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Positive linear operators preserving certain monomials on [0,∞)
Ulrich Abel a · Ana Maria Acu b · Margareta Heilmann c · Ioan Raşa d

Abstract

J.P. King constructed a sequence of positive linear operators on C[0, 1] preserving the constant function 1
and the monomial x2. After that, several papers were devoted to positive linear operators preserving
prescribed functions. In 2009, J.M. Aldaz, O. Kounchev, H. Render modified the classical Bernstein
operators to get new operators fixing 1 and x j for a given j ∈ N.
Our aim is to construct operators acting on functions defined on [0,∞) and preserving 1 and x j . To
this end we consider suitable modifications of the Post-Widder and Gamma operators. Using pointwise
asymptotic relations for the moments we obtain convergence results for the sequences of operators.
Moreover, we establish the associated Voronovskaja formulas.

Keywords: positive linear operators, asymptotic expansions, rate of convergence, Aldaz-Kounchev-Render operators.
2010 AMS classification: 41A36, 41A25.

1 Introduction

Many approximation operators Ln preserve linear functions, i.e., Lner = er , for r = 0, 1, while Lne2 6= e2 and Lne2→ e2 as n→∞.
For instance, Bernstein operators, Szász-Mirakjan operators and Baskakov operators enjoy this property. It is well-known, that the
only positive linear operator satisfying Lner = er , for r = 0,1, 2, is the identity operator.

In 2003, J. P. King [14] proposed, for approximation operators Ln : C [0, 1]→ C [0, 1] preserving linear functions, an operator
of the type L∗n, defined by

�

L∗n f
�

(x) = (Ln f ) (τn (x)) with certain continuous functions τn : [0, 1]→ [0, 1], such that L∗ner = er ,
for r = 0,2. In this case L∗ne1 = τn. The Korovkin theorem implies that limn→∞ L∗n f = f , for each f ∈ C [0, 1], if and only if
limn→∞ τn = e1 ([14, Theorem 2.1]).

In 2009, J.M. Aldaz, O. Kounchev, H. Render [4] used a new idea to get operators fixing e0 and e j for a given j ∈ N. These
operators are linear combinations of the fundamental Bernstein polynomials with modified points of evaluation as follows

�

Bn, j f
�

(x) =
n
∑

k=0

f
�

tn,k, j

�

pn,k(x),

where

tn,k, j =
�

k(k− 1) . . . (k− j + 1)
n(n− 1) . . . (n− j + 1)

�1/ j

.

The operator Bn, j is one of several examples of operators preserving e0 and e j . Operators preserving polynomial functions are
investigated in [3], [10], [11], [12], [7], [8]. The preservation of e0 and a given function τ is studied in [7] and [13].

The aim of this paper is to construct operators acting on the interval [0,∞) and fixing e0 and e j .
We consider two different modifications of the classical Post-Widder and Gamma operators.
The Post-Widder operators indexed by integers n≥ 1 (see [9, (9.1.9)]), are given by

(Pn f ) (x) =
1

(n− 1)!

� n
x

�n
∫ ∞

0

e−ns/x sn−1 f (s)ds,

and the Gamma operators (see [9, 9.1.11]) by

(Gn f ) (x) =
(nx)n+1

n!

∫ ∞

0

1
sn+2

e−nx/s f (s)ds

=
xn+1

n!

∫ ∞

0

une−ux f
�n

u

�

du,
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for each function f , for which the respective integral on the right side is convergent.
For α ∈ [0,∞) we denote by eα the function eα(x) = xα, x ∈ [0,∞).
It is easy to confirm that

Pneα =
Γ (n+α)
nαΓ (n)

eα, α≥ 0 and Gneα =
nαΓ (n+ 1−α)
Γ (n+ 1)

eα, 0≤ α < n+ 1. (1)

For nonnegative integers α= r, we have

Pner = λn,r er , with λn,r :=
nr

nr
(2)

and

Gner = µn,r er , with µn,r :=
nr

nr
, n≥ r, (3)

where nr , nr are the rising and falling factorials. In particular, Pn and Gn preserve the linear functions.

2 Auxiliary results

In this paper we need estimates of the ratio of two gamma functions Γ (z +α)/Γ (z + β), for z,α,β > 0. It is well known that the
gamma ratio satisfies, for any real α, the classical relation lim

z→+∞
z−αΓ (z +α)/Γ (z) = 1. We apply the following more general

asymptotic relation, namely,

zβ−α
Γ (z +α)
Γ (z + β)

= 1+
(α− β) (α+ β − 1)

2z
+O

�

1
z2

�

(4)

as z→ +∞ (see, e.g., [1, Formula (6.1.47)]. For our purposes, we also need concrete lower and upper bounds for the gamma
ratio. We take advantage of the following estimate due to Wendel [15].

Lemma 2.1. For z > 0, the gamma ratio satisfies the double inequality
� z

z +α

�1−α
≤
Γ (z +α)
zαΓ (z)

≤ 1 (0≤ α≤ 1) .

Now we gather some properties of the quantities λn,r and µn,r .

Lemma 2.2. The double estimate

1+
j − 1

2n+ j ( j − 1)
≤ j
q

λn, j ≤ 1+
j − 1

n

is valid for all positive integers n.

Proof. We have

λn, j =
n j

n j
≤
�

n+ j − 1
n

� j

which proves the upper bound. Furthermore, observe that

λn, j =
�

1+
1
n

��

1+
2
n

�

· · ·
�

1+
j − 1

n

�

≥ 1+
j−1
∑

k=1

k
n
= 1+

1
n

�

j
2

�

.

Using the inequality

exp
� t

1+ t

�

≤
∞
∑

k=0

� t
1+ t

�k
= 1+ t (t ≥ 0) , (5)

we obtain

j
q

λn, j ≥
�

1+
1
n

�

j
2

��1/ j

≥ exp

�

1
j

1
n

� j
2

�

1+ 1
n

� j
2

�

�

≥ 1+
1
j

1
n

� j
2

�

1+ 1
n

� j
2

�

and a simplification completes the proof.

Lemma 2.3. The double estimate

1+
j − 1
2n
≤ j
p

µn, j ≤ 1+
j − 1

n
is valid for all positive integers n≥ 2 j − 1.
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Proof. Because

µ−1
n, j =

n j

n j
=
�

1−
1
n

��

1−
2
n

�

· · ·
�

1−
j − 1

n

�

we obtain

logµn, j = −
j−1
∑

k=1

log
�

1−
k
n

�

.

Taking advantage of the estimate

t ≤ − log (1− t)≤ t +
t2

2 (1− t)
(0≤ t < 1)

we obtain
j−1
∑

k=1

k
n
≤ logµn, j ≤

j−1
∑

k=1

k
n
+

1
2 (1− ( j − 1)/n)

j−1
∑

k=1

�

k
n

�2

which implies that
j − 1
2n
≤

1
j

logµn, j ≤
j − 1
2n

+
(2 j − 1) ( j − 1)
12n (n+ 1− j)

=
j − 1
2n

�

1+
2 j − 1

6 (n+ 1− j)

�

.

Applying estimate

1+ t ≤ et ≤ 1+ t +
t2

2 (1− t)
(0≤ t < 1)

we obtain

1+
j − 1
2n
≤ j
p

µn, j ≤ 1+ t +
t2

2 (1− t)
,

where t = j−1
2n

�

1+ 2 j−1
6(n+1− j)

�

. If n≥ 2 j − 1, we have 2 j−1
6(n+1− j) < 1/3 and t ≤ 1/2, such that

j
p

µn, j ≤ 1+
3
2

t ≤ 1+
3
2
·

j − 1
2n
·

4
3
≤ 1+

j − 1
n

.

We proceed with some asymptotic relations for λn,r and µn, j .

Lemma 2.4. For all integers r ≥ 0 and s > 2, the asymptotic relations

λn,r = 1+
r (r − 1)

2n
+O

�

1
n2

�

, (6)

λn,r j

λr
n, j

= 1+ j2 r (r − 1)
2n

+O
�

1
n2

�

and
s
∑

r=0

(−1)s−r
�

s
r

�

λn,r j

λr
n, j

= o
�

1
n

�

are valid as n→∞.

Proof. The first relation follows from

λn,r =
�

1+
1
n

��

1+
2
n

�

· · ·
�

1+
r − 1

n

�

= 1+
1
n

r−1
∑

k=1

k+O
�

1
n2

�

(n→∞) .

Furthermore, we have

λn,r j

λr
n, j

=
�

1+
r j (r j − 1)

2n
+O

�

1
n2

���

1+
j ( j − 1)

2n
+O

�

1
n2

��−r

= 1+
r j (r j − 1)

2n
− r

j ( j − 1)
2n

+O
�

1
n2

�

(n→∞) .

Observe that r j (r j − 1)− r j ( j − 1) = j2r (r − 1). The last relation is valid since
s
∑

r=0

(−1)s−r
�

s
r

�

rm = 0,

for each nonnegative integer m< s.

Dolomites Research Notes on Approximation ISSN 2035-6803



Abel · Acu · Heilmann · Raşa 4

Lemma 2.5. For all integers r ≥ 0 and s > 2, the asymptotic relations

µn,r = 1+
r (r − 1)

2n
+O

�

1
n2

�

, (7)

µn,r j

µr
n, j

= 1+ j2 r (r − 1)
2n

+O
�

1
n2

�

and
s
∑

r=0

(−1)s−r
�

s
r

�

µn,r j

µr
n, j

= o
�

1
n

�

are valid as n→∞.

Proof. The first relation follows from

µ−1
n,r =

nr

nr
=
�

1−
1
n

��

1−
2
n

�

· · ·
�

1−
r − 1

n

�

= 1−
1
n

�

r
2

�

+O
�

1
n2

�

(n→∞) .

Now, the further relations follow as in the proof of Lemma 2.4.

3 Related operators preserving e0 and e j

In this section we introduce two types of modifications of the operators Pn and Gn. Let j ≥ 1 be an integer number. The new
operators Pn, j , Gn, j , P̃n, j and G̃n, j preserve the monomials e0 and e j .

The first pair of modified operators is defined as follows

�

Pn, j f (t)
�

(x) :=

�

Pn f

�

t
j
Æ

λn, j

��

(x)

and
�

Gn, j f (t)
�

(x) :=

�

Gn f

�

t
j
p

µn, j

��

(x).

Then Pn, j e0 = e0, Gn, j e0 = e0, and

Pn, j e j = Pn

e j

λn, j
= e j ,

Gn, j e j = Gn

e j

µn, j
= e j .

In the following we study the moments of the operators Pn, j and Gn, j . By definition and equations (2) and (3), we have

Pn, j er =
λn,r

λ
r/ j
n, j

er and Gn, j er =
µn,r

µ
r/ j
n, j

er ,

where r ∈ N0 := {0,1, 2, . . . }. As a consequence of (6) and (7), we get the following proposition.

Proposition 3.1. For r ∈ N0, the moments of the operators Pn, j and Gn, j satisfy the pointwise asymptotic relations

Pn, j er =
�

1+
r (r − j)

2n
+O

�

1
n2

��

er (n→∞) ,

Gn, j er =
�

1+
r (r − j)

2n
+O

�

1
n2

��

er (n→∞) .

The second type of modification is given by
�

P̃n, j f (t)
�

(x) =
�

Pn f
�

jpt
��

(x j)

=
jnn

xn j(n− 1)!

∫ ∞

0

un j−1e−nu j/x j
f (u)du

and
�

G̃n, j f (t)
�

(x) =
�

Gn f
�

jpt
��

(x j)

=
(nx j)n+1

n!
j

∫ ∞

0

1
u(n+1) j+1

e−nx j/u j
f (u)du.

By definition and (1.1), we have

P̃n, j er =
Γ (n+ r/ j)
nr/ jΓ (n)

er and G̃n, j er =
Γ (n+ 1− r/ j)
n−r/ jΓ (n+ 1)

er . (8)

These equations reveal that P̃n, j and G̃n, j preserve the monomials e0 and e j .
The asymptotic behaviour of the moments is described in the following proposition.
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Proposition 3.2. For r ∈ N0, the moments of the operators P̃n, j and G̃n, j satisfy the pointwise asymptotic relations

P̃n, j er =
�

1+
r (r − j)

2 j2n
+O

�

n−2
�

�

er , as n→∞, (9)

G̃n, j er =
�

1+
r (r − j)

2 j2n
+O

�

n−2
�

�

er , as n→∞. (10)

Proof. Let r ∈ N0. By (8) and (4) we have

P̃n, j er =
�

1+
r/ j (r/ j − 1)

2n
+O

�

n−2
�

�

er as n→∞,

which proves the first relation. Analogously, we have

G̃n, j er =
n− r/ j

n
Γ (n− r/ j)
n−r/ jΓ (n)

er =
�

1−
r
jn

��

1+
−r/ j (−r/ j − 1)

2n
+O

�

n−2
�

�

er

as n→∞ and the second relation follows by simplification.

4 Convergence of the operators

Let Cb [0,+∞) be the space of all real-valued, continuous and bounded functions defined on the interval [0,+∞). In this section
we use the notation ψx (t) = t − x .

In order to show the convergence we can apply the classical estimate using the second central moment (see [5, Theorem
5.1.2]).

Lemma 4.1. If Le0 = e0, then, for f ∈ Cb [0,+∞),

|(L f ) (x)− f (x)| ≤
�

1+
1
δ

Ç

�

Lψ2
x

�

(x)
�

ω ( f ,δ) .

4.1 Convergence of the operators Pn, j

First we consider the operators Pn, j and prove the convergence (see Theorem 4.3).

Proposition 4.2. For x > 0 and positive integers n, the second central moment of Pn, j satisfies the estimate

�

Pn, jψ
2
x

�

(x)≤
�

1
n
+
( j − 1)2

n2

�

x2. (11)

If n≥ j ( j − 1), it follows the more elegant estimate

�

Pn, jψ
2
x

�

(x)≤
2 j − 1

jn
x2. (12)

Proof. We have
�

Pn, jψ
2
x

�

(x) = λ−2/ j
n, j (Pne2) (x)− 2xλ−1/ j

n, j (Pne1) (x) + x2Pn (e0) (x)

= x2





1

nλ2/ j
n, j

+

 

1−
1

λ
1/ j
n, j

!2


 .

By Lemma 2.2,

1≤ j
q

λn, j ≤ 1+
j − 1

n
.

Therefore, we have

1

nλ2/ j
n, j

+

 

1−
1

λ
1/ j
n, j

!2

≤
1
n
+

� j−1
n

1+ j−1
n

�2

=
1
n
+
�

j − 1
n+ j − 1

�2

and so,
�

Pn, jψ
2
x

�

(x)≤
�

1
n
+
( j − 1)2

n2

�

x2,

which is (11).
For n≥ j( j − 1) we have

1
n
+
( j − 1)2

n2
≤

2 j − 1
jn

.

Thus (12) holds true.
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Remark 1. Note that
�

Pn, jψ
2
x

�

(x) =
x2

n
+O

�

n−2
�

as n→∞.

Theorem 4.3. Let x > 0. For f ∈ Cb [0,+∞), the rate of convergence can be estimated by

�

�

�

Pn, j f
�

(x)− f (x)
�

�≤
�

1+

√

√2 j − 1
j

x

�

ω

�

f ,
1
p

n

�

, (13)

for all integers n≥ j ( j − 1).

Proof. By Lemma 4.1 and Proposition 4.2, for f ∈ Cb [0,+∞) and δ > 0,

�

�

�

Pn, j f
�

(x)− f (x)
�

�≤
�

1+
x
δ

√

√2 j − 1
jn

�

ω ( f ,δ) .

Choosing δ = 1/
p

n we get (13).

4.2 Convergence of the operators Gn, j

Theorem 4.4. Let j ≥ 2 and x > 0. For f ∈ Cb [0,+∞), the rate of convergence can be estimated by

�

�

�

Gn, j f
�

(x)− f (x)
�

�≤
�

1+
p

j x
�

ω

�

f ,
1
p

n

�

,

for all integers n≥ j − 1.

Proof. For j ≥ 2 and x > 0, by the definition and (1), we obtain
�

Gn, jψ
2
x

�

(x) = µ−2/ j
n, j (Gne2) (x)− 2xµ−1/ j

n, j (Gne1) (x) + x2 (Gne0) (x)

= x2





1

(n− 1)µ2/ j
n, j

+

 

1−
1

µ
1/ j
n, j

!2


 .

Because

µ−1
n, j =

n j

n j
=
�

1−
1
n

��

1−
2
n

�

· · ·
�

1−
j − 1

n

�

≤
�

1−
1
n

� j−1

,

we infer that µ−2/ j
n, j ≤

�

1− 1
n

�2−2/ j
≤ 1− 1

n , such that

1

(n− 1)µ2/ j
n, j

≤
1
n

.

Furthermore, we have the estimate

µ
−1/ j
n, j ≥

�

1−
j − 1

n

�( j−1)/ j

≥ 1−
j − 1

n
(n≥ j − 1) .

Therefore, we obtain,
�

Gn, jψ
2
x

�

(x)≤ x2

�

1
n
+
�

j − 1
n

�2
�

≤
j
n

x2 (n≥ j − 1) .

and this concludes the proof.

4.3 Convergence of the operators P̃n, j

Theorem 4.5. Let j ≥ 2 and x > 0. For f ∈ Cb [0,+∞), the rate of convergence can be estimated by

�

�

�

P̃n, j f
�

(x)− f (x)
�

�≤
�

1+

√

√

2
j − 1

j
x

�

ω

�

f ,
1
p

n

�

, (14)

for all integers n≥ 1.

Proof. For j ≥ 2, by the definition and (1), we obtain
�

P̃n, jψ
2
x

�

(x) = Pn

�

t2/ j; x j
�

− 2x Pn

�

t1/ j; x j
�

+ x2Pn

�

1; x j
�

= x2 Γ (n+ 2/ j)
n2/ jΓ (n)

− 2x2 Γ (n+ 1/ j)
n1/ jΓ (n)

+ x2.
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Applying Wendel’s inequality (Lemma 2.1) in the form

(n+α− 1)α ≤
Γ (n+α)
Γ (n)

≤ nα (n> 1−α, 0≤ α≤ 1) ,

(note that 0< 2/ j ≤ 1) we infer that

�

P̃n, jψ
2
x

�

(x)≤ x2

�

1− 2
(n+ 1/ j − 1)1/ j

n1/ j
+ 1

�

= 2x2

�

1−
�

1−
j − 1
jn

�1/ j
�

.

Using the inequality jp1− t ≥ 1− t, for t ∈ [0,1] and j ∈ N, we conclude that

�

P̃n, jψ
2
x

�

(x)≤ 2x2 j − 1
jn

(n ∈ N) .

Then, for f ∈ Cb [0,+∞) and δ > 0,

�

�

�

P̃n, j f
�

(x)− f (x)
�

�≤
�

1+
x
δ

√

√2
n

j − 1
j

�

ω ( f ,δ) .

Choosing δ = 1/
p

n we obtain (14).

4.4 Convergence of the operators G̃n, j

Theorem 4.6. Let j ≥ 2 and x > 0. For f ∈ Cb [0,+∞), the rate of convergence can be estimated by

�

�

�

G̃n, j f
�

(x)− f (x)
�

�≤

�

1+

√

√2 ( j − 1)
j

x

�

ω

�

f ,
1
p

n

�

,

for all integers n≥ 1.

Proof. By the definition and (1), we have
�

G̃n, jψ
2
x

�

(x) = Gn

�

t2/ j; x j
�

− 2xGn

�

t1/ j; x j
�

+ x2Gn

�

1; x j
�

= x2

�

n2/ jΓ (n+ 1− 2/ j)
Γ (n+ 1)

− 2
n1/ jΓ (n+ 1− 1/ j)

Γ (n+ 1)
+ 1

�

.

Applying Wendel’s inequality (Lemma 2.1) in the equivalent form
� x

x + 1− s

�s
≤

x sΓ (x + 1− s)
Γ (x + 1)

≤ 1 (x > 0, 0≤ s ≤ 1)

we obtain
�

G̃n, jψ
2
x

�

(x)≤ 2x2

�

1−
�

n
n+ 1− 1/ j

�1/ j
�

= 2x2

�

1−
�

1−
( j − 1)/ j

n+ ( j − 1)/ j

�1/ j�

Using the inequality jp1− t ≥ 1− t, for t ∈ [0,1] and j ∈ N, we conclude that

�

G̃n, jψ
2
x

�

(x)≤ 2x2 ( j − 1)/ j
n+ ( j − 1)/ j

≤ 2x2 j − 1
n j

(n ∈ N) ,

and this completes the proof.

5 Voronovskaja type results

In order to obtain Voronovskaja type results for the operators Pn, j , P̃n, j , Gn, j , G̃n, j we use the following general result (see [2,
Section 2]).

Let ϕ ∈ C2[0,∞), ϕ(0) = 0, ϕ′(t)> 0, t ∈ (0,∞), lim
t→∞

ϕ(t) =∞. Denote

Eϕ :=

�

f ∈ C[0,∞)
�

�

�

�

sup
t≥0

| f (t)|
1+ϕ2(t)

<∞
�

.

Theorem 5.1. [2] Let x > 0 be given and let Ψx(t) := ϕ(t)−ϕ(x), t ≥ 0. Denote by E x
ϕ

a linear subspace of C[0,∞) such that
Eϕ ⊂ E x

ϕ
and Ψ4

x ∈ E x
ϕ

. Let Ln : E x
ϕ
→ C[0,∞) be a sequence of positive linear operators such that

(i) lim
n→∞

n ((Lne0)(x)− 1) = 0,
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(ii) lim
n→∞

n(LnΨx )(x) = b(x),

(iii) lim
n→∞

n(LnΨ
2
x )(x) = 2a(x),

(iv) lim
n→∞

n(LnΨ
4
x )(x) = 0.

If f ∈ Eϕ and there exists f ′′(x) ∈ R, then

lim
n→∞

n ((Ln f )(x)− f (x)) =
a(x)
ϕ′(x)2

f ′′(x) +
b(x)ϕ′(x)2 − a(x)ϕ′′(x)

ϕ′(x)3
f ′(x). (15)

Let us mention that in [2] the important idea in connection with the application of Theorem 5.1 to modified Baskakov type
operators preserving the constants and x j was to use ϕ(t) = t j . In similar investigations usually ϕ(t) = t (classical case) or
ϕ(t) = t2 was used (see [6]), which didn’t lead to a possible proof for Voronovskaja type result for the modified Baskakov
operator.

We now apply Theorem 5.1 to the operators P̃n, j , G̃n, j with ϕ(t) = t j .

Theorem 5.2. Let x > 0, f ∈ C[0,∞) with sup
t≥0

| f (t)|
1+ t2 j

<∞, such that there exists f ′′(x) ∈ R. The sequences (P̃n, j)n≥1 and

(G̃n, j)n≥1 satisfy the Voronovskaja type formulas

lim
n→∞

n
�

(P̃n, j f )(x)− f (x)
�

=
1
j2

�

x2

2
f ′′(x)−

( j − 1)x
2

f ′(x)
�

,

lim
n→∞

n
�

(G̃n, j f )(x)− f (x)
�

=
1
j2

�

x2

2
f ′′(x)−

( j − 1)x
2

f ′(x)
�

.

Proof. As P̃n, j and G̃n, j preserve e0 and e j , (i) and (ii) in Theorem 5.1 are fulfilled with b(x) = 0.
Taking r = l j, l ∈ N, in (8), we get

(P̃n, j el j)(x) = x l j nl

nl

and

(P̃n, jΨ
2
x )(x) = x2 j 1

n
, (P̃n, jΨ

4
x )(x) = x4 j 3(n+ 2)

n3
.

Thus (iii) with 2a(x) = x2 j and (iv) in Theorem 5.1 are also valid, which leads to the proposed Voronovskaja type result for P̃n, j .
Taking r = l j, l ∈ N, in (8), we get

(G̃n, j el j)(x) = x l j nl

nl

and

(G̃n, jΨ
2
x )(x) = x2 j 1

n− 1
, (G̃n, jΨ

4
x )(x) = x4 j 3(n+ 6)

(n− 1)(n− 2)(n− 3)
,

which leads to the desired Voronovskaja type result for G̃n, j .

Remark 2. Concerning the proof of Theorem 5.2, let us remark in passing that conditions (i)-(iv) from Theorem 5.1 for the
operators P̃n, j and G̃n, j also follow easily from (9) and (10).

In the following we investigate Voronovskaja type formulas for the operators Pn, j and Gn, j . Clearly, we have
�

Pn, jΨ
0
x

�

(x) =
�

Gn, jΨ
0
x

�

(x) = 1 and
�

Pn, jΨ
1
x

�

(x) =
�

Gn, jΨ
1
x

�

(x) = 0. Moreover, we show the following formulas.

Theorem 5.3. Let x > 0, f ∈ C[0,∞) with sup
t≥0

| f (t)|
1+ t2 j

<∞, such that there exists f ′′(x) ∈ R. The sequences (Pn, j)n≥1 and

(Gn, j)n≥1 satisfy the Voronovskaja type formulas

lim
n→∞

n
�

(Pn, j f )(x)− f (x)
�

=
x2

2
f ′′(x)−

( j − 1)x
2

f ′(x),

lim
n→∞

n
�

(Gn, j f )(x)− f (x)
�

=
x2

2
f ′′(x)−

( j − 1)x
2

f ′(x).

Proof. We have
�

Pn, jΨ
s
x

�

(x) =
s
∑

r=0

�

s
r

�

�

−x j
�s−r �

Pn, j er j

�

(x) = x js
s
∑

r=0

(−1)s−r
�

s
r

�

λn,r j

λr
n, j

.
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Therefore, by Lemma 2.4,
�

Pn, jΨ
2
x

�

(x) = x2 j

�

λn,2 j

λ2
n, j

− 2
λn, j

λn, j
+ 1

�

=
j2

n
x2 j +O

�

1
n2

�

and
�

Pn, jΨ
4
x

�

(x) = o
�

n−1
�

as n→∞. The same formulas are valid for the operator Gn, j .
So, we get b(x) = 0 and 2a(x) = j2 x2 j . Using Theorem 5.1 with ϕ(t) = t j , concludes the proof.

Remark 3. A more elaborate analysis shows that

�

Pn, jΨ
2
x

�

(x) =
j2

n
x2 j +

j2 ( j − 1)2

2n2
x2 j +O

�

1
n3

�

,

�

Pn, jΨ
3
x

�

(x) =
j3 (3 j − 1)

n2
x3 j +O

�

1
n3

�

,

�

Pn, jΨ
4
x

�

(x) =
3 j4

n2
x4 j +O

�

1
n3

�

,

�

Gn, jΨ
2
x

�

(x) =
j2

n
x2 j +

j2
�

j2 + 2 j − 1
�

2n2
x2 j +O

�

1
n3

�

,

�

Gn, jΨ
3
x

�

(x) =
j3 (3 j + 1)

n2
x3 j +O

�

1
n3

�

,

�

Gn, jΨ
4
x

�

(x) =
3 j4

n2
x4 j +O

�

1
n3

�

as n→∞.

Remark 4. The efficiency of the approximation furnished by a sequence of operators can be measured, in particular, by the
magnitude of its Voronovskaja limit. Comparing the results for the different modifications it is worth mentioning that in general
for fixed j ≥ 2 the absolute value of the Voronovskaja limit for P̃n, j and G̃n, j is smaller than for Pn, j and Gn, j by a factor of j−2.
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