Strongly convex squared norms

Ana-Maria Acu ${ }^{a} \cdot$ Ioan Rasa $^{b} \cdot$ Ancuţa Emilia Şteopoaie c
Communicated by Stefano De Marchi

Abstract

Normed spaces for which the squared norm is strongly conves are intensively studied in literature. This note is motivated by the fact that a strongly convex squared norm plays a role in quantitative Korovkin approximation. We are concerned especially with the strong convexity of $\|\cdot\|_{p}^{2}$ on $\mathbb{R}^{2}, 1<p<2$.

1 Introduction

Let $(E,\|\cdot\|)$ be a real normed space. For $0<\varepsilon \leq 2$ let $\delta_{E}(\varepsilon):=\inf \left\{1-\frac{\|x+y\|}{2}:\|x\|=\|y\|=1,\|x-y\|=\varepsilon\right\}$.
$(E,\|\cdot\|)$ is called uniformly convex if $\delta_{E}(\varepsilon)>0$ for all $\varepsilon \in(0,2]$. It is called strictly convex if the unit sphere does not contain segments; equivalently, if $\delta_{E}(2)=1$.

Let $c>0 .\|\cdot\|^{2}$ is called c-strongly convex if

$$
\begin{aligned}
\left(x, a, y ;\|\cdot\|^{2}\right) & :=(1-a)\|x\|^{2}+a\|y\|^{2}-\|(1-a) x+a y\|^{2} \\
& \geq c a(1-a)\|x-y\|^{2}, \forall x, y \in E, a \in[0,1] .
\end{aligned}
$$

Normed spaces and norms with such properties are intensively studied in literature (see, e.g., $[1,2,4,6]$) and the references therein. This note is motivated by a result from [5], according to which if $\|\cdot\|^{2}$ is c-strongly convex then it is useful in quantitative Korovkin approximation.

The elementary proof of the main result (Th. 3.2) was given by Andrzej Komisarski in [3]. At the end of the paper, a conjecture with geometric flavor is presented.

2 Preliminaries

Remark 1. (i) $\|\cdot\|^{2}$ is a convex function.
(ii) $(E,\|\cdot\|)$ is strictly convex iff $\|\cdot\|^{2}$ is strictly convex.
(iii) If $\|\cdot\|^{2}$ is c-strongly convex, then $c \leq 1$ and $\delta_{E}(\varepsilon) \geq 1-\sqrt{1-c \frac{\varepsilon^{2}}{4}}>0$, and consequently $(E,\|\cdot\|)$ is uniformly convex.
(iv) If ($E,\|\cdot\|$) is an inner-product space, then $\|\cdot\|^{2}$ is 1 -strongly convex. Conversely, if $\|\cdot\|^{2}$ is 1 -strongly convex, then according to (iii) and the Day-Nordlander Theorem,

$$
1-\sqrt{1-\frac{\varepsilon^{2}}{4}} \leq \delta_{E}(\varepsilon) \leq 1-\sqrt{1-\frac{\varepsilon^{2}}{4}},
$$

and thus ($E,\|\cdot\|$) is an inner-product space (see [2, p. 60]).
Remark 2. $\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)$ with $p>2$ is strictly convex and finite dimensional, hence uniformly convex. However, $\|\cdot\|_{p}^{2}$ is not strongly convex.

Indeed, $\lim _{x \searrow 0} x^{-2}\left(1-\left(1-x^{p}\right)^{2 / p}\right)=0$, hence

$$
\forall n \in \mathbb{N} \exists x_{n} \in(0,1): 1-\left(1-x_{n}^{p}\right)^{2 / p}<\frac{1}{n} x_{n}^{2} .
$$

[^0]Let $y_{n}=\left(1-x_{n}^{p}\right)^{1 / p}$. Set $u_{n}=\left(-x_{n}, y_{n}\right), v_{n}=\left(x_{n}, y_{n}\right)$. Then $\left(u_{n}, \frac{1}{2}, v_{n} ;\|\cdot\|_{p}^{2}\right)<\frac{1}{n} \frac{1}{4}\left\|u_{n}-v_{n}\right\|^{2}, n \in \mathbb{N}$, which shows that $\|\cdot\|_{p}^{2}$ is not strongly convex.
Remark 3. In relation with the above definitions, let us recall that $(E,\|\cdot\|)$ is said to be q-convex for some $q \geq 2$ if $\exists d>0$:

$$
\left\|\frac{x+y}{2}\right\|^{q} \leq \frac{1}{2}\left(\|x\|^{q}+\|y\|^{q}\right)-\frac{d}{2}\|x-y\|^{q}, x, y \in E .
$$

See [7], [6, p. 86].

3 Main result

So, for $p=1$ or $p>2,\|\cdot\|_{p}^{2}$ is not strongly convex as a norm on \mathbb{R}^{2}, while $\|\cdot\|_{2}^{2}$ is 1 -strongly convex. It remains to study the case when $1<p<2$.
Theorem 3.1. Let $1<p<2$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x, y):=\left(\frac{|x|^{p}+|y|^{p}}{2}\right)^{2 / p}-(p-1) \frac{x^{2}+y^{2}}{2},(x, y) \in \mathbb{R}^{2},
$$

Then f is convex and $f(x, y)>0$ for $(x, y) \neq(0,0)$.
Proof. Let us remark that

$$
\begin{equation*}
2^{1-\frac{2}{p}}>e^{1-\frac{2}{p}}>1+\left(1-\frac{2}{p}\right)>p-1 . \tag{1}
\end{equation*}
$$

On the other hand, the function $x \longmapsto x^{\frac{p}{2}}$ is subadditive on $[0, \infty)$, so that

$$
\begin{aligned}
f(x, y) & =\left(\frac{\left(x^{2}\right)^{p / 2}+\left(y^{2}\right)^{p / 2}}{2}\right)^{2 / p}-(p-1) \frac{x^{2}+y^{2}}{2} \geq \\
& \geq\left(\frac{\left(x^{2}+y^{2}\right)^{p / 2}}{2}\right)^{2 / p}-(p-1) \frac{x^{2}+y^{2}}{2}= \\
& =\frac{x^{2}+y^{2}}{2}\left(2^{1-\frac{2}{p}}-(p-1)\right)>0,
\end{aligned}
$$

for all $(x, y) \neq(0,0)$. Now let's prove that f is convex on $\left(\mathbb{R}^{+}\right)^{2}$. Let $x>0, y>0, u:=\frac{2 x^{p}}{x^{p}+y^{p}}, v:=\frac{2 y^{p}}{x^{p}+y^{p}}$. Then $u>0, v>0, u+v=2$. By a straightforward computation we find that the Hesse matrix of f is H with

$$
\begin{aligned}
& H_{11}=\frac{2-p}{2} u^{2-\frac{2}{p}}+(p-1)\left(u^{1-\frac{2}{p}}-1\right), \\
& H_{22}=\frac{2-p}{2} v^{2-\frac{2}{p}}+(p-1)\left(v^{1-\frac{2}{p}}-1\right), \\
& H_{12}=H_{21}=\frac{2-p}{2} u^{1-\frac{1}{p}} v^{1-\frac{1}{p}} .
\end{aligned}
$$

To prove that $H_{11}>0$, let us remark that the function $\varphi(t)=u^{t}$ is convex, and so

$$
\varphi\left[\left(\frac{2}{p}-1\right)\left(2-\frac{2}{p}\right)+\left(2-\frac{2}{p}\right)\left(1-\frac{2}{p}\right)\right] \leq\left(\frac{2}{p}-1\right) \varphi\left(2-\frac{2}{p}\right)+\left(2-\frac{2}{p}\right) \varphi\left(1-\frac{2}{p}\right) .
$$

This yields

$$
1 \leq\left(\frac{2}{p}-1\right) u^{2-\frac{2}{p}}+\left(2-\frac{2}{p}\right) u^{1-\frac{2}{p}} ;
$$

now

$$
\begin{aligned}
H_{11} & \geq \frac{2-p}{2} u^{2-\frac{2}{p}}+(p-1) u^{1-\frac{2}{p}}-(p-1)\left[\left(\frac{2}{p}-1\right) u^{2-\frac{2}{p}}+\left(2-\frac{2}{p}\right) u^{1-\frac{2}{p}}\right] \\
& =\frac{(2-p)^{2}}{2 p} u^{2-\frac{2}{p}}+\frac{(p-1)(2-p)}{p} u^{1-\frac{2}{p}}>0 .
\end{aligned}
$$

Similarly $H_{22}>0$. It remains to show that $\operatorname{det} H \geq 0$. A direct calculation reveals that

$$
\begin{aligned}
\operatorname{det} H & =(p-1)^{2}\left[1-u^{1-\frac{2}{p}}-v^{1-\frac{2}{p}}\right]-\frac{(p-1)(2-p)}{2}\left(u^{2-\frac{2}{p}}+v^{2-\frac{2}{p}}\right) \\
& +(p-1) u^{1-\frac{2}{p}} v^{1-\frac{2}{p}} .
\end{aligned}
$$

Denote $\operatorname{det} H=g(u)$, where $u \in(0,2), v=2-u$. Then

$$
g^{\prime}(u)=\frac{(p-1)^{2}(2-p)}{p}(v-u) u^{-\frac{2}{p}} v^{-\frac{2}{p}}\left[\frac{1}{2}\left(u^{\frac{2}{p}}+v^{\frac{2}{p}}\right)-\frac{1}{p-1}\right] .
$$

The function $\psi(t):=t^{\frac{2}{p}}$ is convex on $[0, \infty)$, which implies $\psi(u)+\psi(v) \leq \psi(0)+\psi(u+v)$, i.e., $u^{\frac{2}{p}}+v^{\frac{2}{p}} \leq 2^{\frac{2}{p}}$. Now according to (1),

$$
\frac{1}{2}\left(u^{\frac{2}{p}}+v^{\frac{2}{p}}\right)-\frac{1}{p-1} \leq 2^{\frac{2}{p}-1}-\frac{1}{p-1}<0 .
$$

It follows that $g^{\prime}(u)<0$ iff $v-u>0$, i.e., iff $u \in(0,1)$. Since $g(1)=0$, we have $\operatorname{det} H=g(u)>0$ for $u \neq 1$, which shows that f is a (strictly) convex function on $\left(\mathbb{R}^{+}\right)^{2}$. Then it is clearly convex on $\left(\mathbb{R}^{-}\right)^{2}, \mathbb{R}^{+} \times \mathbb{R}^{-}, \mathbb{R}^{-} \times \mathbb{R}^{+}$. Consider now the semiaxis $\{(0, b) \mid b \geq 0\}$. It is easy to verify that the surface $z=f(x, y)$ has a tangent plane at the point $(0, b, f(0, b))$, namely the plane of equation

$$
z=b\left(2^{1-\frac{2}{p}}+1-p\right)\left(y-\frac{b}{2}\right) .
$$

A similar reasoning involving the other semiaxes leads to the conclusion that f is a convex function.
Theorem 3.2. Consider the space $\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)$ with $1<p<2$. Then $\|\cdot\|_{p}^{2}$ is $(p-1)$-strongly convex, and $p-1$ is the largest constant with this property.

Proof. From Theorem 3.1 we deduce that \sqrt{f} is a norm on \mathbb{R}^{2}, and so $|\cdot|:=\sqrt{\frac{2}{p-1} f}$ is also a norm. This implies

$$
\|\cdot\|_{p}^{2}=(p-1) 2^{\frac{2}{p}-1}\left(|\cdot|^{2}+\|\cdot\|_{2}^{2}\right) .
$$

Now Lemma 1 shows that

$$
\left(x, a, y ;\|\cdot\|_{p}^{2}\right) \geq(p-1) 2^{\frac{2}{p}-1} a(1-a)\|x-y\|_{2}^{2}, x, y \in \mathbb{R}^{2} .
$$

It is easy to verify that $\|\cdot\|_{2}^{2} \geq 2^{1-\frac{2}{p}}\|\cdot\|_{p}^{2}$, and so $\left(x, a, y ;\|\cdot\|_{p}^{2}\right) \geq(p-1) a(1-a)\|x-y\|_{p}^{2}$, for all $x, y \in \mathbb{R}^{2}, a \in[0,1]$. Therefore, $\|\cdot\|_{p}^{2}$ is $(p-1)$-strongly convex. Suppose that $\|\cdot\|_{p}^{2}$ is c-strongly convex. Then

$$
2\left(\|x\|_{p}^{2}+\|y\|_{p}^{2}\right)-\|x+y\|_{p}^{2} \geq c\|x-y\|_{p}^{2}, x, y \in \mathbb{R}^{2} .
$$

For $x=(1+\varepsilon, 1-\varepsilon), y=(1-\varepsilon, 1+\varepsilon)$, this leads to

$$
c \cdot 2^{\frac{2}{p}} \leq \lim _{\varepsilon \searrow 0} \frac{\left[(1+\varepsilon)^{p}+(1-\varepsilon)^{p}\right]^{2 / p}-2^{2 / p}}{\varepsilon^{2}}=(p-1) 2^{2 / p},
$$

and so $c \leq p-1$.
Conjecture 1. Let $\|\cdot\|$ be a norm on \mathbb{R}^{2}, and $C:=\left\{x \in \mathbb{R}^{2} \mid\|x\|=1\right\}$. Then $\|\cdot\|^{2}$ is strongly convex iff $\exists M>0$ such that $\forall x_{1}, x_{2}, x_{3} \in C$ with $O x_{1}, O x_{2}, O x_{3}$ pairwise distinct, the conic with center O and passing through x_{1}, x_{2}, x_{3} is an ellipse with axes $\leq M$.
Acknowledgement. This work was supported by a Hasso Plattner Excellence Research Grant (LBUS-HPI-ERG-2020-07), financed by the Knowledge Transfer Center of the Lucian Blaga University of Sibiu.

References

[1] J. Alonso, A. Ullán, Moduli of convexity, Functional Analysis and Approximation, Edited by P.L. Papini-Bagni di Lucca (Italy) 16-20 May, 1988.
[2] J. Diestel. Geometry of Banch spaces. LNM485, Springer 1975.
[3] A. Komisarski. Letter to I. Raşa. November 27, 2017.
[4] K. Nikodem, Z. Páles. Caracterizations of inner product spaces by strongly convex functions. Banach J. of Math. Anal., 5(1), 83-87, 2011.
[5] I. Raşa, Test sets in quantitative Korovkin approximation. Studia Univ. Babeş-Bolyai, XXXVI, 4, 97-100, 1991.
[6] L. Schwartz. Geometry and Probability in Banach spaces. LNM852, Springer, 1981.
[7] R. Smarzewski. Asymptotic Chebyshev centers. J. Approx. Theory 59, 286-295, 1989.

[^0]: ${ }^{a}$ Lucian Blaga University of Sibiu, Department of Mathematics and Informatics, Str. Dr. I. Ratiu, No.5-7, RO-550012 Sibiu, Romania, e-mail: anamaria.acu@ulbsibiu.ro ${ }^{b}$ Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, Department of Mathematics, Str. Memorandumului nr. 28, 400114 Cluj-Napoca, Romania e-mail: ioan.rasa@math.utcluj.ro
 ${ }^{c}$ Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, Department of Mathematics, Str. Memorandumului nr. 28, 400114 Cluj-Napoca, Romania e-mail: ancasteopoaie@yahoo.ro

