]) ⊂ Cψ[0,1] and

‖T (t)‖ψ = e−αt . (12)

Proof. Let f ∈ Cψ[0,1]. Since | f | ≤ ‖ f ‖ψψ, one obtains |Ln f | ≤ Ln| f | ≤ ‖ f ‖ψLnψ= (1−αn)‖ f ‖ψψ. Hence, by induction we
have for k ∈ N that |Lk

n f | ≤ (1−αn)
k ‖ f ‖ψψ. Take k = kn, such that kn/n→ t. We get

|(Lkn
n f )(x)|
ψ(x)

≤ (1−αn)
kn ‖ f ‖ψ, x ∈ (0,1).

By passing to the limit as n→∞ it follows that

|(T (t) f )(x)|
ψ(x)

≤ lim
n→∞

(1−αn)
kn ‖ f ‖ψ = e−αt‖ f ‖ψ.

Then T(t) f ∈ Cψ[0,1] and ‖T(t)‖ψ ≤ e−αt . Finally, taking f = ψ one gets T(t)ψ = limn→∞ (1−αn)
kn ψ = e−αtψ. So,

‖T (t)‖ψ = e−αt .

Lemma 2.2. Let r ∈ N. If a sequence of polynomials (σn)n, σn ∈ ψΠr is uniformly convergent to a polynomial σ? ∈ ψΠr , then
sequence (σn)n converges to σ? in the norm ‖ · ‖ψ as well.

Proof. Let qn, q? ∈ Πr , n ∈ N be such that σn =ψqn and σ? =ψq?. Because σn converges uniformly to σ?, the coefficients of
σn converge to the corresponding coefficients of σ?. But this implies that the coefficients of qn converge to the corresponding
coefficients of q?. This means that (qn)n converges uniformly to q?, which is equivalent to the fact that (σn)n converges in norm
‖ · ‖ψ to σ?.

3 Main results

A main tool for our purpose is the following lemma.

Lemma 3.1. For p ∈ Π, s ∈ N0, t ≥ 0 and a sequence of positive integers (kn)n such that kn/n→ t, (n→∞) there exists the limit:

lim
n→∞

1
ks+1

n

kn
∑

i=0

(i)s(Ln)
i p =

1
t s+1

∫ t

0

us T (u)pdu. (13)

uniformly, where (i)s = i(i − 1) . . . (i − s+ 1).

Proof. First, let us remark that if we take p ∈ Πr \Πr−1, then we can write (n≥ r):

p =
r
∑

j=0

γn, j pn, j , with γn, j ∈ R, γn,r 6= 0.

This means that
kn
∑

i=0

(i)s(Ln)
i p =

kn
∑

i=0

(i)s(Ln)
i

r
∑

j=0

γn, j pn, j

=
r
∑

j=0

γn, j

� kn
∑

i=0

(i)s(an, j)
i

�

pn, j . (14)

We show that there exist the finite limits

ηs
j := lim

n→∞

1
ks+1

n

kn
∑

i=0

(i)s(an, j)
i , for j, s ∈ N0. (15)

First we will need a formula for the sum
∑k

i=0(i)s x i , x 6= 1. We have that
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k
∑

i=0

(i)s x i =
k
∑

i=0

x s d s

d x s
(x i)

= x s d s

d x s

�

1− x k+1

1− x

�

= x s

�

s!(1− x k+1)
(1− x)s+1

−
s
∑

ν=1

�

s
ν

�

(k+ 1)νx k+1−ν (s− ν)!
(1− x)s−ν+1

�

,

where the sum is null in the case s = 0.
First we consider that j ≥ 0 is such that l j ∈ (0,1). Take n sufficiently large such that an, j ∈ (0,1). Now, replacing x by an, j

and k by kn in the formula from above and then using condition A4) and the limit (10) we get:

ηs
j = lim

n→∞
as

n, j

ns+1

ks+1
n





s!(1− (an
n, j)

kn+1
n )

[n(1− an, j)]s+1

−
s
∑

ν=1

�

s
ν

�

(kn + 1)νa
kn+1−ν
n, j

(s− ν)!
[n(1− an, j)s−ν+1]nν

�

=
1

t s+1

� s!(1− l t
j )

(− ln l j)s+1
−

s
∑

ν=1

s!
ν!

l t
j

(− ln l j)s−ν+1
tν
�

=
1

t s+1

�

s!
(− ln l j)s+1

−
s
∑

ν=0

s!
ν!

l t
j

(− ln l j)s−ν+1
tν
�

. (16)

Using Taylor’s polynomial with integral remainder for function f (t) = l t
j /(ln l j)β , with β ∈ N one has:

l t
j

(ln l j)β
=
β−1
∑

µ=0

tµ

µ!
1

(ln l j)β−µ
+

∫ t

0

(t − u)β−1

(β − 1)!
lu

j du. (17)

Using formula (17), we can see that

s!
(− ln l j)s+1

−
s
∑

ν=0

s!
ν!

l t
j

(− ln l j)s−ν+1
tν

= (−1)s+1 s!
(ln l j)s+1

−
s
∑

ν=0

(−1)s−ν+1 s!
ν!

tν
s−ν
∑

µ=0

tµ

µ!
1

(ln l j)s−ν−µ+1

−
s
∑

ν=0

(−1)s−ν+1 s!
ν!

tν
∫ t

0

(t − u)s−ν

(s− ν)!
lu

j du. (18)

But, using the substitution ζ= µ+ ν one obtains

(−1)s+1 s!
(ln l j)s+1

−
s
∑

ν=0

(−1)s−ν+1 s!
ν!

tν
s−ν
∑

µ=0

tµ

µ!
1

(ln l j)s−ν−µ+1

= (−1)s+1 s!
(ln l j)s+1

+
s
∑

ν=0

s−ν
∑

µ=0

(−1)s−ν
tν+µ

ν!µ!
s!

(ln l j)s−ν−µ+1

= (−1)s+1 s!
(ln l j)s+1

+
s
∑

ζ=0

(−1)s−ζ
tζ

ζ!
s!

(ln l j)s−ζ+1

ζ
∑

µ=0

(−1)µ
�

ζ

µ

�

= (−1)s+1 s!
(ln l j)s+1

+ (−1)s
s!

(ln l j)s+1

= 0. (19)

So, from (16), (18) and (19) we obtain

ηs
j =

1
t s+1

s
∑

ν=0

(−1)s−ν
s!
ν!

tν
∫ t

0

(t − u)s−ν

(s− ν)!
lu

j du

=
1
t

∫ t

0

s
∑

ν=0

(−1)s−ν
�

s
s− ν

�

� t − u
t

�s−ν
lu

j du

=
1
t

∫ t

0

�u− t
t
+ 1

�s

lu
j du

=
1

t s+1

∫ t

0

us lu
j du.

Dolomites Research Notes on Approximation ISSN 2035-6803



GAROIU · PĂLTĂNEA 43

In addition, in the case when j ≥ 0 is such that l j = 1, it follows from condition A4) that an, j = 1 for all n ∈ N. By a simple
computation we get ηs

j = 1/(s+ 1). Then we conclude that for all j, s ∈ N0 one has:

ηs
j =

1
t s+1

∫ t

0

us lu
j du. (20)

From (15) and (20) it follows

lim
n→∞

1
ks+1

n

kn
∑

i=0

(i)s(an, j)
i =

1
t s+1

∫ t

0

us lu
j du, for j, s ∈ N0 (21)

On the other hand we can also represent p as p =
∑r

j=0 γ j p j , where polynomials p j are given in A3). There exist the following
limits:

lim
n→∞

γn, j = γ j , 0≤ j ≤ r. (22)

Indeed, since pn, j converges uniformly to p j it follows that all the coefficients of pn, j converge to the corresponding coefficients
of p j . If q is a polynomial, we denote by coeffs(q) the coefficient of x s in q. One has coeffr(γn,r pn,r) = coeffr(p) = coeffr(γr pr).
Because coeffr(pn,r) 6= 0, coeffr(pr) 6= 0, and coeffr(pn,r)→ coeffr(pr) it follows that γn,r → γr . Then one can proceed by induction.

Suppose that γn, j → γ j , for s ≤ j ≤ r, s ≥ 1. We have coeffs−1(γn,s−1pn,s−1)= coeffs−1

�

∑s−1
j=0 γn, j pn, j

�

= coeffs−1

�

p−
∑r

j=s γn, j pn, j

�

→ coeffs−1

�

p−
∑r

j=s γ j p j

�

= coeffs−1

�

∑s−1
j=0 γ j p j

�

= coeffs−1(γs−1ps−1). From this it follows γn,s−1→ γs−1. Relation (22) is proved.
Therefore, taking into account condition A3), (14), (21) and (22) it follows that

lim
n→∞

1
ks+1

n

kn
∑

i=0

(i)s(Ln)
i p =

1
t s+1

r
∑

j=0

γ j

∫ t

0

us lu
j du · p j . (23)

On the other hand, using (11) we will obtain
∫ t

0

us T (u)p du=

∫ t

0

us T (u)

�

r
∑

j=0

γ j p j

�

du=
r
∑

j=0

γ j

∫ t

0

us lu
j du · p j . (24)

So, from (23) and (24) we have that

lim
n→∞

1
ks+1

n

kn
∑

i=0

(i)s(Ln)
i p =

1
t s+1

∫ t

0

(T (u)p)usdu,

which ends our proof.

Corollary 3.2. For any p ∈ψΠ, s ∈ N0, t > 0 and a sequence of positive integers (kn)n such that kn/n→ t, (n→∞) there holds

lim
n→∞











1
ks+1

n

kn
∑

i=0

(i)s(Ln)
i p−

1
t s+1

∫ t

0

us T (u)pdu











ψ

= 0. (25)

Proof. Let p ∈ψΠr−2, r ≥ 2 and also t > 0, s ∈ N0 and (kn)n, like in Lemma 3.1. From condition A5) and Remark 4 there exist
qn ∈ Πr−2, n ∈ N0 and q? ∈ Πr−2 such that k−s−1

n

∑kn
i=0(i)s(Ln)i p = ψqn and t−s−1

∫ t

0
us T(u)pdu = ψq?. From Lemma 3.1, the

sequence (ψqn)n converges uniformly to ψq? and from Lemma 2.2 the sequence (ψqn)n converges in norm ‖ · ‖ψ to ψq?. This
means that (25) is satisfied.

Now we need the following theorem, which with modified notations, follows from a result proved in the book of Nachbin
[12], see Lemma 2, pg. 95.

Theorem A Let b > 0. For any function f ∈ C[0,∞), such that f (x)e−bx → 0, (x → ∞), and any ε > 0 there exist a
polynomial p such that

sup
x∈[0,∞)

e−bx | f (x)− p(x)|< ε.

In the terminology from [12], the function e−bx , x ≥ 0 is a fundamental weight.

Define the space:
C̃α[0,∞) = {g ∈ C[0,∞)| ∃b ∈ (0,α), lim

x→∞
g(x)e−bx = 0}. (26)

Our main result is the following:

Theorem 3.3. If g ∈ C̃∞[0,∞) and f ∈ψC[0,1] then

lim
n→∞









1
n

∞
∑

i=0

g
�

i
n

�

(Ln)
i f −

∫ ∞

0

g(t)T (t) f d t









ψ

= 0. (27)
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Proof. From Lemma 2.1 we obtain
∫ ∞

0

‖g(t)T (t) f ‖ψd t ≤
∫ ∞

0

|g(t)| · ‖T (t)‖ψ‖ f ‖ψd t = ‖ f ‖ψ

∫ ∞

0

|g(t)|e−αt d t <∞.

It follows that the integral in (27) exists and is absolutely convergent.
First, we will prove that, for a fixed m ∈ N and p ∈ψΠ we have:

lim
n→∞









1
n

∞
∑

i=0

�

i
n

�m

(Ln)
i p−

∫ ∞

0

umT (u)pdu









ψ

= 0. (28)

Let ε > 0. Because the integral from (28) is convergent we can fix a number t > 0 such that








∫ ∞

t

umT (u)pdu









ψ

< ε. (29)

Also we have
1
n

∞
∑

i=0

�

i
n

�m

‖(Ln)
i p‖ψ ≤

1
n

∞
∑

i=0

�

i
n

�m

(1−αn)
i ‖p‖ψ <∞, n ∈ N.

Then the series in (28) is absolutely convergent.
Take a sequence of positive integers (kn)n such that kn/n→ t, (n→∞). Consequently there exists n1

ε
∈ N, such that











1
n

∞
∑

i=kn+1

�

i
n

�m

(Ln)
i p











ψ

< ε, for n≥ n1
ε
. (30)

For n≥ n1
ε

one has










1
n

kn
∑

i=0

�

i
n

�m

(Ln)
i p−

∫ t

0

umT (u)pdu











ψ

≤
1

nm+1











kn
∑

i=0

im(Ln)
i p−

kn
∑

i=0

(i)m(Ln)
i p











ψ

+

�

�

�

�

�

kn

n

�m+1

− tm+1

�

�

�

�

·











1
km+1

n

kn
∑

i=0

(i)m(Ln)
i p











ψ

+tm+1











1
km+1

n

kn
∑

i=0

(i)m(Ln)
i p−

1
tm+1

∫ t

0

umT (u)pdu











ψ

=: T n
1 + T n

2 + T n
3 .

Using Stirling numbers sm, j , 0≤ j ≤ m, i.e. im =
∑m

j=0 sm, j(i) j we can write

T n
1 =

�

kn

n

�m+1










1
km+1

n

kn
∑

i=0

m
∑

j=0

sm, j(i) j(Ln)
i p−

1
km+1

n

kn
∑

i=0

(i)m(Ln)
i p











ψ

=
�

kn

n

�m+1










1
km+1

n

kn
∑

i=0

m−1
∑

j=0

sm, j(i) j(Ln)
i p











ψ

≤
�

kn

n

�m+1 m−1
∑

j=0

sm, j

km− j
n











1

k j+1
n

kn
∑

i=0

(i) j(Ln)
i p











ψ

.

Then, from Corollary 3.2, limn→∞ T n
1 = 0, since (kn/n)m+1 → tm+1 and k− j−1

n

∑kn
i=0(i) j(Ln)i p is bounded in ‖ · ‖ψ norm. Also,

using again Corollary 3.2, for s = m and (kn/n)m+1→ tm+1 we get limn→∞ T n
2 = 0 and limn→∞ T n

3 = 0, Consequently there exists
n2
ε
∈ N, n2

ε
> n1

ε
, such that











1
n

kn
∑

i=0

�

i
n

�m

(Ln)
i p−

∫ t

0

umT (u)pdu











ψ

< ε, for n≥ n2
ε
. (31)

Then (28) follows from (29), (30) and (31).
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Now, let f ∈ψC[0,1] and ε > 0. Then there is p ∈ψΠ such that ‖ f − p‖ψ < ε. Like in the proof of Lemma 2.1 we deduce
that ‖(Ln)i‖ψ = (1−αn)i , for i ∈ N0. We have that









1
n

∞
∑

i=0

�

i
n

�m

(Ln)
i f −

1
n

∞
∑

i=0

�

i
n

�m

(Ln)
i p









ψ

≤
1
n

∞
∑

i=0

�

i
n

�m

‖(Ln)
i‖ψ‖ f − p‖ψ

< ε
1
n

∞
∑

i=0

�

i
n

�m

(1−αn)
i

= ε
1

nm+1

∞
∑

i=0

m
∑

j=0

sm, j(i) j(1−αn)
i

= ε

m
∑

j=0

sm, j
1

nm+1
(1−αn)

j
∞
∑

i= j

(i) j(1−αn)
i− j

= ε

m
∑

j=0

sm, j(1−αn)
j 1
nm+1

j!
(αn) j+1

.

Condition A1) implies that limn→∞ nαn = α. Hence there is M > 0 and nε ∈ N such that








1
n

∞
∑

i=0

�

i
n

�m

(Ln)
i f −

1
n

∞
∑

i=0

�

i
n

�m

(Ln)
i p









ψ

< εM , n≥ nε. (32)

Also,








∫ ∞

0

umT (u)pdu−
∫ ∞

0

umT (u) f du









ψ

≤
∫ ∞

0

um‖T (u)(p− f )‖ψdu

≤ ε
∫ ∞

0

um‖T (u)‖ψdu≤ ε
∫ ∞

0

ume−αudu. (33)

From (28), (32) and (33), since for a given m, the number ε > 0 can be chosen arbitrarily, one obtains

lim
n→∞









1
n

∞
∑

i=0

�

i
n

�m

(Ln)
i f −

∫ ∞

0

umT (u) f du









ψ

= 0, (34)

for any m ∈ N0 and f ∈ψC[0,1]. Then, from (34), for any q ∈ Π and f ∈ψC[0,1], we have

lim
n→∞









1
n

∞
∑

i=0

q
�

i
n

�

(Ln)
i f −

∫ ∞

0

q(u)T (u) f du









ψ

= 0. (35)

Now, let g ∈ C̃α[0,∞). There exists b ∈ (0,α), such that limx→∞ g(x)e−bx = 0. For ε > 0, from Theorem A there exists q ∈ Π
such that

|q(x)− g(x)|e−bx < ε, x ∈ [0,∞).
Therefore, for f ∈ψC[0,1], we have









∫ ∞

0

q(u)T (u) f du−
∫ ∞

0

g(u)T (u) f du









ψ

≤
∫ ∞

0

|g(u)− q(u)| · ‖T (u) f ‖ψdu

≤ ε
∫ ∞

0

ebu‖T (u)‖ψ · ‖ f ‖ψdu

= ε‖ f ‖ψ

∫ ∞

0

ebue−αudu

= ε‖ f ‖ψ
1

α− b
. (36)

Similarly,








1
n

∞
∑

i=0

g
�

i
n

�

(Ln)
i f −

1
n

∞
∑

i=0

q
�

i
n

�

(Ln)
i f









ψ

≤
1
n

∞
∑

i=0

�

�

�

�

g
�

i
n

�

− q
�

i
n

�

�

�

�

�

‖Ln‖i
ψ
‖ f ‖ψ

<
ε

n

∞
∑

i=0

eb i
n (1−αn)

i ‖ f ‖ψ

=
ε

n
‖ f ‖ψ

1
1− eb/n(1−αn)

.
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Since limn→∞
1

n(1−eb/n(1−αn))
= 1

α−b , there is M > 0 such that









1
n

∞
∑

i=0

g
�

i
n

�

(Ln)
i f −

1
n

∞
∑

i=0

q
�

i
n

�

(Ln)
i f









ψ

< εM . (37)

Because ε > 0 can be chosen arbitrarily in (36) and (37), by taking into account (35) we get (23).

4 Applications

1. Bernstein operators
Let Bn : C[0, 1]→ C[0,1] be the Bernstein operators defined as:

(Bn f )(x) =
n
∑

k=0

pn,k(x) f
�

k
n

�

,

where

pn,k(x) =
�

n
k

�

x k(1− x)n−k, 0≤ k ≤ n, x ∈ [0, 1].

Operators Bn satisfy conditions A1)-A6), see [6], [7] and [11]. More exactly, we have Bnψ =
n−1

n ψ and hence αn = 1/n and
α= 1. Bn admits the eigenvalues an, j corresponding to the eigenpolynomials pn, j , 0≤ j ≤ n, with deg pn, j = j and

l j := lim
n→∞

an
n, j = e− j( j−1)/2, j ∈ N0.

For j = 0, 1, we have pn, j(t) = e j and Bn(e j) = e j . The existence of the polynomials p j = limn→∞ pn, j is proved in [7]. Finally the
existence of the semigroup of operators generated by the iterates of Bn is given, for instance in [5].

2. Operators Uρn
For ρ > 0 and n ∈ N, n≥ 2, operators Uρn are defined, (see [8]), [14], as follows:

(Uρn f )(x) =
n
∑

k=0

pn,k(x)F
ρ

n,k( f ), f ∈ C[0,1], x ∈ [0, 1],

where

Fn,0( f ) = f (0), Fn,n( f ) = f (1);

Fn,k( f ) =

∫ 1

0

f (t)
tkρ−1(1− t)(n−k)ρ−1

B(kρ, (n− k)ρ)
d t, 1≤ k ≤ n− 1.

The eigenstructure of these operators was investigated in [9].
These operators also satisfy the conditions A1)-A6). More precisely we have the following: Uρnψ =

n−1
nρ+1ψ, thus we can

take αn =
ρ+1
nρ+1 and α = 1. Then, Uρn admits the eigenpolynomials pn, j , 0 ≤ j ≤ n, with deg pn, j = j. Moreover pn, j = e j and

Uρn (e j) = e j , for j = 0,1. The eigenvalues are, see [9]:

an, j = ρ
j n(n− 1) . . . (n− j + 1)
(nρ)(nρ + 1) . . . (nρ + j − 1)

, 0≤ j ≤ n.

Therefore we have
l j := lim

n→∞
an

n, j = e−
j( j−1)

2 · ρ+1
ρ , j ≥ 0.

The existence of limit polynomials p j = limn→∞ pn, j is also shown in [9]. For proving the existence of the semigroup of operators
generated by the iterates of operators Uρn one can apply Corollary 2.2.11 from [5].
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